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In this paper we present a comprehensive analysis of the running of all the couplings of the
standard model to two loops, including threshold effects. Our purpose is twofold —to determine
what the running of these parameters may indicate for the physics of the standard model and to
provide a template for the study of its extensions up to the Planck mass.
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I. INTRODUCTION

The standard model, by meeting all confronta
tions with experiments, stands as a remarkably simple
parametrization of known physics down to a scale of
tenths of millifermis. Yet, it has many unsatisfactory
aspects such as a large number of parameters, a tripli-
cation of chiral families, and three distinct gauge struc-
tures. Consequently, it is almost a creed among right
thinking theorists that there must exist a much simpler
underlying structure of which the standard model is a chi-
ral shard. Many think that such a structure will make its
appearance at much smaller scales, somewhere in the un-
explored region between millifermis and the Planck scale.
Experimentalists can only proceed one or two orders of
magnitude at a time in their exploration of those scales.
Theorists, on the other hand, are only limited by their
imagination. Their approach for divining this structure
is twofold. In the first, the quantum numbers of the
standard model are grouped into mathematically pleas-
ing structures, resulting in an exercise in quantum num-
ber pattern recognition. This has led to the early grand
unified theories (GUT's) [1]. The second approach [2] is
to use the renormalization group to extrapolate the stan-
dard model parameters to the unexplored scales. The
purpose is to find if those parameters satisfy interesting
relations at shorter distances. When used in conjunction
with the former approach, this can give powerful hints of
the physics expected at shorter scales. Of course, it all
depends on having accurate data to input as initial condi-
tions on the renormalization-group equations, as well as a
strong theoretical basis for the evolution equations them-
selves. The minimal SU(5) GUT is the prototype for such
analyses [3). There, properties of the model at energies of
order 10 GeV are translated with the aid of the renor-
malization group to a prediction for proton decay that
is not consistent with experiment. Data on the coupling
constants are now sufBciently precise to rule out most
simple GUT's, including SU(5), because of the absence
of unification of the running couplings (GUT triangle)
[4]. The same analysis has recently improved the feasi-
bility of the supersymmetric extensions of these GUT's.

More recently, constraints coming from Yukawa coupling
unification in supersymmetric SU(5) and SO(10) mod-
els have led to bounds on the mass of the top quark [5,
6]. Renormalization-group methods are of enduring prac-
tical importance in the attempts of high-energy physi-
cists to glean indications of more fundamental theories
from radiative corrections. For this reason we seek to
provide a general guide for the search for patterns in
renormalization-group analyses so that these techniques
will be accessible to a wider audience of physicists.

We therefore collect in a comprehensive manner and in
one place the necessary tools for making renormalization-
group analyses of the standard model and of its vari-
ous extensions. Some facets of this study have been ad-
dressed in the literature, albeit not all in the same place.
We view this compendium as a template for general ap-
plications of the running of parameters from 1 GeV to
Planck mass Mpl upon which standard model extensions
may be added. With the ever increasing precision of ex-
periment, we expect the inclusion of two-loop effects to
be crucial. Therefore we work to two-loop order and,
moreover, include the complete Yukawa sector contribu-
tion, as well as treat properly the effects of thresholds.
These last two points, we believe, constitute an improve-
ment over previous efforts. We use numerical methods to
evolve the parameters to different scales using the P func-
tions found in the literature [7] and plot the results for
representative values of the Higgs boson and top-quark
masses.

A review of initial data extraction from experiments
is presented in Sec. II. Many excellent reviews may be
found in the literature, e.g. , Marciano's [8] or Peccei's [9].
For completeness the section begins with a basic intro-
duction to renormalization and renormalization scheme
dependence. We go on to identify the values of the vari-
ous parameters at the difFerent scales where they are most
accurately known. The determination of the electroweak
gauge couplings is discussed in Sec. IIB. We cover some
of the ambiguities and uncertainties associated with the
extraction of the strong coupling constant in Sec. II C.

The running of the quark and lepton masses and of the
Cabibbo-Kobayashi-Maskawa (CKM) angles is generally
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given through the running of the Yukawa matrices (even
to one loop). We run the quark masses and CKM angles
by diagonalizing the Yukawa matrices at every step in
the Runge-Kutta method used in solving the P functions.
However, in the literature, some authors write down an-
alytic expressions for the running of these masses and
angles by making some approximations. Typically, it is
assumed that the contribution of the Yukawa couplings
matrix is given essentially by the top-quark Yukawa cou-
pling since it is much larger than the others. Sornetirnes
a better approximation is made by keeping only the diag-
onal entries. Our numerical technique represents a minor
improvement over these methods. Initial data extraction
of the Yukawa couplings and the CKM angles is discussed
in Sec. IID.

The extraction of the quark masses from data is dis-
cussed in Sec. IIE. This is a complex issue well known
to be marred by the nonperturbative nature of @CD.
Hence, in the low-energy regime, we consider it neces-

sary to include the pure /CD three-loop contribution to
our analysis of the running of the quark masses. Initial
data for lepton masses follow in Sec. II F. In Sec. II G we

consider the extraction of and constraints on the physical
top-quark and Higgs-boson masses. We address the scale
dependence of the renormalized scalar vacuum expecta-
tion value in Sec. II H. Finally, the method used to obtain
the values of all running parameters at the same initial
scale is described in Appendix C. Readers familiar with

these matters may wish to skip the relevant sections.
In Sec. III, we discuss how threshold effects are incor-

porated into our analysis. It is well known that in the
context of GUT's the efFects of particle thresholds are
of great importance in analyzing their low-energy predic-

tions, [10—14] such as decreasing the naive estimate of the
proton lifetime [10]. For completeness we present a de-

tailed analysis of threshold effects in the standard model

where these effects are numerically less important; the
two-loop effects dominate the efFects of the electroweak
threshold. This work is of theoretical interest because the
same methods are applicable to other models. Also we

include threshold effects in the running fermion masses,

an analysis absent from the present literature.
A quantitative analysis of our results makes up Sec. IV.

We contrast the effects of using one-loop versus two-loop

P functions and of including a proper versus a naive treat-
ment of thresholds. We include plots of all the running

parameters over the entire range of mass scales and also

use these plots to display the effects discussed. Further-

more we present some tables with actual numerical dif-

ferences associated with these effects.

II. INITIAL VALUE EXTRACTION FROM DATA

A. Renormalimation scheme

Renormalization is a reparametrization of a theory
which renders Green's functions and physical quantities
finite order by order in perturbation theory. A specific
choice of renormalized parameters defines a renormaliza-
tion scheme. The physics is, of course, independent of

how the theory is renormalized. A common way of relat-
ing bare and renormalized parameters is

9'o =9' ~9 ) (2.1)

where go is the bare parameter, g is the renormalized
parameter, and b'g is the counterterm. Fixing the coun-
terterms by requiring them to consist only of the infi-

nite terms needed to render the theory finite defines the
minimal subtraction (MS) prescription [15]. A feature
of the MS scheme is a mass scale p which enters in the
process of regularizing divergent integrals using dimen-
sional regularization. Furthermore, the unit of mass p,

is used to keep couplings dimensionless when continuing
to d dimensions in the dimensional regularization pro-
cedure. For example, if Eq. (2.1) represents any of the
three gauge couplings of the standard model, then p is
introduced as follows to keep them dimensionless:

gs(gp) '=g-~g, (2.2)

p —P[&g'(p)j, p] =
I p +P; IP=o, (2.3)

d ( 8 8 )

where the P, are the P functions. The two-loop P func-

tions of the standard model have been collected in Ap-

pendix A.
As mentioned above physical quantities are renormal-

ization scheme independent. However, this assumes that
calculations can be done without approximation. In re-

ality, calculations are only perturbative approximations
and these do depend on the renormalization scheme. In
@CD where the strong coupling o,, is large, there will

be renormalization scheme dependence problems. In the
electroweak model, as in @ED where the couplings are

where g is a constant parametrizing the arbitrariness in
the finite parts of divergent integrals in dimensional reg-
ularization, and e = (4 —d)/2. Equation (2.2) defines

a family of MS schemes. Choosing g = 1 is the sim-

plest MS scheme which was described above. Choos-

ing g2 = e~~/4z, where p~ = 0.5722. . . is the Euler-
Mascheroni constant, defines the so-called modified rnin-

imal subtraction (MS) prescription [16]. This scheme is
the most commonly employed in /CD calculations, and
it is the one we adopt. The free parameters of the stan-
dard model in the MS schemes are p dependent. Their p,

evolution is governed by the P functions of the renormal-
ization group. Moreover, these running parameters are
not in general equal to their corresponding physical val-

ues (consequently, for the masses, we adopt a convention
wherein upper case M's refer to physical values and lower

case m's denote MS values). This is to be contrasted with

the on-shell renormalization scheme in which, for exam-

ple, the renormalized masses equal their physical values

and the renormalized electromagnetic coupling equals the
fine structure constant. However, the MS schemes have

the attractive characteristic that the P functions are p in-

dependent and therefore particularly simple to integrate.
Physical quantities P[(g;(p) ), p] expressed in terms of p
and the running parameters of the theory, {g,(p)), must
be p, independent
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small, this is not so great a problem.
We now turn in the following subsections to the issue

of extracting initial data for the standard model param-
eters.

