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Chiral perturbation theory for SU(3) breaking in hery-meson systems
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The SU(3)-breaking efFects due to light-quark masses on heavy-meson masses, decay constants
(F/7 FD ), and the form factor for semileptonic B —+ Di' tv~ transitions are formulated in chiral
perturbation theory, using a heavy-meson efFective Lagrangian and expanding in inverse powers of
the heavy-meson mass. To leading order in this expansion, the leading chiral logarithms and the
required counterterms are determined. At this level, a nonanalytic correction to the mass splittings
of O(p ) appears, similar to the one found in light baryons. The correction to Frp, /F~ is roughly
estimated to be of the order of 10% and, therefore, experimentally accessible, while the correction
to the form factor is likely to be substantially smaller. We explicitly check that the heavy-quark
symmetry is preserved by the chiral loops.

PACS number(s): 11.30.Rd, 11.30.Hv, 13.20.—v, 14.40.Jz

I. INTRODUCTION

In addition to their intrinsic significance for the study
of electroweak interactions (quark mixing, rare decays,
CP violation), heavy hadrons containing a single heavy
quark c or b might also prove to be a useful tool for unveil-
ing new aspects of the strong interactions. The reason for
this is the large approximate symmetry available in these
systems, which constrains the /CD dynamics and, there-
fore, substantially simplifies their study. As the mass mq
of the heavy quark becomes much larger than the char-
acteristic @CD scale (say, m~), in all strong-interaction
processes where the relevant scale of momenta is much
smaller than the heavy-quark mass, the heavy quark ap-
proximately behaves as a static color source in the rest
frame of the hadron, with its spin dynamically decou-
pled. In this limit, the velocity of the heavy quark and
its spin become conserved observables. This results in
a superselection rule for the velocity [1,2], and a spin-
flavor symmetry [the Isgur-Wise (IW) symmetry] [3, 4]
which enjoys all bonafide properties of an internal sym-
metry. In addition, the light-quark degrees of freedom
in the heavy hadron carry information about the chiral
SUr, (3)xSUR(3) symmetry of /CD. In particular, chi-
ral symmetry dictates the form of the couplings between
the heavy mesons and the Goldstone bosons (z, K, ri)
resulting from the Nambu-Goldstone nature of its real-
ization (see, for instance, [5]).

The corrections to the symmetry limit are naturally
obtained by expanding in powers of 1/mg (more pre-
cisely in the present context, in powers of 1/MH, where
MH is the heavy hadron mass) and by treating the light-
quark masses, which explicitly break chiral invariance, as
a perturbation. The expansion in powers of 1/M~ has
the virtue of enabling a systematic chiral expansion at
each order in 1/MH, where the chirsl power counting is
in correspondence with an expansion in loops [6], sim-
ilarly to chiral perturbation theory in light mesons [7].
This only applies to processes involving only one heavy

hadron, otherwise, infrared divergences modify the naive
chiral counting [8].

SU(3)-breaking effects induced by the light-quark
masses are inherently of low-energy character, and there-
fore, suited to a systematic study within the chiral ex-
pansion. Recently, various groups [9—ll] have initiated
this field, in which interesting theoretical results are ex-
pected to emerge. At present, SU(3) breaking is only
observed through the mass splittings in D, D', and 8
mesons and in charmed baryons. In the future, one also
expects observation through other quantities (e.g. , de-
cay constants). This requires, however, substantial im-
provement in strange D meson measurements. As for
the decay constants, at present only an upper bound ex-
ists for nonstrange D mesons: F~ & 200 MeV (F = 93
MeV). For 8 mesons, observation of SU(3) breaking in
form factors (e.g. , in B~,) -+ Dlv decays) could only be
achieved in a 8-meson factory. The corrections to Be-
8 and 8;8, mixing are also of great interest, and have
recently been analyzed [10]. Applications in connection
with lattice /CD simulations of heavy-light systems can
also be envisaged. For instance, finite-volume effects in
the continuum limit, of relevance in this context, can be
unambiguously determined using the chiral expansion [5].

