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This is the second of two papers describing the calculation of spectroscopy for orbitally excited states
from lattice simulations of quantum chromodynamics. New features include higher statistics for P-wave

systems and first results for the spectroscopy of D-wave mesons and baryons, for relatively heavy-quark
masses. We parametrize the Coulomb gauge wave functions for P- and D-wave systems and compare
them to those of their corresponding S-wave states.
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I. INTRODUCTION

Recently, we presented some preliminary results from
an exploratory calculation of the masses of P-wave
mesons and baryons from lattice Monte Carlo simula-
tions of quantum chromodynamics in a quenched approx-
imation with Wilson fermions [1]. This paper describes
the final results from these simulations. We have in-
creased the statistics of our P-wave study. There is a hint
of some fine-structure splitting in the charmonium sys-
tem. We also present first results for a D-wave spectros-
copy of fairly heavy-quark mesons and baryons. Finally,
we show some of the properties of Coulomb-gauge meson
and baryon wave functions of P- and D-wave systems and
compare them to S-wave wave functions at the same
quark masses [2].

Only recently has lattice QCD spectroscopy begun to
move beyond ground-state hadrons. Some P-wave-state
masses are regularly measured in staggered simulations
because they are the odd-parity partners of "ordinary"
states: The a& and p are examples of such pairs. In non-
relativistic QCD, Thacker and Lepage [3] have computed
the masses of yc and ys states (without including spin
effects). Few Wilson simulations have been conducted to
study P wave states. -The APE Collaboration [4] mea-
sured masses of some P-wave mesons in quenched simula-
tions at 6/g =P=5.7, but has had diSculty in continu-
ing their program to higher P [5]. Recently, El-Khadra
et al. have presented a calculation of the 1P-1S splitting
in charmonium, which they use to fix the strong-coupling
constant [6]. This calculation was done with a smaller
lattice spacing than the one we report here and with an
improved action for the fermions.

Calculations of the masses of orbital excitations in lat-
tice simulations are difficult for three reasons: First, one
needs to measure a correlation function with nonzero
overlap onto the desired L sector and zero overlap on
L =0; otherwise, the signal will be dominated at large t,
by the lighter L =0 states. Our methodology solves this
problem. Second, the signal is intrinsically noisy [7]. A
diagonal correlator C (t)= (O~ I (t)I (0)~0), which falls off
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A. Construction of orbitally excited states

We construct orbitally excited states by using interpo-
lating fields which couple only to a specific angular
momentum eigenstate, which are projected onto zero
momentum and which are of large spatial extent to max-
imize overlap with the state. Our strategy is to look at
correlators of different operators at t =0 and tAO.

At the tWO end of the correlation function, we use an
operator which depends on the relative separation of the
quarks, which is conventionally referred to as a "wave
function" [9]. The wave function QG(r) of a hadron K in
a guage G is defined as

QG(r)= g (K~q(x)q(x+r)~0), (2.1)

where q(x) and q(y) are quantum-mechanical operators
which create a quark and an antiquark at locations x and
y. (We have suppressed Dirac and color indices. ) Our
correlation function is constructed from convolutions of
quark and antiquark propagators G(x,y):

at large t like exp( E,—t), where E, is the energy of the
lightest state which the operator I can create from the
vacuum, has fluctuations given by

~', =—[(~r(t)l. (0)~') —C(t)'] .1
(1.1)

Because of its first term, o.z decays with a mass of the
lightest particle ~l ~

can make from the vacuum. If I is
a meson operator (creating a qq pair), I will create a
q q state, which will most likely couple to a mm pair. Its
correlator will fall like exp( 2m„—t) In th. e baryon sec-
tor, ~I ~

will make a q q state, and the lightest such
state is three pions. Thus we expect a signal-to-noise ra-
tio to be a falling function of t: o/CH(t)=exp(mH—ttt )t for mesons and o ICH(t)=exp(mH 3I2m —)t
for baryons. This is a more serious problem for orbitally
excited states than for S-wave states because their energy
differences are larger. Finally, the baryon sector includes
multiple states with the same quantum numbers, which
will appear in the same correlators. For example, in the
L =1 [70] of SU (6) [8], the nonstrange sector includes
one j=