B. nz(Mz) and ag(Mz)

The determination of the SU(2)L, x U(1)~ couplings
proceeds from the standard model relations

Im(II" (s)) =
4xn, m

0 (e+e -+ hadrons), (2 9)

+ 4' a~
a(e+e ~ p,+p ) 38

In terms of the ratio of these two cross sections,

(2.10)

where s is the square of the center-of-mass energy. For
the process e+e —+ p+p, the cross section is calculated
to be (taking rn„= 0)

»(~) Gs ~(~)
4~ cos~Hw(&)

'

(2.4)

0 e+e -+ a rons
~(e'e- ~V'V-) ' (2.11)

~(v)
1 + II(0)

(2.6)

In the standard model where there are many species of
charged fermions and charged gauge bosons, Eq. (2.6)
generalizes to [17]

o. (p) =o,, ——) @fin 8(p, —mf)+ —.1
37r - mf f 6m

(2.7)

The efFects of the strong interaction which enter as a
hadronic contribution to the vacuum polarization func-
tion must be included also. The nonperturbative nature
of the strong interaction at low momentum is handled by
rewriting the hadronic contribution to the vacuum polar-
ization at zero momentum as

II"(0) = [Il"(0) —II"(q )] + II"(q ) . (2.8)

If q is chosen large enough, II"(q2) can be calculated
perturbatively. The terms [II~(0) —II"(qz)] can then be
related to the total cross section for e+e —+ hadrons
[17]. Using the optical theorem, we can write

g'(~) ~(~)
sin Hw(p)

'

wh««(p) = e (p)/4~ and C2 is a normalization con-
stant which equ~s 1 for the st~dard model and equas
ss when the standard model is incorporated in grand uni-
fied theories of the SU(N) and SO(N) type [2]. What is
required to specify these couplings are the values of n(p)
and sin Hw(p, ) in the renormalization scheme we employ
(i.e., MS). The electromagnetic fine structure constant
(aem~ 137.036) is extrapolated from zero momentum
scale to a scale p equal to Mz in our case. In pure /ED
with one species of fermion with mass m, the MS renor-
malized vacuum polarization function is given by

2 1

II(q ) = ln —6 dxx(1 —x)
37I m p

r q2
x ln

~

1 —x(1 —x)
rn2y

(2.5)

The renormalized coupling n(p, ) is related to the fine
structure constant o., as follows:

we can write Eq. (2.9):

Im(II" (s)) = ' g(s) . (2.12)

Using an unsubtracted dispersion relation II"(qz), the
combination [II@(0)—II"(q )] can be expressed as

Hh, (0) Hh( 2)
q' ~ d, ( )

3z 4 a s(q2 —s)
' (2.13)

This can be evaluated using experimentally known data.
This procedure yields a value

a (Mz) = 127.9+0.3 . (2.14)

The process independent, renormalized weak mixing
angle sin Hw of the on-shell scheme is defined to be

»n Hw:—1—Mw2
(2.15)

where Mw and Mz are the physical masses of the W
and Z gauge bosons. Knowing the precise values of the
W- and Z-boson masses and using the equation above
provides one way of extracting the value of sinzHw. Al-

ternatively, the bare relation involving the low-energy
Fermi constant measured in muon decay and the W-
boson mass,

G„p ep
2

v2 8sin HwpMwp

may be corrected to order n and rewritten [18, 19]

(2.16)

red. ~ 1
Mw = Mz cos Hw =

2G„j sinHw(1 —Ar) &

(2.17)

with (z'a, m/~2G„) & = 37.281 GeV and b,r is a param-
eter containing order n radiative corrections and which
depends on the mass of the top quark and Higgs boson.
We can viewer the radiative corrections represented by Ar
as accounting for the mismatch in the scales associated
with the parameters of the relation. G„and n, are
low-energy parameters whereas Mw and sin Hw are as-
sociated with the electroweak scale. We can absorb the
radiative efFects using the renormalization group by re-
placing |„and a, with corresponding running param-
eters at Mz..
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«(Mz)
y 2G„(Mz)Mw2 sin 8w

Combining Eqs. (2.17) and (2.18) gives

G„(Mz)
n(Mz) G„

(2.19)

br -0.07 . (2.20)

Using Eq. (2.7) and the fact that G„(Mz) —G„(see
Sec. IIH) gives an estimate of the size of the radiative
corrections nI(Mz) = 0.01698+ 0.00009,

o,z (Mz) = 0 03364 + 0 0002 .
(2.29)

sin 8w(Mz) cos 8w(Mz)(1 —bTz)

= sin 8wcos 8w(l —Ar) . (2.27)

A fit to all neutral-current data gives

sin 8w(Mz) = 0.2324 + 0.0011, (2.28)

for arbitrary M1 [24]. Using these values of n(Mz) and
sin 8w(Mz) yields

For large values of M1 and MH (Mq, MH )) Mz) [18,
20],

&em 3a,~ M,2

cI(Mz) 16Ir sin 8w Mz
llaem

48Ir sin 8w Mz

A third way of extracting sin 8w is from neutral-current
experiments, among which deep-inelastic neutrino scat-
tering apears to provide the best determination. A run-
ning sin 8w(p) may be defined in MS and difFers from the
above sin 8w by order n corrections. The MS running
W-boson mass mw(p) and the corresponding physical
mass Mw, identified as the simple pole at qz = Mwz of
the W propagator, are related as

Mw ™w(p)+Aww(Mw p),
where ATww is the transverse part of the W self-energy.
A similar relation holds for the Z boson. In MS renor-
malization, the following relation defines the running
s111 8w(p):

(2.22)

mw psin'8w(p) = 1— (2.23)
~z(p)

Equation (2.22) and its Z analogue may be combined
with Eq. (2.23) to give

siI1 8w(p, ) cos 8w (A+zz(Mzz) p, )
sin 8w sin 8w ( Mz

Aww(Mw &) I

Mwz

(2.24)

An explicit expression relating sin 8w and sin 8w(Mw)
is given in Ref. [21].

Another relation for sin 8w(p) may be arrived at di-
rectly linking it to Mz [22] or Mw [23]. In particular, if
one chooses Mgr as the input mass, then one introduces
a radiative correction parameter Lr~ such that

sin 8w(Mz)(1 —Arw) = sin 8w(1 —Ar), (2.25)

from which it follows that

sin 8w(Mz) = (37.271)'
(2.26)

Similarly one can introduce a radiative correction Lv"z if
one chooses Mz as the input mass

C. a, (Mz)

The value of the strong coupling is known with less pre-
cision than most of the parameters of the standard model.
This is due to large theoretical uncertainties arising from
the nonperturbative nature of low-energy /CD and the
slow convergence of perturbation series in high-energy
/CD. Moreover, this uncertainty is hard to quantify.

In the extraction of or., = gz/4II from a physical pro-
cess many obstacles arise. Since the convergence of the
@CD perturbation theory series is not very fast, one must
check higher order effects. Even if one chooses processes
which do not involve hadronization, a most delicate prob-
lem in the extraction of n, comes from working to finite
order in perturbation theory. Physical quantities should
of course be renormalization scheme independent, but
the necessity of approximation introduces dependence on
the renormalization scheme. Typically, the same physi-
cal quantity calculated in two different schemes to the
nth order of n, will differ by terms of order n", +I. As n,
is large, this difference may be large and thus may lead
to renormalization scheme dependence problems. This
problem manifests itself in the difficulty of choosing the
renormalization scale p to use for the particular experi-
ment from which one is extracting the strong coupling.
Ideally one would like to choose p, to minimize the un-

known higher order terms, but that is of course not pos-
sible. Sometimes p is approximated by the scale at which
the highest order known term vanishes or by the scale at
which that term gives a stationary prediction. However,
the most frequent choice is p, = E, where 8 is some char-
acteristic energy scale of the experiment. This choice is
plausible since it minimizes the typical terms that arise
which involve ln(Q/p), with Q some momentum in the
process, typically E. All the processes from which
the strong coupling is extracted sufFer from this prob-
lem and thus each individual extraction of a, has large
uncertainties. To obtain the best estimate of the strong
coupling we shall take together the results from difFerent

processes. These include e+e scattering into hadrons,
heavy quarkonium decay, scaling violations in deep in-

elastic lepton-hadron scattering, and jet production in
e+e scattering.