The predictive power of the chiral expansion is lim-
ited by the counterterms which must be added at each
stage. The counterterms are ordered according to chi-
ral power counting and are required as subtractions to
UV-divergent chiral loops. To overcome this drawback,
a sufficient number of measured observables is needed as
input. While this is possible in light mesons, it is not yet
clear that it can be achieved in heavy mesons.

In this paper, we study the SU(3)-breaking correc-
tions, in the limit of infinite heavy-quark mass, to the
ratio of decay constants F~./FH„, (H denotes a heavy
meson), mass splittings, and the Isgur-Wise form fac-
tor associated with the charged current in the transi-
tions Bo —+ D and B, —+ D, . The chiral logarithms
and their associated counterterms are determined to one-
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chiral-loop order. The presence of nonanalytic contribu-
tions in the light-quark masses (oc mq~ ) to the mass
splittings is noticed.

II. EFFECTIVE THEORY

Lu(x) = u'(x) h, Rui(x) = u'i(x) h. (2)

In what follows we will use the exponential parametriza-
tion for u(x):

u(x) = exp
~

—i.
ir (x)A'&

2Fp ) '

where the Goldstone fields sr~(x) are real and identi-
fied with the light pseudoscalar octet (7r, K, il), Fq 93
MeV is the pion decay constant in the chiral limit, and
the Gell-Mann Hermitian matrices are normalized by
Tr(A A ) = 2b'"

In order to build the effective Lagrangian invariant un-
der chiral rotations, one needs to introduce a covariant
derivative under the transformation law (1). Using the
transformation properties of u(x) implied by (2), the ex-
plicit form of the covariant derivative is given by

In this section, we discuss in detail a formulation of an
effective theory for heavy (D, B) mesons coupled to the
Goldstone bosons of spontaneously broken chiral sym-
metry. In this formulation, SU(3)-breaking effects can
be consistently studied in a chiral-loop expansion. This
is made possible by simultaneously performing an expan-
sion in powers of the inverse of the heavy-meson mass.

The form of the interactions between Goldstone bosons
and heavy mesons containing a heavy antiquark and a
light quark are determined by the transformation prop-
erties of the heavy-meson wave functions under chiral
SUI, (3)x SUR(3). The transformation law is easily found
by the method of Coleman, Wess, and Zumino [12]. In
our case, pseudoscalar and vector heavy mesons appear
in triplets under flavor SU(3), and this fixes the trans-
formation law under an arbitrary chiral transformation
g = I 8 R to have the following form:

g:H=hH,
where H denotes the heavy-meson wave function and h is
a 3 x 3 SU(3) matrix which depends on the octet of Gold-
stone excitations. Although the explicit form of h will not
be needed, it can be determined in the following manner:
one defines a 3 x 3 SU(3) matrix U(x) parametrized by
the classical Goldstone fields, and whose transformation
law is given by g: U(x) = L U(x) Rt, where on the right-
hand side ordinary matrix multiplication is meant. By
means of u(x) = QU(x), one can determine h in such a
way that (1) is a realization of the chiral group. The de-
pendence of h on the Goldstone excitations results from
solving the following system of equations:

Besides the covariant derivative, the following Hermitian
pseudovector must also be considered:

(uOp u —u B~u)P

whose transformation law under a chiral rotation is given
by g: wp = hldph

Having established the chiral transformation proper-
ties for the heavy mesons, we now turn to the impor-
tant aspects connected with the large mass of the heavy
quark. As the mass of the heavy quark tends to infin-