—,
' and two j=—,

' and —,
' nucleons and j=—,

' and —,
'

5's.
II. METHODOLOGY
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C(r, t)= g (0~% (y, , y, )G (y, , O;x, t)

XG (y2, 0;x+r, t)~0), (2.2)

where 4(y„yz) is the t=0 operator. At large t, if the
mass of the hadron is mH, then

this properly, but will need many more quark propaga-
tors. Note also that while we are using nonrelativistic
wave functions, they have the quantum numbers ap-
propriate to the desired states and will couple to them,
and not to S-wave states, regardless of whether the
quarks are actually relativistic.

C(r, t ) =exp( mH—t )QG(r), (2.3) C. Details of the simulations

and so by plotting C(r, t) as a function of r we can recon-
struct the wave function up to an overall constant. We
measure the mass of a state by convoluting C(r, t) with
some test function which further projects out the desired
state:

C(t)= g g,"„,(r)C(r, t) . (2.4)

At t =0 we take an operator which is separable in the
coordinates of the quarks. For a meson we use

%(x„x~)=P,(x&)$2(xz) . (2.5)

In order to couple to orbital excitations, we take P, to be
an S wave and P2 to be some orbitally excited state with
angular momentum l, centered around some specified
coordinate. This state is a linear superposition of a p=0,
L =l orbital excitation and a state whose center-of-mass
momentum is nonzero (this is the familiar "translation
mode" of a shell-model state). Convoluting quark propa-
gators as in Eq. (2.2) removes the pAO state and gives us
the wave function of the p =0, L = l state.

B. Spin considerations

We did not construct a complete set of P- or D-wave
mesons and baryons. Instead, we proceeded as follows
(for P waves): We worked in a basis in which yo is diago-
nal. Our sources and sinks were chosen to couple only to
the upper (large) components of the Dirac spinor. We
constructed propagators for S-wave quarks with mz =+—,

'

and for P-wave quarks with mI=1, mz=+ —,'. We can
then completely construct the

~ jm ) = ~22) P2 and

~ jm ) =
~
11 ) 'P

&
mesons, as well as the

~ jm ) =
~

—', —,
' ) nu-

cleon N( ,'). We formed —two other meson states with
S= 1 and m, =1 and 0 (ms=0 and —1), which are not
angular momentum eigenstates; while we wi11 label them
as P, and Po, they couple to all three P states. [The"P, " state is (1'1+$1)~11); the" Po" state is (1l)~11).]
If the ordering of states on the lattice were as in char-
monium, the lightest state in the channel would have the
smallest j for a given m and the wave functions would in
fact project out the states which they label. In the
baryon sector, we constructed uud bound states with
m =—', (1 $ $)~11) and —

—,'( j, 1 1)~11).
D-wave spectroscopy is identical apart from the substi-

tution of l=2 for I=1: We completely construct the D3
and 'D2 meson states and construct m =2 and 1 states
which overlap D2 and D, states. We construct nu-
cleons of m. = —', , —,', and —,'.

This is an incomplete construction forced on us by
computer-memory limitations and a desire to keep the
calculation simple. A dedicated simulation should do