We first consider the extraction of n, from e+e scat-
tering into hadrons. The cross section is, ignoring Gnite
quark mass effects [25],
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o(e+e -+ hadrons) = 4xo~
3(1+z)I ) e 1+—'+Aq( —') yAz( —'~ +0(a4)

38 ) 7l z' 7r &
(2.30)

I'(T -+ GGG) 10 ( Mg ) (z2 —9)as(Mg)
I'(T ~ y+y) 9 (2M') zn

,(M ) (2.31b)

and

I'(J/g GGG) 5 /Mgg@& (m~ —9)as(M, )
I'(J/Q p+y, ) 8 ( 2M, ) n.o,s

o.,(M, ) (2.31c)

The main uncertainty of this extraction of a, is theo-
retical. The known higher order corrections are large so
one expects the unknown corrections also to be large.
In addition there are relativistic errors. Kwong et
aL [28] have made a detailed analysis of o., extrac-
tion from quarkonium decays. They find a, (Mg)
0.179 + 0.009 from I'(T ~ EGG)/I'(T ~ GGG). They
have also estimated the relativistic corrections and
find n, (My) = 0.189 + 0.008 and o.,(M, ) = 0.29 +
0.02 by looking at I'(T ~ GGG)/I'(T ~ p+p ) and

where the sects from Z exchange have been put into
the factor z. For ny = 5 the numerical values of the co-
efficients are [26] A2 ——1.409 and As ———12.805. This
determination of a, has the advantage that it is inclusive,
since there is no dependence on hadronization models. Its
main drawback is that the effect is not very sensitive to n,
as the effect starts at zeroth order in n, . The experimen-
tal error is relatively large and in fact dominates the theo-
retical error. The value of n, has been extracted from the
total cross section of e+e into hadrons by Gorishny et aL

[26] who find a, (34 GeV) 0.170+0.025. As an estimate
of the error coming from cutting off the perturbation se-
ries we use the size of the highest order correction and es-
timate the relative cutoff error to be 13(o,,/z)z. Thus
we find o;, (34 GeV) 0.170 6 0.025 6 0.006(cutoff)
0.170 + 0.026, which using three-loop o., and two-loop
o, running is equivalent to o:,(Mz) = 0.140 6 0.018 (re-
cent data from the CERN e+e collider LEP [27] give
essentially the same result).

The decay of heavy quarkonium is another process
from which a, can be extracted. The decay rates are
sensitive to the strong coupling, the dominant modes go-
ing as n2 or as depending on the state of the qq system.
The decay rates can be calculated in the nonrelativis-
tic approximation. The rates themselves depend on the
wave function amplitude at the origin, which is unknown
but cancels out of branching ratios. The most useful of
these branching ratios is [28]

I'(T ~ EGG) 4 a, o,, (Mg)
I'(T GGG) 5 o.,(Mq) vr

(2.31a)

The EEC can be experimentally constructed as

) ) y, y~ b(cos 8;~ —cos y),
events events j,j

(2.33)

I

I'(J/@ ~ GGG)/I'(J/g ~ y+p ). The errors given do
not include the cutoff and relativistic errors. In their
analysis Kwong et al. parametrized the relativistic
corrections by a factor (1 + Cv2/c2) in the branch-
ing ratios. They found Cq ( C & C2, with Cq
—3.5 and Cs —2.9 . Here (v /c )&&

——0.24 and

(vs/c )& ——0.073. We estimate the relativistic error
to be a, (M|,) (v /c )z (Cs —C&). Similarly, we es-
timate the cutoff error by the highest order corrections
in Eqs. (2.31a), (2.31b), and (2.31c). Using those es-
timates we find that o,, is most accurately determined
from I'(T -+ GGG)/I'(T ~ y+y, ). We estimate the
cutoff error to be - n, (My) [0.43 o;, (Mg)/n] 0.005 and
the relativistic error to be a, (Mg) (v /c )z (Cs —Cq)
0.008 and conclude that o,,(Ms) = 0.189 + 0.008 +
0.005(cutoff) + 0.008(relativistic) = 0.189 6 0.012. This
value is equivalent to a, (Mz) = 0.1116 0.005.

Analysis of the structure functions in deep inelastic
scattering gives a similar value for a, . The strong cou-
pling affects the way the structure functions vary with
energy. These effects show up as logarithmic corrections
to the exact Bjorken scaling predicted by the simple par-
ton model. Like the other methods mentioned so far,
the measurements of the structure functions do not de-
pend on fragmentation and hadronization. The scaling
violations in the structure functions have been measured
with beams of electrons, muons, neutrinos, and antineu-
trinos on targets of hydrogen, deuterium, carbon, and
iron among others. Martin et aL [29] have analyzed the
most recent data and found a, (Mz) = 0.109 6 0.008,
including estimates of the truncation error.

Finally, we consider the extraction of n, from e+e
scattering into jets. The production of multijets in e+e
scattering depends strongly on o, There, comparison of
the /CD prediction and data introduces hadronization
model dependence into the extraction of n, . The eval-
uation of o., is further complicated by dependence on
cutoffs between different jets and the usual problems of
the unknown higher order terms. To reduce the jet res-
olution problem, event shape variables, such as energy-
energy correlations, the asymmetry of the energy-energy
correlations, the oblateness, the thrust, etc. , are used to
extract a, . As an example of an event shape variable we
look at the energy-energy correlation (EEC) defined by
[30]

1 dZ 1 . der
x = — . y'y&dy'dy& .

0' d cos y o', dy~dyz'd cos y
'l

(2.32)
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Process

e+e —+ hadrons
T decay
Deep-inelastic scattering
Jet distribution in e+e scattering

0.140
0.111
0.109
0.115

TABLE I. Values of a, at Mz and its error.

0.018
0.005
0.008
0.008

Yd, =

(m, o 0)
0 m„o

t, o o" m. )
(m&0 0)

om, o
L, O O mI)

(m. o 0)
om, o V,

( o o m, )

(2.37)

where g is the angle between calorimeter cells and y, =
2E,/+s are the center-of-mass energy fractions of the
detected particles. The asymmetry of the energy-energy
correlation (AEEC) is defined as

1 dgAEEC 1 dgEEC 1 d+EEC
x 7r X (x) .

cr dcosy ~ dcosy o dcosy

(2.34)

A perturbative calculation of the asymmetry gives [30]

dZAEEC o's
(y) = —'A(cosy) 1+—'R(cosy) + O(o., )0' Icos+ 7r

(2.35)

with functions A and R calculated in perturbative /CD.
The best data on the jet rates come from LEP. Recently
those results have been extensively discussed in the lit-
erature [27, 31, 32]. Combining all the LEP data on jet
distributions, including the full theoretical error, gives

[27] o. (Mz) = 0 115+ 0 008
To summarize, the values of n, and its error are given

in Table I. To pick the value of a, (Mz) for our numerical
studies we take the Gaussian weighted average of these
values (Z(~./»', )/E(1/&~'. )]+Z(1/&~', )] ') and
we find [33] a, (Mz) = 0.113+ 0.004.

D. Yukawa couplings

To take full account of the Yukawa sector in running
all the couplings, initial values for the Yukawa couplings
are necessary. They must be extracted from physical
data such as quark masses and CKM mixing angles. Fur-
thermore, the interesting parameters to be plotted must
be determined step by step in the process of running to
Planck mass. These two procedures are not unrelated
and require the diagonalization of the up-type, down-

type, and leptonic Yukawa matrices.
We use the convention of Machacek and Vaughn [7]

where the interaction Lagrangian for the Yukawa sector
1s

g = Q @Y„'tII„+Q OY~td„+ l~@Y,te„+H.c.

(2.36)

The Yukawa couplings are given in terms of 3x3 complex
matrices. After electroweak symmetry breaking, these
translate into the quark and lepton masses

where V is the CKM matrix which appears in the charged
current

j~+ u, p„Vd, .

It is a unitary 3 x 3 matrix often parametrized as

(2.38)

Cl S]C3 S/S3
V = —s] cg c]cgc3 —sgs3e' cqc2S3 + sqc3e132123+2312323)

(2.39)

where s, = sin 8, and c, = cos 8, , i = 1, 2, 3.
The entries of the parametrized CKM matrix can be

related simply to the experimentally known CKM entries.
The Particle Data Group [24] gives the following ranges
of values (assuming unitarity) for the magnitudes of the
elements of the CKM matrix:

(0 9747—0 9759 0 218—0 224 0 001—0 007 l
iV~ = i 0.218—0.224 0.9734—0.9752 0.030—0.058

0.003—0.019 0.029—0.058 0.9983—0.9996)

(2.4o)

These ranges of values can be converted to bounds for
3, , i = 1, 2, 3, and sin6. We arrive at these bounds by
finding values for the four angles such that the entries of
the CKM matrix obtained from these satisfies the condi-
tions imposed by Eq. (2.40). We find

0.2188 & sine' & 0.2235,
0.0216 & sin 8~ & 0.0543,
0.0045 & sin 83 + 0.0290.