ity, the @CD Lagrangian becomes invariant under a new
global symmetry (IW symmetry) [3], which, in the case
of a single heavy quark, corresponds to the operation
of independently rotating the spins of the heavy quark
and antiquark. This becomes an internal symmetry of
@CD, which, for Ng heavy quarks is SU(2', ) xSU(2N~)
with one factor referring to quarks and the other to anti-
quarks, as these two sectors become independent in the
infinite-mass limit. The lowest-lying pseudoscalar and
vector heavy mesons, relevant to this work, belong to
a multiplet under the IW symmetry, and must there-
fore be treated together. Their masses are equal, up to
symmetry-breaking corrections of hyper6ne origin equal
to A /mq (A is a typical /CD scale, in this specific
case A ~ m~ jv 2), and their transition amplitudes be-
come related. For all amplitudes where the relevant
scale is A, the heavy-quark velocity is conserved. These
conservation laws obviously extend to the heavy-meson
Goldstone-boson interactions relevant in the present con-
text. For this reason, it is convenient to consider as the
starting point the effective /CD theory for the heavy-
quark sector, defined in terms of heavy quarks and an-
tiquarks separately (i.e., in the efFective theory no vir-
tual loops of heavy quarks are required) for each four-
velocity v„[2]. The corresponding effective theory for
the heavy (anti)mesons is obtained in a similar way, by
defining nonrelativistic fields for mesons (Qq) and an-
timesons (qQ) for a given four-velocity v„as follows:

H~+&(x) = gMH e' ""* @ (x),
H& 1(x)=/M e-M "*e'(x),

where 4+ (x) are the positive- and negative-frequency
components of the relativistic meson field 4(x) and MH
is the heavy-meson mass. Since the meson and antime-
son sectors become independent, we will only work with

mesons, and the field H„+ (x), which annihilates heavy
mesons with velocity v„, will be simply denoted by H(x).

For heavy mesons, the IW symmetry is elegantly imple-
mented by merging the pseudoscalar and vector rnesons
into a multiplet using Dirac matrices as follows [13,14]:

&(x) = [ »H(x) + &~H-" (*)]
1+/

V„H = (a„+ir„)H,

I IJ.,
= I p

= —(uBpu + u Opu).

(4)

where the vector 6eld H" satis6es the constraint v&H" =
0. The 6eld conjugated to Q which will create heavy
mesons is defined by 'R = po'Rico. Under chiral rotations
'H transforms as indicated in (1), and under the heavy-
quark symmetry rotations its transformation law is the
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following:

where e", , i = 1,2, 3 are normalized spacelike vectors
orthogonal to v„.

Since the definition (6) corresponds in the rest frame of
the meson to the subtraction of the rest mass energy, the
operator —ior„acting on '8 gives the residual momentum.
In particular, for the purposes of the chiral expansion,
this residual momentum will count as a quantity of O(p).
Similarly, B„u is of O(p) and, therefore, the covariant
derivative only contains terms of O(p) as is also the case
for ~„.

It is now straightforward to write down the lowest-
order efFective Lagrangian, in both chiral and 1/mq ex-
pansions, which is invariant under chiral and IW transfor-
mations as well as under parity and charge conjugation.
This Lagrangian is of O(p) and reads as follows:

(Rv~x }P

1+—g Trodi ( 8 ld 8 py, '7s }) (9)

where Tr~ denotes the trace over Dirac indices. The
first term contains the kinetic energy and interactions
of the heavy mesons with an even number of Goldstone
bosons and no change in the spin of the heavy meson.
This term is universal and automatically satisfies the IW
symmetry. The second term gives rise to virtual transi-
tions H' + mar ~ H + n7r and H' + mar ~ H' + nn.

with (n+ m) odd. The IW symmetry imposes that the
strength of both types of transitions must be equal. The
corresponding dimensionless coupling constant g could be
determined from the decay D'+ -+ D + vr; unfortunately,
at present, only an upper bound on the D*+ width is
available, resulting in g2 & 4.8. One may take as a rough
estimate for gz the corresponding coupling constant in
the K-meson system: glzz. ~ ——0.46. The quark model
result is gz 0.3 [15],while the @CD sum rules give the
substantially smaller value gz 0.08 [16].