We performed the simulations using the Connection
Machine CM-2 at the Pittsburgh Supercomputing
Center. Our data set consists of 80 lattices for P-wave
studies, of which the last 50 were also analyzed for D-
wave systems, computed in quenched approximation at
coupling f3=6, separated by a combination of micro-
canonical overrelaxed [10] and Kennedy-Pendleton
quasi-heat-bath [11] sweeps (100 passes of a pattern of 4
overrelaxed sweeps through the lattice and 1 heat-bath
sweep). The lattice size is 16 sites. We gauge-fixed each
of the lattice configurations to Coulomb gauge using an
overrelaxation algorithm [12]. We used Wilson fermions.
We used a fast matrix inverter provided by Liu of Think-
ing Machines, Inc. [13] to construct quark propagators.
We computed P-wave spectroscopy at three hopping pa-
rameters corresponding to relatively heavy-quark masses,
~=0.130, 0.1450, and 0.1520, and D-wave spectroscopy
at ~=0. 1300 and 0.1450. The pseudoscalar mass in lat-
tice units at these three ~'s is 1.43, 0.83, and 0.56. We
used heavy quarks because the size of the wave function
for the orbitally excited states is much larger than the
size of an S-wave bound state, and if the quark mass be-
comes too small, the wave function is squeezed by the
simulation volume.

In Eq. (2.4) we use a test function
1(j„st=exp[ (r/ro) —]r'Yl'(fl), in the relative coordinate.
We take P, in Eq. (2.5) to be a Gaussian centered at the
origin and Pz to be exp[ (r/ro) ]r' Y&'(0).—[As a techni-
cal note, when the width of the Gaussian becomes large
compared with the size of the lattice, one must worry
about edge effects. We do that by replacing the spherical
harmonic by a function which has the same symmetry
but is periodic in the box (of size L):
Y I

= (x +iy ) /r ~ (sin2m x /L +i sin2ny /L ) /r. ] The
width of the Gaussians used in qI and p„„wastaken to
be 2, 2, and 2&2 lattice spacings for the three ~'s.

We recorded wave functions for P2, 'P„D3,and 'D2
mesons and for N( —', ) and N( ,') baryons, at tim—e slices 4,
5, and 6. All baryon wave functions pin the two quarks
in a relative S state to the same coordinate. We folded
meson data onto one octant of the spatial lattice and
baryon data onto one quadrant before storing it and, in
addition, kept data on one plane without folding.

III. WAVE FUNCTIONS

A. Pictures of wave functions

We now display some of the features of P- and D-wave
functions and compare some of their simple observables
with those of S-wave rnesons of our earlier study [2]. We
begin our display of results for wave functions by show-
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f(r) =Ret)'jlr)/Re Yl'(0) . (3.1)

The Coulomb-gauge radial wave functions for K=0. 145
Pz and D3 mesons are shown in Figs. 4 and 5. They ap-

pear to show the characteristic linear and quadratic zeros
of the wave function at the origin.

ing some pictures of Coulomb-gauge meson and baryon
wave functions.

In Figs. 1 and 2, we display plots of the real part of the
wave function in the plane z=0 for a a. =0.152 N( —,')
baryon and a K=0. 145 D3 meson, respectively. The
contours show the locations where l( is a multiple of 20%
of its maximum value. The data for these graphs have
not been spatially averaged. They show the characteris-
tic dipole and quadrupole structure of the appropriate
spherical harmonic. The fact that these distributions are
not symmetric gives the reader an impression of the Auc-
tuations in the data. They also give some idea of the ex-
tent to which the granularity of the lattice distorts the
state and the extent to which the state fits into the simu-
lation volume.

In order to illustrate further the extent to which a state
fits in the simulation volume, we display in Fig. 3 a set of
three-dimensional contours of constant absolute value of
the real part of the wave function. This figure, for the
K=O. 145 D3 meson, shows the characteristic four-lobe
quadrupole structure whose outer regions are comprom-
ised by the simulation volume. This is a problem for all
the lighter-mass states; all the K=O. 130 mesons appear to
fit reasonably well into the simulation volume.

Finally, we extract the radial wave function f(r) itself
from

FIG. 2. Wave function of the K=0. 145 'D, meson in the
plane z=0. The contours and shading are parametrized as in
Fig. 1.

B. Fitting wave-function parameters

The goal of this section is to provide simple analytical
parametrizations of wave functions which can be used for
future studies of spectroscopy and to provide checks for
calculations of wave-function properties performed
directly on the data.