(2.41)

However the accuracy with which ~V~ is known does not
constrain sin b. A set of angles (8I, 82) 83) I$}was cllosei'l
that falls within the ranges quoted above. The initial
data needed to run the Yukawa elements are extracted
from the CKM matrix and the quark masses. A problem
arises though for the mixing angles, which was solved for
the quark masses (see Sec. IIE), in that it is not clear
at what scale the chosen initial values for these angles
should be considered known. However, we have observed
that for the whole range of initial values the running of
the mixing angles is quite flat, with a perceptible increase
in 82 between M~ and the Planck scale for higher top
masses. This is in accordance with the angles being re-
lated to ratios of quark masses, and therefore, the exact
knowledge of that scale (or lack thereof) is not as critical
as might be feared G priori.
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E. Known quark masses ' = 25.7+ 2.6, (2.49)
As /CD is assumed to imply quark confinement, ex-

traction of quark masses from experiment follows the
same circuitous route as other /CD quantities such as cr, .
In the past decade a variety of techniques has been devel-
oped and utilized to extract quark masses from the ob-
served particle spectrum. Below, we shall briefly recount
some such techniques. Furthermore, we shall present
some values for the heavy quark masses based on the
application of our numerical technique to three loops.

The light quark masses are the ones least accurately
known. They are determined by a combination of chi-
ral perturbation techniques and /CD spectral sum rules
(QSSR's). In the former case the light quark masses are
directly expressible in terms of the parameters of the ex-
plicit SU(2) and SU(3) chiral-symmetry breakings. One
then considers an expansion of the form [34]

also determined by applying Eq. (2.43) to the physi-
cal masses of vr, g, and K, they imply the following
renormalization-group-invariant mass ratio:

= 0.28 + 0.03 .
2ml (2.50)

i xe'~'* &0 T .". x ." 0 0&

/CD spectral sum rules are obtained in an attempt
to relate the observed low-energy spectrum to the ps
rameters describing the high-energy domain where per-
turbation theory becomes applicable to the quark-gluon
picture [36, 40—42]. One starts by considering the two-
point correlation functions for the vector V,.

" = Q pi'g, .

and axial vector A,".= g p"ps/, quark currents

Mbsryon = n + b mlight + ' ' ' (2.42)

for the mass of a baryon from the 2 octet and one ofc+
the form

= (q~q" —g~"q')II!,'I (q') + q~q"n!," (q'), .

(2.43)

for a typical member of the pseudoscalar octet. A pa
rameter measuring the strength of the breaking of the
more exact SU(2) chiral symmetry in comparison with
the SU(3) one is the ratio

4 iqx+0T P & t P P~

(2.51)

where

ms —m I

mQ mQ
(2.44)

/ 1m' = -(m„+m~) .
2

(2.45)

To lowest order in isospin splittings, this translates in the
meson sector into

M~0 —M~+
(2.46)

and in the baryon sector into three difFerent determina-
tions of R:

2 (M= —MN) —42 (Mg —MP)
M„—M„

2(M= —M)v) + 4(Mp —MA)
M=- —M=0

M= —MN

Mp- —Mg+

(2.47)

R = 43.5+2.2 .

Together with the ratio [35]

(2.48)

To make R compatible with all the above mass splittings
one has to consider higher order corrections in Eqs. (2.42)
and (2.43). Here infrared divergences emerge as one
is expanding about a ground state containing Nambu-
Goldstone bosons. Once such singularities are removed
within the context of an effective chiral Lagrangian, one
finds the optimum value of R:

where i, j = u, d, s are the quark flavors. The current
divergences satisfy

B„V,", (x) = i(m, —m, ):Q,(x)g, (x):, .

B„A,",(z) = i(m;+ m, ):Q,(x)ps/, (z): . .

The spectral functions 1m{II(q2)) obey certain sum rules
based on how their analyticity properties are formulated.
Among the QSSR's in vogue are the usual dispersion re-
lations based on a Hilbert transform:

( 2)
1 „Im{II(t))

(2.53)q
~ ~+q2

(2.52)

The Laplace transform sum rule is obtained by applying
the inverse Laplace operator L to the last expression:

LII = — dte ' Im{II(t)), (2.54)
p

for 7. a constant. The long-known finite energy sum rule
(FESR) is obtained by applying the Cauchy theorem to
11(.):

(n) ( ) 11( 2)
(dq2)n

1 dg
, Im{II(t)) . (2.56)

1
dt t"Im{IIth„,(t)) = — dt t"1m{II,„~&(t)),

1

Q Q

(2.55)

where n is any integer, and the moment sum rules are
obtained by taking the nth derivative of Eq. (2.53):
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m„+ mg ——24.0 + 2.5 MeV . (2.57)

The left-hand sides of Eqs. (2.53) through (2.56) fol-

low from the high-energy calculations to which vari-

ous perturbative and nonperturbative corrections have
been found, while the right-hand sides represent the low-

energy aspect, such as the hadronic vacuum polariza-
tion measured in e+e ~ hadrons. Applied to the light

quarks these sum rules imply [35]

Together with Eq. (2.50) they reduce to

m„= 8.7 + 0.8 MeV,

mq ——15.4 6 0.8 MeV .
(2.58)

The parameter m is a renormalization-group invariant
which to three loops is related to the MS running mass
parameter m(p) via [38]

P2 ( 71 '72~ o'8 1 Pz ~ "/l 72 ) Pz ~ yl r2 )
~(u) = I{—Pi—'(v) ~+ —

I

———
I

—*())+-
'll pl ()91 p2 j z 2 )9l k~1 ~2 J )9l E)91 )92 2

+—'
I

—' ——'
I {—'(~)) jA &Pl Ps)

(2.59)

where P, and p, are the coefncients of the P functions for
n, and rn given in Appendix A. From Eqs. (2.59) (to two
loops) and (2.58) one may infer the values [35]

M(q =M )

1 + 4 a, (M) + ~(a, (M))2
3 7r

(2.65)

rn„(l GeV) = 5.2 6 0.5 MeV,

my(1 GeV) = 9.2 6 0.5 MeV .
(2.60)

where K = 13,3 for the charm and K = 12.4 for the
bottom quarks [39].

From the J/Q and T sum rules the following values
have been extracted [35]:

In applying expression (2.58) it should be kept in mind
that the continuity of rn(p) across a quark mass threshold
requires m, to depend on the effective number of Havors at
the relevant scale, analogously to the /CD scale A. The
strange quark mass is determined, averaging the value
derived from Eqs. (2.57) and (2.49) with those obtained
using Eq. (2.58) and the various QSSR values for m,„+
m„ to be [43]

m, = 266+29 MeV,

corresponding to the running value

m, (1 GeV) = 194 6 4 MeV .

(2.61)

(2.62)

~(~) =z(~)[~ ~™(~')]' (2.63)

Corresponding to the above pole mass is its Euclidean
version m( —q ), which, although renormalization-group
invariant is not gauge invariant, and, therefore, not phys-
ical. The Euclidean mass parameter is the one often em-
ployed in the J/g and T sum rules, as it minimizes the
radiative corrections in such sum rules. In the Landau
gauge the two are related to two loops according to [36]

m(M )=M(M2) 1 — ' ) I 4 (2.64)

Once the pole mass is determined from the Euclidean
one, the running mass at the pole mass is obtained to
three loops via

For the heavier quarks, charm and bottom, one can
make a more precise prediction. Here the nonrelativistic
bound state approximation may be applied. The physical
mass M(qz = M~) appearing in the Balmer series may
be identified with the gauge and renormalization scheme
invariant pole of the quark propagator:

m, (—q = M, ) = 1.26 6 0.02 GeV,

~b( (I2 = Mbz) = 4.23 + 0.05 GeV .
(2.66)

(2.67)
Mb(q = Mb ) = 4.58 6 0.10 GeV .

Recently [37], new values for the charm and bottom
pole masses have been extracted from CUSB and CLEO
II by analysis of the heavy-light, B and B', D and D'
meson masses, and the semileptonic B and D decays with
the results

M, (q = M, ) = 1.60 6 0.05 GeV,
(2.68)

Mb(q = Mb ) = 4.95 10.05 GeV .

A weighted average of the values in Eqs. (2.67) and (2.68)
yields

M, (q = M, ) = 1.53 + 0.04 GeV,
(2.69)

Mb(q = Mb ) = 4.89 6 0.04 GeV .

The running masses at the corresponding pole masses

then follow from Eq. (2.65):

m, (M, ) = 1.22 + 0.06 GeV,
(2.70)

mb(Mb) = 4.32 + 0.06 GeV .

With these taken as initial data along arith the value of

the strong coupling at Mz quoted in Sec. IIC, we run

(to three loops) the masses and n, to obtain the following

To obtain an accurate value for the corresponding pole
masses, we applied the solution routine of Appendix C
to Eq. (2.64), with the above values inserted and the
three-loop P function for n, given in Appendix A, to
self-consistently obtain the pole masses

M, (q = M, ) = 1.46 6 0.05 GeV,
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The physical (pole) masses of the leptons are very well
known [24]:

M, = 0.51099906 6 0.000 000 15 MeV,
M„=105.658 387 6 0.000 034 MeV,
M = 1.7841+p ppss GeV .