Notice that 2&i& does not contain the heavy-meson
masses. This is the key point in the implementation of
the power counting of the low-energy expansion as a loop
expansion [6]. The Feynman rules are straightforward
to derive and the propagators for the heavy mesons are
given by

2&Hp=
2p 'U + iE

(10)

gpv ( )
~ (g u ~ )

2p v+ie
where p„ is the residual momentum. The use of these
propagators in chiral loop integrals is justified, since the
physical cutofF for such integrals is A 1 GeV (actu-
ally, since in the effective theory we integrate out reso-
nances, e.g. Dq, the cutoff should be smaller than the
mass 'difference between the resonances and the stable
states). The implied change in the UV degree of diver-
gence of the integrals, which occurs at a scale of momenta

of the order of the heavy-meson mass, is therefore irrel-
evant. In calculating the chiral loops it is convenient to
use dimensional regularization, as it preserves chiral in-
variance. Having eliminated the heavy-meson mass, only
low-energy scales appear in the loops, thus furnishing the
chiral power counting as in the case of light mesons [7).

The most noticeable efFect of SU(3) breaking by the
quark masses is in the masses of the heavy mesons. The
leading contribution to the intramultiplet mass splittings
is linear in the light-quark masses [which in chiral power
counting are of O(p )] and can be described by adding
the following O(p2) term to the efFective Lagrangian:

where M = diag( m„, mg, m, ) is the light-quark mass
matrix [17]. The SU(3) singlet term has been omit-
ted as it is of no interest for our purposes. Under
the assumption that higher-order chiral corrections are
small (more on this in the next section) and neglect-
ing them, C is estimated from M~, —M~+ and M~, —
M&0 and the results are C~ = 99.5 + 0.6 MeV/(m, —
me), Cg = (82 + 2.5; 121 6 10) MeV/(m, —mg). For
Mgy, —Mgo we use the two values quoted as consis-
tent with present data [18]. Establishing this measure-
ment would provide an estimate of the 1/mg corrections
by comparison of CD with C~. Notice that C~ 225
MeV/(m, —mg), as obtained from isospin breaking in the
kaon masses and using the ratio R = (m, —m, )/(mg —m„)
[ m = (m„+ mg)/2 ], which is substantially larger than
in heavy mesons. An analysis of isospin breaking efFects
within the linear approximation has been recently done
[19]. The leading corrections to the linear approximation
are nonanalytic in the light-quark masses ms~z, and
they turn out to be proportional to gz, as we will show
in next section. The possibility that these corrections
turn out to be important is not yet excluded.

III. DECAY CONSTANTS AND MASSES

+H.c. (12)

Clearly the sources defined here in momentum represen-
tation will only carry residual momentum and, therefore,

In heavy mesons, as in light mesons, the leading SU(3)-
breaking correction to decay constants is proportional
to the light-quark masses multiplied by a nonanalytic
factor, the chiral logarithm, which emerges due to the IR
behavior of the one-chiral-loop integrals.

The decay constants are defined in terms of matrix
elements of the vector and axial-vector currents V„' =
Qp„q' and A'„= Qp„psq' between one meson state and
the vacuum. In the effective theory, these currents are
defined by introducing vector {v„)and pseudovector (a„)
external sources which are triplets under SU(3). These
sources couple to the mesons at lowest chiral order [O(p)]
according to the following effective Lagrangian:

d l„,= —f Tr~ ((vt + a~ ps)

xp„(u+ ut) + ps(u —ut) '8}
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they count as quantities of O(p). f is defined in the
mg —+ oo and chiral limits and related to the usual ex-
pressions for the decay constants of the pseudoscalar and
heavy mesons in that limit by

The corresponding Fourier transforms, which are func-
tions of the residual momentum p„, are given in the limit
p v ~ 0 by the following general expressions:

F =f/gM, F .=f/M (i3) gg + l6

(i4)

The leading SU(3)-breaking corrections to the ra-
tios of decay constants and the leading nonana-
lytic (in the light-quark masses) corrections to the
mass difFerences are determined by calculating the
two polarizations II„„'~(x)= (0 ] TA„'(x)A~(0) ] 0) and

II&„'~(x) = (0
~
TV&(x)V~ (0) ] 0) to one-loop order. At

long Euclidean distances, the lowest-lying pseudoscalar
and vector heavy-meson poles, respectively, saturate the
two-point functions. These pole contributions are given
in the effective theory by replacing the currents by the ef-
fective currents derived from the source Lagrangian (12).