Fitting the wave functions proved to be unexpectedly
difficult because of the high correlations among wave
functions at different separations. With only 50 or 80 lat-
tices, we had to fit a subset of the data, since correlated

(c)
(d)

FICJ. 1. 'Wave function of the ~=0.1S2 X(—') baryon in the
plane z=0. The contours show interpolated lines of constant
real P in multiples of 0.2 times the maximum value of f. The
shading shows the value of the wave function (black is the most
negative, white the most positive), interpolating from the origi-
nal 16 lattice to a 64 grid.

FIG. 3. Surfaces of constant absolute amplitude of the
K—0. 14S D3 meson in three dimensions, in fractions of its max-
imum: (a) 1@1=0.2&,„,(b) jl(') =0.4&,„,(c) I&I =0.5@,„,and
(d) jfI =0.6$,„.The "breaks" in the surfaces in (a) and (b)
occur when the surfaces intersect the edge of the simulation
volume.
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FIG. 4. Radial wave function of the ~=0.145 'P2 meson.
Crosses show all points; squares are points along the x axis used
to fit the wave function (fit is the line).

g (r) = A (r +br )exp( cr ), —

for P waves, and

(3.2)

fits require more lattices than fitted points. We elected to
choose coordinates along axes where the spherical har-
monic was unity (up to a sign); this gives us seven
(z = I —7) points to fit. We folded all directions related by
reflections onto this axis with the necessary signs. Then
we fit the radial wave function f(r), including a periodic
or antiperiodic image term from the boundary [we fit

f„„(r)=g(r)+g(1. —r)j.
After a certain amount of trial and error, we chose to

fit to

trix becomes singular. We fit the baryon data to the same
parameters (recall that we have pinned two quarks to-
gether, and so there is only one relative coordinate left).

The data are very correlated, and the matrix of correla-
tions very singular. It was not unusual to find correlation
matrices whose conditioning number (ratio of largest to
smallest eigenvalue) approached several thousand. The
conditioning number was not stable: Fitting half the lat-
tices in a data set could cause the conditioning number to
vary by a factor of 2. We would also achieve a consider-
able variation in the conditioning number by varying ele-
ments in the correlation matrix by hand by a percent or
so. In contrast, the correlation matrices for propagators
had conditioning numbers on the order of 50 and were
quite stable under the same tests. Typically, in a 7X7
correlation matrix, only the largest 3 or 4 eigenvalues
remained reasonably stable as the number of lattices in
the data set was varied. Therefore we adopted the fol-
lowing strategy for determing the parameters in f(r):
We looked at uncorrelated fits, correlated fits to all pa-
rameters (very unstable), correlated fits in which the
correlation matrix had its smallest three eigenvalues re-
moved (via singular value decomposition), and correlated
fits to a subset of the data (often r=l, 3, 5, 7). In the
latter case, one could not use consecutive points, since ei-
ther one or both of the correlation matrix or Hessian ma-
trix would become singular. The D-wave data was much
more difficult to deal with with than the P-wave data in
this respect.

The overall normalization of the wave function is not
important for spectroscopy studies. The parameters b

and c for P-wave mesons are displayed in Fig. 6 and for
D-wave mesons in Fig. 7.

C. Moments of wave functions
g(r) = A (r +br )exp( cr ), — (3.3)

for D waves, plus image terms, and we believe that many
other simple functional forms would work as well. The
data cannot distinguish between these or more complicat-
ed functions, and if we try to force a fit, the Hessian ma-

0 ~ 3

The nth moment of the meson wave function is defined
in terms of P(r) as

f r dr(rl2)"f(r)2
( ")= (3.4)

f r dr f(r)

0,8—

0.2 0.0 —'

0.12 0.13 0. 14 0. 15 0. 16

0. 1 (b)

0.0 +X
10

0.8—

0. 12 0. 13 0. 14 0. 15 0. 16

FIG. 5. Radial wave function of the ~=0.145 'D, meson.

Crosses show all points; squares are points used to fit the wave

function (fit is the line).