(2.72)

We use these values to determine initial data for the run-
ning masses. Some authors neglect /ED corrections and
use the physical values for the running values at Mz,
which introduces only a small error. By calculating the
one-loop self-energy corrections, one arrives at a /ED
relation between the running MS masses and the corre-
sponding physical masses:

m~(p) =M~ 1 — ' '
~

1+4sln
m,') (2.73)

Choosing p, = 1 GeV as in the quark mass case and using
Eqs. (2.73) and (2.7) yields the running lepton masses
(taking m~ = M~ in the log term above is an appropriate
approximation to order o.)

values at the conventionally preferred scale of 1 GeV:

m, (1 GeV) = 1.41 + 0.06 GeV,
(2.71)

mg(1 GeV) = 6.33 6 0.06 GeV .
Our numerical approach does not make any more ap-
proximations than the ones assumed in the P functions
and the mass equations used, apart from the approxi-
mation inherent in the numerical method itself, and, we
therefore believe, is more in line with our program than
using the "perturbatively integrated" form of the P func-
tions. Thus we shall adopt the above values. It should
be stressed that at the low scales under consideration the
three-loop o., corrections we have included in our mass
and strong coupling P functions are often comparable to
the two-loop ones and hence aBect the accuracy of our
final values noticeably. Nevertheless, it should be noted
that the above expressions relating the various mass pa-
rameters are not fully loop consistent since to our knowl-
edge Eq. (2.64) has only been computed to two loops.

In conclusion, it should be pointed out that although
we opted for the QSSR extraction of masses, there are
rival models, such as the nonperturbative potential mod-
els, which predict appreciably higher values of the heavy
quark masses than the ones quoted here. These models,
however, are not as fundamental as the approach consid-
ered here, and their connection to field theory is rather
problematic.

F. Lepton masses

5

+ 16.11 —1.04) i

1—
M~)

(o,,(M, ) &
'

) (2.75)

where M~, i = 1, . . . , 5, represent the masses of the five
lighter quarks. Likewise the physical mass of the Higgs
boson can be extracted from the relation [47)

A(p) = "M~[1+6(p)],
2

(2.76)

where 6'(p, ) contains the radiative corrections. Its form is
rather elaborate and we relegate it to Appendix B. Equa-
tions (2.75) and (2.76) are highly nonlinear functions of
M~ and M~, respectively. Their solution requires numer-
ical routines that are described in Appendix C.

H. Vacuum expectation value of the scalar field

feet radiative corrections such as b,r. Consistency with
experimental data on sin 8~ requires Mq ( 197 GeV
for M~ = 1 TeV at 99% C.L. assuming no physics be-
yond the standard model [44]. Precision measurements
of the Z mass and its decay properties combined with
low-energy neutral-current data have been used to set
stringent bounds on the top-quark mass within the mini-
mal standard model. A global analysis of this data yields
Mq ——122+st GeV, for all allowed values of M~ [45].
Recent direct search results set the experimental lower
bound M& & 91 GeV. As for the Higgs boson, the anal-
ysis of Ref. [45] gives the restrictive bound, M~ + 600
GeV, if M«120 GeV, and M~ ( 6 TeV, for all allowed

Mq. Since perturbation theory breaks down for M~ & 1
TeV, the latter bound on the Higgs-boson mass is not
necessarily meaningful. LEP data set a lower bound on
the Higgs-boson mass of 48 GeV [46].

In our analysis, initial values of the MS running top-
quark mass mq and of the scalar quartic coupling A at
Mz are chosen arbitrarily (consistent with the bounds
quoted above). As noted earlier in Sec. II A, these run-

ning parameters are not equal to their physical counter-
parts. However, any reasonable prediction for the masses
of the top quark and of the Higgs boson that may come
from our analysis should be that of experimentally rel-
evant, physical masses. Therefore, formulas similar to
Eq. (2.73) relating MS running parameters to physical
masses are needed. To calculate the physical or pole mass
of the top quark, we use Eq. (2.65) in its general form

Mg 4 o,,(Mg)

m(M)
+

3

m, (1 GeV) =0.496 MeV,
m„(1 GeV) = 104.57 MeV,
m (1 GeV) =1.7835 GeV .

(2.74)

A value for the vacuum expectation value (VEV) of the
scalar field may be extracted from the well-known lowest
order relation

G. Higgs-boson and top-quark masses
e = (v 2G„) ~ = 246.22 GeV . (2.77)

The Higgs-boson and top-quark masses have not been
measured directly at present; however, their values af-

From the very well-measured value of the muon lifetime,
w&

——2.197035 + 0.000 040 x 10 s s [24], the Fermi con-
stant can be extracted using the formula [48]



3954 H. ARASON et al.

III. THRESHOLD ANALYSIS

A. EfFeetive gauge theories

FIG. 1. Electromagnetic correction to muon decay.

192vrs (rn~ ) ( 5 m, L )
n(m„) (25

(2.78)

where

f(x) = 1 —8x+ 8x —x —12x lnx, (2.79)

glvlng

G„=1.166376 0.00002 x 10 GeV (2.80)

(2.81)

A direct calculation (e.g. , in the Landau gauge) of the
electromagnetic corrections (see Fig. 1) yields that the
operator is finitely renormalized (i.e., G„does not run)
[19, 49]. Another way to see this is by using a Fierz
transformation to rewrite the above expression:

G„"[v,'7 (1 —Ps)v„][PPp(l —Ps)e] .
2

(2.82)

The neutrino current does not couple to the photon field,
and the e —p current is conserved and is hence not mul-

tiplicatively renormalized.
We need an initial value for the running vacuum ex-

pectation value at some scale p. Wheater and Llewellyn
Smith [50] consider muon decay to order n in the con-
text of the full electroweak theory and derive an equa-
tion relating a MS running G„ to the experimentally
measured value. From this formula we can extract a
value for v(Mz). However, this formula is derived in the
't Hooft —Feynrnan gauge, and the evolution equation
(A18) of Appendix A for the VEV is valid only in the
Landau gauge. Nevertheless, motivated by the discus-
sion of the previous paragraph, we choose the initial con-
dition for the VEV to be v(Miv) = 246.22 GeV. Us-

ing the initialization algorithm (see Appendix G), we ar-
rive at v(Mz). We find that this procedure leads to no
significant correction, and we therefore take, ab initio,
v(Mz) = 246.22 GeV.

This parameter may be viewed as the coefficient of the
effective four-fermion operator for muon decay in an ef-

fective low-energy theory:

&iI[$] [dC,]
i I [/, 4] (3 1)

Because there are no superheavy fields in the effective
theory the decoupling theorem is not needed. However,
there is a difficulty having to do with gauge invariance.
Namely, in order to integrate out the heavy fields one
has to add a gauge fixing term, and such a term usually
spoils the gauge invariance of the low-energy theory. The
usual R~ gauge fixing action for the full gauge group is

IGF= —~) d xf (x;p, 4), (3.2)

where, for example,

f =( '~2[0„A" +ig(vt gS], (3.3)

where a runs over all generators t g of G, A~ are the
gauge fields, and S is a column of Hermitian scalar fields
with vacuum expectation value v. However, when the
heavy gauge fields are integrated out with the natural
choice of the gauge fixing functional as in Eq. (3.3) but
summed only over the index of the broken group gener-
ators (given in uppercase Latin letters), one obtains an

effective theory that is not invariant under G. We cor-
rect this by changing the derivative in Eq. (3.3) into a G

We are using the MS renormalization scheme to deter-
mine the running of the standard model couplings. From
the Appelquist-Carrazzone decoupling theorem [51] we
expect the physics at energies below a given mass scale
to be independent of the particles with masses higher
than this threshold. However, such minimal subtraction
schemes are not physical in the sense that they are scale
dependent and mass independent so that the decoupling
theorem is not manifest. As described in Refs. [11,12],
we have to formulate a low-energy efFective theory by in-
tegrating out the heavy fields to one loop and find match-
ing functions in order to take care of the threshold effects.
We give a brief review of threshold effects in the running
of the gauge couplings for a spontaneously broken GUT
and for the standard model. Details can be found in the
appendices of Ref. [12]. We next discuss thresholds in
running fermion masses, a subject which to our knowl-
edge has not been adequately treated in the literature.
In Sec. IV we give a quantitative description of the effect
of thresholds in the running parameters.

The starting point for treating thresholds in MS and
MS schemes is the construction of low-energy effective
gauge theories [11—13]. The basic idea is to integrate out
the heavy fields in such a way that the remaining effec-
tive action is gauge invariant under the residual gauge
group. Let the simple gauge group G' be broken to G,
and let C and P be a set of heavy and light fields, respec-
tively. Then the action I[/] of the effective field theory
is obtained from the action I[/, C'] of the full theory by
functional integration over the heavy fields:
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covariant derivative so that f becomes

fA = ( [Bi,A~+ gCABaA~Aa&+ig(Vt~SS],

(3 4)

where the lower-case Latin indices run over the genera-
tors of the unbroken gauge group and Cap~ are the com-

pletely antisymmetrized structure constants of G.
Applying this gauge fixing to the breakdown of G into

a direct product of simple or Abelian groups G;, Refs. [11,
12] state the result of integrating out all heavy fields to
one loop for the case ( = 1. The running gauge coupling
constants of the effective theory are related to that of the
full theory by [11,12]

g;(p) =g(p)+ 2 Tr t;&A ln
~ ~

+8Tr t,z ln I + Tr t,v —21Tr t,v ln
~

g(p)3 2 (Ms& 2 (KgMF l
& p J. (3.5)

where A projects onto non-Nambu-Goldstone boson
scalar fields, t;s, t;F, and t;~ are the representation ms
trices of G, for the heavy scalar, fermion, and vector
fields, respectively. Ms, F,v are their mass matrices. This
formula can also be used to determine the effect of inte-
grating out a heavy quark in lower-energy /CD. Here
one need only include the heavy fermion part of the in-
tegration to determine the low energ-y gauge coupling in
terms of the coupling of the full theory above the heavy
quark threshold. Note that Eq. (3.5) only holds in the
neighborhood of p M, M being the heavy scale, and
as such provides an initial condition for the running of
the effective couplings for p (( M.