The diagrams contributing to one-chiral-loop order are
shown in Fig. 1. Since these contributions are UV diver-
gent, counterterms are required. It turns out that one
only needs to add counterterms which correct the effec-
tive currents and which are of O(ps). Since, as expected,
the chiral loops turn out to preserve the heavy-quark
symmetry, the counterterms must be invariant under this
symmetry as well. The counterterm effective Lagrangian
contains three low-energy constants, and is given by

2, „„,= 2Bp 2 (I'i TrD ((v„+a„ps) p" (UMu+ U Mu ) + ps(UMu —U Muf) 'R)

+r T ((vt+at~) ~" (Wu+uut)+~s(mut —uu) X&

+r, T(~Ut+~tU)Tr ((vt+a p)p" ( + t)+p ( — ) 'H))+Hc. ,

where Bp = (qq)pjFp2 is defined in the chiral limit [Mz =
Bp(rn„+ mg), etc.].

We calculate the loops using dimensional regulariza-
tion, in which it is convenient to write: I'~ = I'"(p,) +
I'~A(p) (j = 1,2, 3), where p is the chiral renormaliza-
tion scale, I'"(p) the renormalized effective coupling, and

A(p) contains the singularity at d = 4 and is given by

A ()u) = zp, "~ + —[1n4z+I"(I)+1] ~.
1 4 „( 1 1

16irz ( d —4 2

(16)

rI
1

lger

I

The following choice leads to an UV finite result for the
polarizations:

I, +I', = —(1+3g ), I' = (1+3g ).24 144

For the sake of convenience we define: I'iz(p) =—I'i (p) +
I'2(u)

We first consider II+„'~. One-loop contributions from

Z~il and Zsi~I2«, and a tree-level insertion of Z&M must
be included, as shown in Fig. 1(a). The calculation is
straightforward, and leads to the following results for the
pseudoscalar decay constants in the SU(2) limit:

FH„, ——FH 1 —
2 3P„+2@K+3P„

(i+ 3g2i

1

IXOWC
g

IMAIIK XVVt-' MAX

+ z
I'",~(p) 2M

+ 2 I'q(p) (2MR+M~)),

FIG. l. One-loop contributions to the polsrizst&one (s)
II„„'2 snd (b) II„„'2.The solid lines correspond to the heavy
pseudoscalar, the wavy line to the heavy vector, and the
dashed line to the Goldstone bosons. The square dot rep-
resents the insertion of ZzM. Diagrams not explicitly shown
vanish identically.

FH, = FH 1 F2 4@K + 3lwg
f 1 + 3g') 4

E 8Fp

+ I'i2()u) (2M —M )F2

+ ~ I'((p) (2M~+M )I,F2

where the chiral logarithms are given by
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I'" (p,) (M —M ) (2o)

This result, which coincides with that of Ref. [10], im-
plies that the decay constant grows with the mass of the
light quark in the chiral limit, as also occurs in light
mesons. In the case of light mesons, the correction to
F~/F is entirely contained in the chiral logarithm term
if one takes p, 1.5 GeV [7]. If a similar situation is
assumed to hold in the case of the heavy mesons, one
obtains (FH, /F~„, ) —1 0.13 (1+3g2) (clearly, this
should only be taken as a rough estimate of the size of the
effect). A correction of this size should be experimentally
accessible in the future in leptonic D-meson decays. A
similar direct test is not available for B mesons because
8, is neutral.