FIG. 6. Fit parameters of P-wave wave functions: (a) b pa-
rameter and (b) c parameter. Points are labeled with crosses for
'P2 rnesons, squares for 'P, rnesons, and diamonds for N( —,')
baryons.
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FIG. 7. Fit parameters of D-wave wave functions: (a) b pa-
rameter and (b) c parameter. Points are labeled with crosses for
'D3 mesons, squares for 'D, mesons, and diamonds for N( —,')
baryons.
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The factor of —,
' is included so that the second moment

defined this way (when appropriately weighted by quark
charges} reduces to the second moment of the quark-
charge distribution defined through the form factor.

We determined the first and second moments of our
meson wave functions in two ways: First, we computed it
directly from the data, by performing a single-elimination
jacknife analysis, and second, we computed it using the
fitted form of wave functions. We consider the second
method to be more reliable since in many cases the wave
function is still large at the edge of the simulation
volume. Only a fit which includes image effects can
correctly reproduce the tail of the wave function.

In all cases and for both jacknife and using the fitted
radial wave function, the values of the two moments were
independent of time slice, although the uncertainty in-
creases with increasing t. We display the first and second
moments at t =4 in Figs. 8 and 9, respectively. We see
that, while the two methods give rather similar results for

FIG. 9. Second moment of P- and D-wave meson wave func-
tions (a) from a jackknife analysis and (b) from the fitted radial
wave functions. Points are labeled as in Fig. 8.

the a =0. 1300 mesons, at smaller quark mass the
discrepancy becomes pronounced.

The P-wave functions are larger than the S-wave wave
functions, and the D-wave ones are larger still. Note that
the diameter of the wave function in the simulation is 4
times (r ) of Eq. (3.4), so that the simulation volume we
use would appear to be too small for D-wave systems
made of ligher quarks.

IV. SPECTROSCOPY

We extracted masses from our data by fitting the corre-
lation function C(t} of Eq. (5) in the standard way and
looked at "effective masses' [local slope of C(t)] and fits
to a range tm;„ to tm, „=n,/2=8. All data are fit includ-
ing the effects of correlations at different times [14].

As a general rule for selecting the best-fit value to
present in a figure or table, we use "fit histograms. " A fit
is represented by a rectangle centered on the best-fit value
for a mass p, with a width given by (twice) the uncertain-
ty of the fit (i.e., p+bp) and a height which is the
confidence level of the fit (to emphasize good fits) times
the number of degrees of freedom (to emphasize fits over
big distance ranges) divided by the statistical error on the
parameter (to emphasize fits with small errors). The fit
with the greatest height is the one we quote. This was
the method used to select the best mass in an earlier S-
wave spectroscopy calculation [15].

4
3

N 2
(b)

st

0
0.12 0.13 0.14 0.15 0.16

FIG. 8. First moment of P- and D-wave meson wave func-
tions (a) from a jackknife analysis and (b) from the fitted radial
wave functions. Points are labeled with crosses for P2, squares
for 'P&, diamonds for 'D3, octagons for 'D2 mesons, and fancy
squares for the pseudoscalar (data from Ref. [2]).

A. P-wave spectrpszppy

Figure 10 shows effective masses and fits to a range of t
values for the meson and baryon data.

All baryon masses at all a values appear to be con-
sistent; there is little sign of a drift of the masses with
choice of fitting range. There is no evidence of any fine-
structure splitting in any of the a values. One cannot say
whether this is due to a small intrinsic splitting on the
lattice or whether all operators are merely coupling
strongly to the j=

—,
' nucleon. In our extrapolations, we

will make the latter assumption.
The a =0.1300 mesons also have stable, consistent fits.
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from the point of view of y (7.0 for 5 degrees of free-
dom), fits at increasing t;„'sproduce monotonically fal-

ling masses. Fit histograms are shown in Fig. 12. The
P, state is degenerate with the P2, but with large errors.

Finally, the ~=0.1520 data share the same features as
the K=0. 1450 data, with slightly larger uncertainties.
The P-wave lattice masses are listed in Table I.