In application to the standard model we will inte-
grate out the heavy fields using matching functions as
described above. As we are running couplings to two
loops, it is sufficient to integrate out these fields to one
loop. The heavy gauge bosons, their ghosts, and the top
quark are integrated out near M~, the other fermions
at their physical masses Mf. One may integrate out dif-
ferent mass particles at one scale as long as the two-
loop contribution to coupling constant renormalization
between two threshold scales is negligible. The errors
arising from not integrating out fields at a scale p exactly
equal to their physical mass M is of order al 2 3 ln(M/p),
which is negligible within the perturbative regime.

B. Gauge coupling thresholds

At the electroweak threshold, the point at which W
and Z bosons, their associated Nambu-Goldstone bosons,
ghosts, and the top quark are integrated out, one im-
poses matching conditions similar to Eq. (3.5). Above the
threshold the theory has the SU(3)G x SU(2)L, x U(l)z
gauge symmetry of the standard model and a SU(3)G x
U(1), effective symmetry below. Following Refs. [11,
12], we gauge fix the standard model in such a way that
the low-energy theory is SU(3)G x U(1), invariant af-
ter the SU(2) gauge fields are integrated out. The gauge
Gxing part of the Lagrangian is

1
~GF = ——( [BPWl + ig2(vi(71)ij Pj + g2SW2 A

+[BPW2 + ig24vi(72)ij 4j'+ g2sWl Aij]

+[B„Z"+ ig2c 'v;(~3);,P, ] ), (3.6)

where c = cos e~, s = sin 8~, and p; is the shifted Higgs
field with v; its vacuum expectation value. The heavy
gauge bosons, Higgs and Nambu-Goldstone bosons, and
ghosts are integrated out to one loop by evaluating their
contribution to photon vacuum polarization. The result
is [12]

where

o.2(p)s (p)
(3.7)

A(p) = 1 —21148' 2 ( p,
(3.8)

and where s(p) is defined in Eq. (2.4). Using the GUT
normalization for al, one can also write

1 3 1 —s2(p) 3+ —[1 —s2 (p)]4z A(p),
ill 5 cK(P) 5

+ 4z A(p) s2(p),
1 s (p)

~(p)

(3.9)

A(p) A(p) + 2b&~'lED ln
~

&p&
(3.10)

where b&ED ——1/9z. is the contribution of the top quark
(~) 2 ~

to the coefflcient of e in the @ED P function. The per-
turbativity of @ED at M~ and the small mass differ-
ence between the top quark and gauge bosons [so that
nin(Mi/M~) is small] means that this is a reliable ap-
proximation. We incorporate this matching condition
which includes the top quark into our numerical inte-
gration of the electroweak P functions.

The strong @CD coupling has thresholds near quark
masses. The effect of integrating out a quark is to pro-

where the first term on the right side of each equation
gives the usual tree-level relation. One can always impose
these tree-level relations by fixing p, so that the matching
function 0 vanishes. Here this occurs for P = 0.95M~.

When the heavy top quark is included in the analysis
one may integrate it out separately in which case one has
an effective standard model without a top quark between
M~ and Mi. Alternatively one can integrate it out at
the same scale as the massive gauge bosons in which case
the top-quark loop in the photon propagator contributes
to the matching function above
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duce a matching condition of the form

1 1 —4jrAs (ji),~.(P)» (P)

where

As(ji) = 2b(s ln
~&v)'

(3.11)

(3.12)

of these effects in the literature although they are poten-
tially important in analyses of mass relations predicted
in many grand unified models and in the full two-loop
running of gauge couplings. Since the Higgs field is inte-
grated out at the electroweak scale the Yukawa couplings
appear in the low-energy theory through particle masses
and various nonrenormalizable (NR) interactions:

1 1
4z AqED(p)

&em &(P)

Here a., is evaluated in the zero frequency limit and

(3.13)

1 2 (MF
A@ED(p) =

g 8) q/ ln
~48m. ~ - ( ji

&j) (3.14)

The F and 8 subscripts refer to charged fermions and
scalars, respectively. Again the matching function van-
ishes at each particle mass so the efFect of the threshold
is simply to produce a step in the number of fermions or
scalars of a given charge.

C. Threshold effects in fermion masses (Yukawas)

It is important to realize that the running fermion
masses also experience threshold effects near physical
particle masses. To our knowledge there is no mention

and bs
——1/24m' appears as the contribution of each

quark to the one-loop /CD P function: Ps, = bsgs. The
top quark is integrated out at ji = p, so that the strong
coupling does not match continuously across the thresh-
old. For the other heavy quark thresholds, however, we
choose the renormalization scale for matching to be the
physical quark masses so that the matching functions
vanish there. The only effect of these thresholds is a
step in the number of fiavors ns as each quark threshold
is passed [52].

Likewise the /ED coupling in the low-energy theory
has thresholds at charged particle masses, the matching
condition having the form

~SM yijUalilj yij4'a0i0j + ' ' '

ZI,N
= —m;j g, @j + NR terms +

(3.15)

~SM = WiL&P@iL + ~iRiP@iR

yij ValiLOjR yij 4'a4iLlj R + H.C. + ~ ~ ~

)

(3.16)

where g, can be a quark or lepton and i is a family index.
When the heavy fields are integrated out we generate the
low-energy effective Lagrangian

( iL)~iL P@iL + ( + KiR)@iR&PgiR
(mij + &mij) ($$LyjR + H.c.) + ' ' ' (3.17)

where m;j = y,'v, . The KLR's contain wave func-
tion renormalization contributions of the left- and right-

We evaluate the matching conditions in MS, running
fermion masses at the electroweak threshold by integrat-
ing out Higgs, Nambu-Goldstone, and gauge bosons as
well as ghosts and the top quark. (The Higgs field does
not contribute at one loop to these matching functions
as it has no SU(3)c x U(l), couplings. )

The diagrams corresponding to integrating out these
fields that contribute to one-loop renormalization of
quark and lepton two-point Green's functions in the stan-
dard model are depicted in Fig. 2. As in Eq. (3.6), we
work in a specific gauge required for gauge invariance
of the low-energy efFective Lagrangian under SU(3)c x
U(1),m. As for the gauge bosons the finite piece of the
contributions of these diagrams gives the matching func-
tion and the divergent piece gives the one-loop P function
(see Appendix A). In terms of bare parameters and fields
the relevant parts of the standard model Lagrangian for
this calculation are

z

FIG. 2. One-loop corrections to fermion two-point functions.



RENORMALIZATION-GROUP STUDY OF THE STANDARD. . . 3957

handed fermion fields along with finite parts, and bm;~
is the fermion self-energy contribution.

We must rescale the bare fermion fields in the low-

energy theory so they have the canonically normalized
kinetic term:

gA
——+1,

gA ———1,
gA —+1,
gA

—1)d

gv = +1)
v = 1+4s2,

gtc +] 8 s2

gv ———1+ 3sd 4 2

(s.24)

@i~L,R (1+KiL,R) CiL,R . (s.18)

where

gZ (KL
256rr&c& I

gz t KR
256rrzcz ( q

g,' l t'~"
(64m'zc2) I, q

Ii I

&R I
(s.20)

1 1—= —+ ln4rr —ps . (3.21)

We work in the ( = 1 gauge. The coefficients of the
divergent parts

The relation between the standard model and low-energy
bare masses becomes

=(; +b; )(1/K; ) ~ (1+K )

(3.19)

Note that the left- and right-handed fermion fields are
renormalized differently due to their different gauge cou-
plings, so KL p KR . Also note that in the case of quarks
the self-energy corrections &n;i introduce additional non-
diagonal contributions to the mass matrix. However, in
the limit M~ (( Miv these nondiagonal contributions are
negligible.