The mass shifts 6M; receive an O(pz) contribution
from the insertion of K&M, and a nonanalytic contribu-
tion in the quark masses of O(ps) from the loop diagram
proportional to gz. The latter is similar to the nonan-
alytic contribution to the mass splittings in the baryon
octet identified long ago [20]. The nonanalyticity here,
as in the case of the chiral logarithms, is a long distance
effect due to the IR behavior of the chiral-loop integral.
Since local counterterms must be analytic in the quark
masses, these nonanalytic corrections are unambiguous,
as one would expect from their long distance nature (for
details, see [21]). It is interesting to note that they do
not depend on the fact that we are using the leading term
in the 1/mq expansion within the loop integral; exactly
the same result is obtained by doing the loop integral in
the relativistic theory, and expanding the result. In the
SU(2) limit, we obtain the following expression for the
mass splitting:

6M~, —6M~„„~qcD = C(m, —m)
32

[ 3M~ + 2M' + Mq])
7l 0

m = m„= mg. (21)

1 M~y~=MP ln
16m p,

From these expressions one easily finds the SU(3)-
breaking corrections to the ratio F~./FH, .

I
[-3p-+ 2p~+ p. l

(1+3g'iE, g SF,'

(10) because chiral invariance demands that only SU(3)
singlet redefinitions of the form (6) are admissible. Thus,
SU(3) breaking implies that propagators will in general
contain an O(p ) residual mass. (b) The propagator of
the heavy meson in the chiral loop could have been taken
with the O(p ) corrections given by the insertion of K&M.
This however only produces a correction of O(p4) while it
does not affect the leading nonanalytic term. (c) Clearly,
some corrections step by one unit in the chiral power
counting, making predictions more difficult as they are
only suppressed by a factor M~/4~Fs which is not
much smaller than one. For instance, it could well occur
that a large leading nonanalytic term such as that in (21)
becomes partly compensated by a term of O(p4). In this
particular case, an estimate of the O(p4) chiral logarithm
shows that its contribution will be small if one chooses
p, = O(1 GeV), however, the O(p4) counterterm could
eventually lead to the mentioned compensation. If gz
turns out to be substantially larger than 0.06, one would
then have an indication for such a compensation.

The relevant one-loop contributions to II&v„'&(p) are
shown in Fig. 1(b), and determine the corrections to
the masses and decay constants of the vector mesons.
Explicit calculation shows that the heavy-quark symme-
try is preserved, as seen in particular by the relation
F~. = FHM~, which still holds after the chiral-loop
corrections are included.

One might wonder about the precision of the chiral-
loop corrections in the heavy-quark limit when applied
to D and B mesons. Calculations of F~ and F~ in
lattice /CD [22) and /CD sum rules [23] have shown
that the 1/pm' scaling characteristic of the heavy-quark
limit is not present. On the other hand, there is clear
evidence that the scaling violation mainly stems from
spin independent effects, and therefore the heavy-quark-
symmetry-breaking effects on the ratio (FH. /F&)M~
are small: (~ 10%) for the B mesons [24] and some-
what larger for D mesons (~ 20%). Analogously, the
deviation from unity of the ratio of effective couplings
gHH. ~/gH. ~. is expected to be small, since it is also
of hyperfine origin. This deviation and the vector-
pseudoscalar mass splitting are the main source of depar-
ture of the chiral corrections from the mq ~ ao limit.
We then expect that for D and B mesons their departure
from this limit will be small (this involves the reasonable
assumption that also the 1/mq corrections to the coun-
terterms will be small).

Notice that the nonanalytic term has the opposite sign
from the leading term and gives a large contribution, un-
less the e8ective coupling g2 is very small. For instance,
for its contribution to be less than 20%, gz ( 0.06 is
required. For this reason, it is important at some point
to determine this coupling constant with a good degree
of confidence, since, among other effects, it could lead
to sizeable corrections to the linear approximation nor-
mally used in the analysis of isospin breaking in heavy
mesons. In particular, CD ~ will become closer to C~. A
few remarks are in order here. (a) Due to SU(3) break-
ing the propagators cannot be brought back to the form

IV. B ~ D FORM FACTOR

In the infinite mass limit, the heavy-quark symmetry—(+)permits one to determine the amplitudes for B ~ D
transitions mediated by the charged currents ey&(ps)b
in terms of a single real form factor ((v v') [3], where v
(v') is the four-velocity of the b (c) quark. At the van-
ishing recoil point, ( satisfies the normalization condition
((v . v' = 1) = 1.