B. D-wave spectroscopy
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II

The D wave -data is noisier than the P wave -data (as ex-
pected). Typical uncertainties for masses are about 0.08;
4 times the P-wave value. All masses appear to be
asymptotic by t;„=2—3, and all signals disappeared into
the noise by t=6. Because the data are so noisy, we
could see no evidence for fine-structure splitting in a mul-
tiplet. Figure 13 shows effective masses and fits to a
range of t values for the meson and baryon data. The
masses are listed in Table II.

C. Comparison with experiment

FIG. 10. Spectroscopy of P-wave mesons and baryons: (a)
meson effective masses, (b) meson fits to a range, (c) baryon
effective masses, and (d) baryon fits to a range. The three bands
(in order of increasing mass) correspond to ~=0.152, 0.145, and
0.130. In each meson group, the 'P, state is labeled by a cross,
the 'P0 state by an octagon, the 'Pl state by a square, and the
'P2 state by a diamond. For baryons, the cross labels the P, »
state, the octagon the P3/2 state, and the square the P,~, state.

The best-fit values from histograms all begin at t=2.
There is a hint of the appearance of fine-structure split-
ting in the multiplet, as shown in Fig. 11. The splitting
qualitatively resembles charmonium fine-structure split-
ting, with the Pp state the lightest and the other states
more nearly degenerate. However, uncertainties are so
large that this probably should not be taken too seriously.
These data seem to be limited by statistics.

The ~=0.1450 data is noisier by about a factor of 2.
The Pz state is heavier than the 'P, . The P0 signal nev-
er stabilizes; while the fit from t;„=2is satisfactory

80 10

60— 8—

4—

It is difficult to convert these lattice numbers into reli-
able quantities which can be compared with experiment.
At P=6.0, one is far from the scaling region. S-wave
spectroscopy with Wilson fermions does not agree with
experiment. The quark hopping parameters we have
used are very distant from the zero quark-mass value.
We will glance at two comparisons, but we have to say
that with the quality of the signals they should probably
not be taken very seriously as other than qualitative ob-
servations.

The masses are shown in Fig. 14. First, if we extrapo-
late all masses linearly in ~ to ~, =0.1567, we find

am( P2)=0.93(3), am('P, )=0.73(4), and am(N( —', ))
=1.07(4), and the D-wave meson and baryon
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FIG. 11. Fine-structure splitting in the P-wave meson multi-

plets: (a) a.=O. 130, (b) ~=0.145, and (c) re=0. 152.
FICx. 12. "Fit histograms" of x=0. 145 P-wave mesons: (a)

3P~ mesons, (b) 'P, mesons, (c) 'P0 mesons, and (d) 'P, mesons.
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TABLE I. P-wave meson and baryon masses in lattice units. TABLE II. D-wave meson and baryon masses in lattice units.

State Mass State Mass

0.1300
0.1300
0.1300
0.1300
0.1450
0.1450
0.1450
0.1450
0.1520
0.1520
0.1520
0.1520
0.1300
0.1450
0.1520

3p
3p
3p
ip
3p
3p

'Pi
3p
3p
3p
ip

baryon
baryon
baryon

1.747(23)
1.759(22)
1.712(19)
1.760(21)
1.313(25)
1.322(74)
1.278(35)
1.210(37)
1.05(3)
0.96(3)
1.03(7)
0.88(4)
2.56(2)
1.79(4)
1.28(4)

3 I I ~

I
~ ~ I

(a)

) IIII 2—

I I ~

I
~ I ~ I

(b)
I I I
I

~ ~ ~

are at 1.18(10) and 1.93(20), respectively. The proton
mass at a, from our S-wave wave-function
study [2] is am (N) =0.55(1), and so we have
m( P2)/m(N)=1. 70(6), m('P, )/m (N)=1.33(8), and
m(N( —,'))/m(N)=1. 94(8), and the ratios of the D wave-
meson and baryon to the nucleon mass are 2.14(18) and
3.5(4), respectively.