We determine the matching functions for the fermion
masses in the standard model in terms of their elec-
troweak quantum numbers. Since we work in the limit
where the self-energy contributions are diagonal, we write
bm, ~

= 6;~m, (1+K; ). The functions K;L, K;R, and
K, e

Inserting the P functions into Eq. (3.19) we obtain the re-
lation between the diagonalized, renormalized masses in
the standard model and the low-energy effective theory:

2

+-(~L + ~'R)

(3.25)

IV. QUANTITATIVE ANALYSIS

We depict the results of numerically integrating the P
functions for the standard model parameters from 1 GeV
to Planck mass in Figs. 3 to 11. For most of these plots,
we have made the arbitrary choice, M& ——MH = 100
GeV. In some figures, we superimpose one- and two-loop
evolution. For example, in Fig. 3 we display the evolu-
tion of the inverse of each of the three gauge couplings.
In it, we see the "GUT triangle" signifying the absence of
grand unification, assuming the standard model as an ef-
fective theory in the desert up to the Planck scale. Here,
the difFerences between one- and two-loop evolutions ap-
pear in the high-energy regime. Differences are also man-
ifest for the strong coupling at low energies where it be-
comes large. In Fig. 4 we display these same inverse
couplings, but this time we include the associated un-
certainties in their values. We note, as is well known,
that the uncertainties do not fill in the "GUT triangle. "
Figures 5, 6, and 7 are similar to Fig. 3 except they dis-

play the evolution of the light mass fermions (rn„m„,
and mg), the intermediate mass fermions (rn„and rn, ),
and the heavy mass fermions (m, rri„and mb), respec-
tively. We conclude that the largest difFerences between

gl
KL =

fl
K~ =
Km

(gv + gA) + 8c

(gv —gA)'

gv gA

(3.22) 60

give the one-loop P functions. Those of the finite parts, 50

(3.23)

z ( Mzz ll z ( Mizv ll
(gv+gA) I

ln z ——
I

+Sc'
I
»

yz 2) g yz 2)
z t' Mzz ll

@R (gv gA)'
I
»

( Mz 1l
&~=(gv —gA) I

»

40

30

20

10

give the matching functions. Here gvA ——2(gL + g' ),
where gL R ——Ts L R

—s Q' and Ts L R and Q' are the
third components of weak isospin and the electric charge,
respectively, for a given handedness of the ith fermion.
For the different quark and lepton charge sectors one has

10

log &o(p)

15 20

FIG. 3. Running of the inverse gauge couplings using their
central value as initial data.
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60
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0 10

&og &o(P)

15 20
I s g» I & i s s I

0 5 10

log, o(P,)

15 20

FIG. 4. Running of the inverse gauge couplings using their
propagated experimental errors for the two-loop case only.

FIG. 7. Heavy quark and lepton masses for M&-M = 100
GeV and MH = 100 GeV.
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FIG. 5. Light quark and lepton masses for M& ——100 GeV
and MH = 100 GeV.

FIG. 8. Top Yukawa and scalar quartic couplings.
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FIG. 6. Intermediate quark and lepton masses for M& ——

100 GeV and MH = 100 GeV.
FIG. 9. Intermediate quark and lepton masses for M& ——

200 GeV and MH ——195 GeV.
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FIG. 10. Heavy quark and lepton masses for M& ——= 200
GeV and M~ ——195 GeV. FIG. 11. CKM mixing angles for M~ ——100 GeV and

MH ——100 GeV.

one- 00e-loop versus two-loop evolution occur in the bottom,
i . 8charm, and strange quark masses in these cases. In Fig.

we plot the quartic coupling A and the top Yukawa cou-
pling y& for (Mq ——100 GeV, M~ = 100 GeV) and for
(Mt ——200 GeV, M~ = 195 GeV). These two couplings
are the only unknown parameters of the standard model.
We have studied the effects of changing the values of Mi
and M~ in our analyses of the running of the other ps
rameters. We observed that, for any Mt between 100
GeV and 200 GeV, varying MH, while maintaining per-
turbativity and vacuum stability, did not affect apprecia-
bly the evolution of any of the other parameters. How-
ever, changing Mt itself showed a significant difFerence
in the running of the heavier quarks. To illustrate this,
in Figs. 9 and 10 we display plots similar to Figs. 6 and
7 but for Mt ——200 GeV and M~ = 195 GeV. In par-
ticular, in Fig. 10 we note that the intersection point
between the bottom quark and the w lepton moves down
to a lower scale for this case of a higher top-quark mass.
This is expected since from Eq. (A10) one can see that
the bottom-type Yukawa couplings are driven down by an
increased top Yukawa coupling. This is to be contrasted
with the. SUSY GUT case in which the bottom Yukawa
P function is such that this crossing point is shifted to-
ward a higher scale with an increased top mass. In an
SU(5) SUSY GUT model, the equality of the bottom and
~ Yukawa couplings at the scale of unification was used
to get bounds on the top-quark and Higgs-boson masses
[5]. Lastly, we display the running of the CKM angles in
Fig. 11. We are using the initial data: sinai = 0.2206,

sin es ——0.0298, and sin es = 0.0106. Also we have taken
6 = 90' which corresponds to the case of maximal CP
violation. As mentioned in Sec. II D, the evolution curves
for these angles are effectively fiat.

In the present case of the standard model, we find that
two-loop running of the parameters does at times improve
on the one-loop running. Indeed, we have tabulated the
differences of several parameters in their one- versus two-
loop values at various scales for the cases (Mi ——100 GeV,
M~ = 100 GeV) and (Mq ——200 GeV, MH = 195 GeV).
Table II illustrates the difference one-loop versus two-
loop running makes in the ratio rnid, /m~, for the three
scales 102 GeV, 104 GeV, and 10is GeV.

Clearly, the difFerence between one- and two-loop re-
sults is more pronounced at higher scales, as expecte .
Over all these scales the difference is never less than 5.5%.
We note that the ratio becomes equal to one well below
the scale of grand unification as noted in the discussion
of Figs. 7 and 10. Table III presents a similar comparison
for the top Yukawa coupling. Here, two loops represent a
smaller correction with the difFerence at all scales always
being less than 5%.

F' all, Table IV displays the same analysis for n, for
the case Mi ——M~ = 100 GeV. We observe no apprecia-
ble deviation from the tabulated values for any Mi
GeV (except in the low-energy regime where the difFer-
ence is at most 4%).

At scales (Mg, the inclusion of two loops is important
in the evolution of the strong coupling (and of the quark
masses). Indeed, we find that the pure (CD thr==-loop

~ ~TABLE II. DifFerence between one- and two-loop running in rni, /m

].0~ QeV
M~ ——100 GeV

10 GeV 10i6 QeV
Mg ——200 QeV

10 QeV 104 QeV 10 QeV

One loop
Two loop

1.938
1.937

1.499
1.463

0.8326
0.7962

1.868
1.769

1.392
1.285

0.6647
0.6047
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TABLE III. A similar comparison as in Table II for y&.

102 GeV
Mg ——100 GeV

10 GeV 10' GeV
Mg ——200 GeV

10 GeV 10 GeV 10 GeV

One loop
Two loop

0.7879
0.7873

0.6076
0.5940

0.2830
0.2701

1.133
1 ~ 143

0.9780
0.9700

0.7145
0.6816

V. CONCLUSION

In the present paper we have collected the necessary
tools for renormalization-group analyses of the standard
model. We worked in the MS renormalization scheme us-

ing the standard model two-loop renormalization-group

P functions. We evolved the parameters of the standard
model, i.e. , the gauge couplings, the quark and lepton
masses, the Yukawa sector mixing angles and phase, and
the scalar quartic coupling from a mass scale of 1 GeV
to Planck mass. We reviewed the extraction from ex-
periment of the initial values for these parameters with
specific emphasis on the extraction of the strong cou-

pling constant and of the quark masses (especially those
of the charm and bottom flavor). We endeavored to treat
the threshold effects appropriately, i.e., rather than using
naive step function implementation of thresholds, we im-

plemented one-loop matching conditions for both gauge
boson and fermion mass thresholds. We found that in the
case of the standard model these matching conditions did
not improve essentially upon the simple use of step func-
tions. Indeed, two loops versus one loop represented a
more signi6cant efFect, albeit sometimes small. For com-

TABLE IV. Same analysis as in Table II for n, .

One loop
Two and three

loop

1 GeV 10 GeV 10 GeV 10 GeV

0.3128 0.1118 0.07103 0.02229
0.3788 0.1117 0.07039 0.02208

contribution is also significant and therefore include it
in the running of the strong coupling and of the quark
masses in the low-energy region. As seen in this table, the
combined two and three loops in the low-energy regime
account for a 1770 difference at 1 GeV in o,

Although in the cases considered in these last two ta-
bles there does not appear to be a significant difference in
two-loop over one-loop evolution at scales above Mz, the
first table does show a 10% difference at the scale, 10is
GeV. We expect two-loop effects to be more important
when the theory is extended, e.g. , to include supersym-
metry and/or grand unification.

The effects of using a naive step approximation versus
a proper treatment of thresholds are numerically unim-
portant for the cases discussed above. Indeed they are
less important than the two-loop eEects. We note, how-

ever, that the inclusion of non-naive threshold effects is
significant in the numerical analysis of extensions of the
standard model.

pleteness, we included plots exhibiting these different fea-
tures for all the parameters of the standard model.