In this section, we will determine the form of the lead-
ing SU(3)-breaking corrections to this form factor. To
leading order in the chiral and 1/mq expansions the ef-
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fective charged currents are obtained Rom the following
source Lagrangian:

l:(q, ——((v) TrLi (V8 (V" +A"ps) p„}+H.c.,

for the form factor is as follows:

(*&(v) =((v) [4+~'~(v)j

where u, ~ (v) is given by the following expression:

(24)

where 'D and 8 are the expressions analogous to (7) for
D and B mesons, respectively, v = v v', and V" and
A" are SU(3) singlet sources. In particular, (22) shows
that the effective currents do not couple to the Goldstone
modes at lowest chiral order.

The chiral corrections to the matrix element (D~
cy„b

~
B,) are calculated by considering the three-point

function

IIv„'„~(*,y) = (0 [ T o7pb(0) q, p„psc(y) g„psq, (x)
~
0).

In the efFective meson theory, the corresponding three-
point function in the residual momentum representation
and in the limit p v p' v' 0, where p& (p&) is the
residual momentum associated with the B (D) meson
propagator, has the following form:

FB,F~v„v'gv. + v') p (,~ (v)
B D

2
X

2 (p v —6M~) 2 (p' v' —bM~)

To one-chiral-loop order, the diagram in Fig. 2(a) gives
the correction to the IW form factor, after properly tak-
ing into account wave-function renormalization (the lat-
ter naturally emerges when explicitly calculating all one-
loop diagrams for the three-point function). The result

I

A(v) A,~ + counterterm,
8

) (A)~ M A+ —p,,
gz[—1+ (2+ v) A(v) + B(v)],

v+1+ v'v —I I

I v+1 —v v —I)
v (v —qvz —I&

ln4/v' —1 (v+ v'v' —I)
'

A(v) =

A(v) = ln
1

2 v —1

B(v) =

(25)

Clearly, h, ,~ is diagonal. Expanding at zero recoil (v =
1), the first few terms are as follows:

2
n(v) = g'~ —-(v —1) + —(v —1)'

15

2——(v-1) +" l.
r35

As expected from the fact that the effective vector cur-
rent is conserved at leading order in I/mg as a conse-

quence of the IW symmetry (more specifically, the part
of the symmetry which corresponds to the fiavor rotation
between c and b quarks), the corrections vanish at zero
recoil. The counterterms needed to render results UV
finite only affect the definition of the effective current.
They are of O(pz) and given by

, ——2Bp ((v) z ( rli(v) Try) (17(uMu+ utMut)8(V~+ A„ps)p"}

+rjz(v) Tr(MUt + PlU) Tr~ ('D 8 (V„+A„ps)p"}), (27)

where the following choice of effective couplings provides
a finite result for the three-point function:

5
ni(v) = ni(v V) ——~(V)6

11
nz(v) = nz(v I ) ——,8 ~(~)

(28)

+4ni(v;S) (Mk —M.') l. (29)

This result shows that for small quark masses the chi-

Notice that, in accordance with the normalization condi-
tion, the counterterms also have to vanish at zero recoil.

After replacing in cu,~ in (25) the contribution of the
counterterms, one finds the following SU(3)-breaking cor-
rection to the ratio of form factors:

(,(v) Q(v) f' 1 3

( () ='+ Fz ~ &~+2» —2&-

(b)

FIG. 2. One-loop correction to the form factor ((v v')
as determined from the three-point functions (a) ll~„'„'~ and

(b) Iip„*„'~. Diagrams that only contribute to decay constants,
masses, and wave-function renormalization are not displayed.
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ral logarithm tends to increase the value of (, with re-
spect to („g. This result seems to be counterintuitive;
one would expect that the heavier the light quark is the
faster the form factor will drop with increasing v. This
is certainly true for large enough light-quark mass. As
the chiral limit is approached, however, the behavior re-
verses. Such a behavior is known to occur, for instance,
in the quark-antiquark condensates, which near the chiral
limit increase with the quark mass, yet start decreasing
as the mass becomes large enough. Notice that the cor-
rection is algebraically of the same form as the one for the
ratio of decay constants. The explicit v dependence of
rliz indicates that the counterterm can change the profile
of the correction with respect to that given by A(v).