Experimental data corresponding to these states are
m(az)/m(N)=1. 40 or m(f2)/m(N)=1. 35, m(bl)/
m (N)=1.31, m(N(1675))/m(N)=1. 78, m(p3(1690))/
m (N) = 1.80, and m (N(2220) )/m (N) =2.36. The P-
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meson
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wave masses look qualitatively correct, but the D-wave
states (from which the extrapolation in ~ is enormous) are
too high.

As another comparison with experiment, we can try to
predict the mass of the D-wave states in charmonium. To
do this, we must extrapolate in ~ from our ~=0.1300
data point to the charm mass. We also need a value for
the lattice spacing a, which could vary by 30%%uo at this P
value, depending on how it is chosen. We determine ~
and a by taking lattice determinations of the P2 and S&

states at ~=0.130, 0.145, and 0.152 and extrapolating
their masses linearly in a.. (We use the data of Ref. [16]
for the v=0. 1300 vector meson. ) We determine the lat-
tice spacing by fitting the extrapolated masses to the
t(t(3095) and y(3555) masses. This gives a charm hop-
ping parameter of ~=0.1224 and an inverse lattice spac-
ing of 1/a =1790 MeV. (Note that determining the lat-
tice spacing from our proton-mass data would give
1/a =1710 MeV; from the p meson, 1/a =2264 MeV. )

The extrapolated common D-meson mass is then 3.99(16)
MeV, where the error is only from the extrapolation.
The D, cc state is at 3.77 GeV, but its mass is inAuenced

by the nearby DD threshold. Model calculations [17] of
D-wave states (some of which are narrow since their de-
cays to DD are forbidden) give masses of 3.81—3.84 GeV.
At this value of the lattice spacing, our Pz-'Po mass
splitting at ~=0.1300 is 63 MeV; in charmonium, the
corresponding number is 145 MeV.
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FIG. 13. Spectroscopy of D-wave mesons and baryons: (a)
meson effective masses, (b) meson fits to a range, (c) baryon
effective masses, and (d) baryon fits to a range. The two bands
(in order of increasing mass) correspond to ~=0.145 and 0.130.
In each meson group, the 'D2 state is labeled by a cross, the 'Di
state by an octagon, the 'D, state by a square, and the 'D3 state

by a diamond. For baryons, the cross labels the D, /2 state, by
octagon the D»2 state, and the square the D7/2 state.

FIG. 14. Masses of P- and D-wave hadrons as a function of
hopping parameter. Diamonds labels P2 mesons, squares Pi,
octagons 'Po, and crosses 'Pl. P-wave baryons are labeled with
a fancy cross, D-wave mesons with a fancy square, and D-wave
baryons with a burst.
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V. CONCLUSIONS

In retrospect, many aspects of the project could have
been done better. We should have completely recon-
structed the spin structure of all the different states. We
should have recorded wave functions for all time slices
and not just for big t's. Then we could have used the
wave functions we determined in Sec. III as the input for
t)'j„„(r)for spectroscopy calculations.

It is clear that this program could be carried to arbi-
trarily high angular momentum states. To do so will

probably require very high statistics, a more fine-grained
lattice (since the lobe structure of the angular part of the
wave function becomes more pronounced), and a larger
simulation volume, since the size of the wave function
grows with angular momentum.

Note that the uncertainties on the P-wave masses fell

by about a factor of 2 when the data set increased from

20 to 80 lattices. This suggests that the calculations of
P-wave meson masses are almost certainly limited only by
statistics. Meson P-wave spectroscopy still needs to im-
prove its uncertainties by another factor of 2—4 before it
can begin to make a serious comparison with experimen-
tal data, but we believe that this would be an easy thing
for any large-scale spectroscopy simulation to do. A reli-
able method for identifying specific baryon states remains
to be demonstrated.

ACKNOWLEDGMENTS

We would like to thank C. Liu for providing us with a
copy of his matrix inverter. The computations described
in this work were carried out at the Pittsburgh Super-
computing Center. The work was supported by the U.S.
Department of Energy.