The raison d' etre of this study is to present a template
for future investigations. We can now add the effects of
extensions of the standard model and study their con-
sequences. This program has already been carried out
in some special cases involving supersymmetry for the
gauge couplings [4] and for the Yukawa couplings [5, 6]
with interesting consequences.
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APPENDIX A: STANDARD MODEL P
FUNCTIONS

In this appendix we compile the renormalization-group

P functions of the standard model. These have appeared
in one form or another in various sources. We have en-
deavored to confirm their validity through a comparative
analysis of the literature. Our main source is Ref. [7].
Following their conventions,

l:= Q~CY„tu„y Q, OYgtd„+ 7L,OY, te„+H.c.

--,~(et C)', A

where flavor indices have been suppressed, and where Q~
and E~ are the quark and lepton SU(2) doublets, respec-
tively,

(A2)

C and 4 are the Higgs scalar doublet and its SU(2) con-
jugate:

0 l, @=~~zC'.(y+ l
(A3)

)
u„, d„, and e~ are the quark and lepton SU(2) singlets,
and V„p, are the matrices of the up-type, down-type,
and lepton-type Yukawa couplings.

The P functions for the gauge couplings are
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3 2 3
dg1

b % i -b gA. g1
'167r2 ~ "'(].67r2)2

3
Tr(C1„Y„iY„+C1gYgtYg+ C1eYetYe),

16ir2 2 (A4)

where t = ln p and & = 1,2, 3, corresponding to the gauge group SU(3)~ x SU(2)L, x U(l)i of the standard model.
The various coefficients are defined to be

4 1
A

3 10'
22 4 1

b2 = —— n-
3 3' 6'

4
bs ——11 —-ngg

(A5)

and

('00 0)
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In the Yukawa sector the p functions are

dYu, d, e Y | 1 (1) 1 (2)
167r' ""' (16ir')' "»'

where the one-loop contributions are given by
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2722 31 22 (35 ) 4 22 404 80 l 4
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(A12)

)(4(s) = —Tr
I
3(Y„Y„) +3(Yg Yg) + (Y, Y,) ——Y„Y„YgYg I4 3 ( 13)

In the Higgs sector we present P functions for the quartic coupling and the vacuum expectation value of the scalar
field. Here we correct a discrepancy in the one-loop contribution to the quartic coupling of Ref. [7]:

dA 1 (1) 1 (2)
dt 16 " (16 )

where the one-loop contribution is given by
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H(S) = Tr(3(Y„tY„) +3(Yg Yg) +(Y, Y,) ), (A16)

and the two-loop contribution is given by [58]
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d ln v 1 (~) 1 (2)
dt 167r2 (167r2)2 (A18)

The p function for the vacuum expectation value of
the scalar field is ~( ' = —-A —-& (S) + x (S) ——g g

3 2 5 2722
2 2 80
( 93 1 ) 4 (511 5
800+2 g Ig1+I& 32 2 g (A20)

where the one-loop contribution is given by

= —
I -g1+g2 —&2(S),(1) 9 (1 2 2

and the two-loop contribution is given by

(A19)

These expressions were arrived at using the general for-
mulas provided in Ref. [7] for the anomalous dimension
of the scalar field, choosing the Landau gauge.

In the low energy regime the effective theory is
SU(3)~ x U(1), . We employ the general formula of
Ref. [53) to arrive at the P functions for the respective
gauge couplings:
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where n„, ns, and nl are the number of up-type
quarks, down-type quarks, and leptons, respectively. In
Eq. (A21) we have also included the three-loop pure @CD
contribution to the P function of gs [54].

For the evolution of the fermion masses we used Ref.
[55]. It is known that there is an error in their printed
formula [56]. Using the corrected expression, we compute
the following mass anomalous dimension. The fermion
masses in the low-energy theory then evolve as

m = '7(l q) fn (A23)

where] and q refer to a particular lepton or quark, and
where

1 2= —6Q,
3 =
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0

Q(q) 8)
13 33
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l80 20 20

p(l'q) ———3Q(l q)+ ~
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3 27
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160((3) + I (n~+ «) —3747
l 2216)

l 9

where Q(l q) is the electric charge of a given lepton or
quark, and ((3) = 1.2020569. . . is the Riemann zeta
function evaluated at three. In the mass anomalous di-

mension for the quarks above, we have also included the
three-loop pure /CD contribution p(ss)s [54].

APPENDIX B: EXPLICIT FORM OF b(p)
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In Ref. [47] the radiative corrections term b(p) from
Eq. (2.76) is derived. In this appendix, we present its
explicit form as it appears in this reference except for
some minor notational changes. In the following, s and c
refer to sin e~ and cos e~, respectively. Also, ( is defined
to be the ratio M~/Mz.

~(p) = " ', ((f (( ~)+fo((, I )+( 'f (( I ))-
The superscripts 1 and 3 refer to the U(1), and SU(3)~
contributions, respectively. Explicitly, the above coeffi-
cients are given by where the various functions are defined as
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with

2Aarctan(1/A) (z ) 4),
Aln[(l+ A)/(I —A)) (z ( 4),

APPENDIX C: NUMERICAL TECHNIQUES

Fi(x(tp)) = RK(x(tp); t, ), —X, , (Cl)

where x(tp) is an 18 component vector denoting the un-

known parameters at tp, X, is the known (possibly ex-
perimentally determined) value of the ith parameter at
some scale t, , and RK(x(tp); t, ), is the value of the ith
parameter resulting from numerically integrating the P
evolution equations to a scale t, given initial values, x(tp)
at to. Solution routines that solve N simultaneous non-

We use the Runge-Kutta method to numerically inte-
grate the P functions. There are 18 coupled first order
differential equations involved in running the standard
model couplings. At one loop some equations decouple
from the rest. For example, the gauge couplings are de-
coupled at one loop. However, the Yukawa l9 functions
depend on both gauge couplings and Yukawa couplings
even at one loop as in Eqs. (A8)—(A10). We are work-
ing with two-loop P functions and these are all coupled.
Standard Runge-Kutta programs are readily available;
however, these usually assume knowledge of initial val-
ues of all couplings at the same scale tp, where t will
denote the scaling parameter. This presents somewhat
of a problem since different couplings may be known at
significantly different scales.

The method we employ to solve the initialization prob-
lem is often referred to as "shooting" [57]. Simply put, a
guess is made for the initial values of all the parameters
at the chosen scale, tp. The parameters are then evolved
to the various scales where one has known values, and
the merits of the guess are assessed. The procedure is
optimized, and one thereby arrives at a solution. Arriv-
ing at initial values of the couplings at the same initial
scale therefore involves the solution of a possible 18 non-
linear equations in 18 unknowns. That is, in the most
general case, if it is assumed that none of the parameters
are known at the desired initial scale tp, then 18 coupled
functions of 18 variables can be defined as

linear equations in N unknowns, that is, they solve

F,(x(t, )) = 0, (C2)

are then used to find x(tp). In our case x, (tp), i
1, ... , 18, represent the 18 parameters of the standard
model, and we have chosen the initial scale po

——e" =
Mz. Our task has been appreciably simplified since we
have most initial data at Mz. Only the fermion masses
are taken at a different scale. This reduces the number
of simultaneous equations and therefore the computing
task.

As the top-quark and Higgs-boson masses are unknown
in the standard model at present, in the process of our
analyses we are free to choose values for these masses
at Mz and then proceed to study the consequences. In
other models in which there may be certain constraints
(e.g. , in some GUT's the b and r Yukawa couplings are
equal at the scale of grand unification), one may incorpo-
rate these constraints into the functions (C2). The free-
dom to choose a value for an unknown parameter may
be replaced by such a constraint, and this may result
in a definite prediction for that parameter. Constraints
from grand unification and supersymmetry were used in
Ref. [5] to arrive at possible values for the top-quark and
Higgs-boson masses.

After all data is obtained at Mz by employing the ini-
tialization procedure described above, the Runge-Kutta
routines are used to evolve the parameters to any mass
scale li. We have provided several figures (3—7) displaying
the evolution of many of the parameters of the standard
model for the case mt(Mz) = 95 GeV. As discussed in

Sec. II G, given the evolution of the running parameters
m& and A, the physical top-quark and Higgs-boson masses
may be found by solving Eqs. (2.75) and (2.76). These
equations are solved using the nonlinear equation solu-

tion routines described above in the initialization proce-
dure. For example, consider the above situation in which

mq(Mz) = 95 GeV, and suppose we wish to find the cor-
responding physical mass Mt in this case. The solution
algorithm may be described as follows: A guess is made
for Mq, then the running parameters are evolved using
the Runge-Kutta routine to this mass scale (i.e. , y, = Mt).
The guess is tolerated depending on how accurately one
wishes Eq. (2.75) to be satisfied when values for n, (Mt)
and mt�(Mt) are substituted. The solution routines effec-

tively optimize this shooting or guessing procedure and

yield a value for Mi corresponding to the value mt�(Mz).
In this particular case, the result is Mz ——100 GeV.
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