It is important to emphasize that the chiral-loop re-
sult (24) and (25) holds for any value of the recoil. The
behavior of A(v) is smooth, and for v -+ oo it tends to
—g . In particular, it applies to the whole Dalitz domain
of the semileptonic decays B ~ D l vi, and to nonleptonic
decays in the factorization limit (e.g. , Bc -+ D+rr and

B, ~ D,z ). At the largest available recoil v 1.8, we
have 0 —0.2 g2. Choosing values for p, between 1 and
1.5 GeV, the correction to the the ratio (29) contributed
by the chiral logarithms is —A(v) x (0.3 to 0.5). This
implies that even at the largest recoil this contribution
will be small, perhaps, only a few percent. Thus, unless
the counterterm contribution is surprisingly large, the
SU(3) breaking effects on the form factor will be in the
few percent range. Notice that the size of this correction
and the nonanalytic contributions to the mass splittings
are related, since both are proportional to gz.

As in the case of the decay constants, we explicitly
checked that the heavy-quark symmetry is preserved by
the chiral loops. This check was done by considering the
three-point function

II@„'„&(z,y) = (0
~

T o7&psb(0) qzp c(y) bp„q, (x)
~
0).

In this case, the corrections to the form factor are ob-
tained from the diagrams in Fig. 2(b).

Finally, SU(3) breaking gives rise to direct couplings of
the Goldstone bosons to the effective currents, as shown

by the counterterm (27). They are proportional to the
light-quark masses, and therefore small and unlikely to
be of direct physical significance.

quark-mass-induced SU(3)-breaking corrections as are
the ones discussed in this work. Less clear is the acces-
sibility to the predictions of low-energy theorems for the
soft-meson emission in decays. At any rate, substantial
experimental improvement, especially in strange heavy
mesons, is required until effects beyond the mass split-
tings are accessible. As the predictive power of the chiral
expansion is limited by the need of introducing countert-
erms (as we saw in the cases of the decay constants and
the IW form factor), it is not clear that enough exper-
imental information will become available to reach the
stage of testing these limited predictions.

We expect that Fri, /FD, for which the SU(3)-breaking
correction might be of the order of 10—20 Fo, to be a first
candidate to be measured. The corrections to the IW
form factor will be much harder to observe, since this
will require large numbers of B, mesons, and the effect
itself might be very small. The situation could be im-
proved by considering some semi-inclusive decays where
the chiral expansion is well defined, for instance, channels
for which factorization holds to a good degree. The lead-
ing nonanalytic corrections to the mass splittings might
be large, depending on the value of g2, and could, there-
fore, affect analyses on isospin breaking done within the
linear approximation.

Lattice @CD simulations of heavy hadrons might also
be an interesting domain of application. For example,
chiral symmetry controls the finite-volume effects, which
are fully predictable for the unquenched theory. The
problem of determining the efFective couplings, like those

appearing in the counterterms 8,««, and 8&, might
~ ~ (3) (2)

well be first solved on the lattice by looking at the light-
quark-mass dependence of the observables we discussed.

Note added. After submission of this work for publica-
tion we became aware of a similar calculation of the chiral—(~)corrections to the B ~ D form factor in Ref. [25]. We
agree with their result for the chiral logarithms. They
do not consider the possible relevance of counterterms.
In particular, the counterterms can change the v depen-
dence of the correction from that predicted by the chiral
logarithm with a v-independent choice of the scale p„an
efFect that may be relevant for quark masses of the order
of m, .
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