[I]T. DeGrand and M. Hecht, Phys. Lett. B 275, 435 (1992).
[2] M. W. Hecht and T. DeGrand, Phys. Rev. D 46, 2155

(1992)~

[3] B.Thacker and G. P. Lepage, Phys. Rev. D 43, 196 (1991).
[4] P. Bacilieri et al. , Phys. Lett. B 214, 115 (1988); Nucl.

Phys. B317, 509 (1989).
[5] S. Cabasino et al. , Phys. Lett. B 258, 195 (1991).
[6] A. El-Khadra, G. Hockney, A. Kronfeld, and P. Macken-

zie, Phys. Rev. Lett. 69, 729 (1992); P. Mackenzie, in Lat-
tice 'N, Proceedings of the International Symposium on
Lattice Field Theory, Tsukuba, Japan, 1991,edited by M.
Fukugita, Y. Iwasaki, M. Okawa, and A. Ukawa [Nucl.
Phys. (Proc. Suppl. ) 26, 369 (1992)];ibid , p. 372..

[7] See G. P. Lepage, in From Actions to Answers, Proceedings
of the 1989 Theoretical Advanced Summer Institute on
Particle Physics, Boulder, Colorado, 1989, edited by T.
DeGrand and D. Toussaint (World Scientific, Singapore,
1990).

[8] J. Kokkedee, The Quark Model (Benjamin, New York,
1969).

[9] Wave functions computed in a smooth gauge were first in-

troduced by B. Velikson and D. Weingarten, Nucl. Phys.
B249, 433 (1985), and by S. Gottlieb, in Advances in Lat-
tice Gauge Theory, edited by D. Duke and J. Owens
(World Scientific, Singapore, 1985). Other recent uses, for
heavy-light-quark systems are described by E. Eichten, in
Lattice '90, Proceedings of the International Symposium,
Tallahassee, Florida, 1990, edited by U. Heller, A. Ken-

nedy, and S. Sanielevici [Nucl. Phys. (Proc. Suppl. ) 20, 475
(1991)];and C. Bernard, J. Labrenz, and A. Soni, ibid , p. .
488. A gauge-invariant formalism has been described by
M.-C. Chu, M. Lassia, and J. W. Negele, Nucl. Phys.
B360, 31 (1991).

[10]F. Brown and T. Woch, Phys. Rev. Lett. 58, 2394 (1987);
M. Creutz, Phys. Rev. D 36, 55 (1987). For a review, see
S. Adler, in Lattice '88, Proceedings of the International
Symposium on Lattice Field Theory, Batavia, Illinois,
1988, edited by A. Kronfeld and P. Mackenzie [Nucl.
Phys. B (Proc. Suppl. ) 9, 437 (1989)].

[11]A. Kennedy and B. Pendleton, Phys. Lett. 156B, 393
(1985).

[12]J. E. Mandula and M. C. Ogilvie, Phys. Lett. B 248, 156
(1990).

[13]C. Liu, in Lattice '90 [9],p. 149.
[14] For a good introduction to error analysis, see D. Tous-

saint, in From Actions to Answers [7].
[15]K. Bitar et al. , Phys. Rev. Lett. 65, 2106 (1990); Phys.

Rev. D 42, 3794 (1990).
[16]T. DeGrand and R. Loft, Phys. Rev. D 39, 2678 (1989).
[17]Compare E. Eichten et al. , Phys. Rev. D 21, 203 (1980)

(3.81 GeV); W. Buchmuller and S.-H. Tye. ibid. 24, 132
(1981) (3.81 GeV); W. Kwong, J. Rosner, and C. Quigg,
Annu. Rev. Nucl. Part. Sci. 37, 325 (1987), quote
m('D, )=3.81 GeV, m('D3)=3. 84 GeV, and
m('D2)=3. 82 GeV from the model of P. Moxhay and J.
Rosner, Phys. Rev. D 28, 1132 (1983).








