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We investigate the possibility that the Higgs Lagrangian predicts the existence of a P-wave WL WL res-

onance. This problem is equivalent to studying the formation of the p meson by the dynamics contained

in the o. model. Using the Pade approximation, Basdevant and Lee had claimed that p is generated

dynamically. We show that their result, while computationally correct, is not significant, because of the

position of the Landau ghost. For the same reason, a WL WL P-wave resonance below 2 TeV is not ex-

pected, unless the standard model is violated.

PACS number(s): 14.80.Gt, 13.85.Qk, 14.40.Cs, 14.80.Er

I. INTRODUCTION

It is by now generally accepted that the gauge sector of
the standard model, based on the SU(2)C8IU(1) gauge
group, agrees extremely well with experiment. What is
not tested at all, in this very successful electroweak
theory, is the mechanism for breaking the symmetry
spontaneously. It is likely that the next major advance in
high-energy physics will come from discovering which
mechanism nature has chosen.

The Superconducting Super Collider (SSC) is being
built to study this symmetry breaking. The first item on
the agenda is the Higgs-boson search. The electroweak
theory, however, does not constrain the mass of the
Higgs boson. If this mass is below 800 GeV, the SSC
should be able to see the Higgs boson, but if the mass is
larger, direct detection will be impossible.

We ask, what is the best strategy for the SSC to study

symmetry breaking should the Higgs boson be too heavy

for straightforward detection as an S-wave resonance'?

For definiteness, we limit ourselves to the minimal

standard-model Higgs Lagrangian. We then look for pre-
dictions that can be experimentally checked.

Our starting point is the well-known isomorphism be-

tween the Higgs Lagrangian and the o. model. The longi-

tudinal components of 8"bosons correspond, in this iso-

morphism, to ~ mesons. The Higgs boson corresponds to
the o.. If the coupling of LH is as strong as that of L
the Higgs boson wil1 not be seen at all. After all, since o.

is so broad, there are serious doubts as to its existence as

a second-sheet pole of the ~m.-scattering amplitude. On
the other hand, nobody doubts the existence of the p.
Could it be that a P-wave resonance of the longitudinal

W's will be found instead of the Higgs boson itself? We
can try to answer this question by looking at the m.m. case
and investigating the nature of the p meson.

At this point the reader may wonder if all this is neces-
sary. The lattice analysis gives the bounds [I]

,(F4 &0.3%)&530+60 GeV,

mH;, (F4 &3.0%)&590+60 GeV,

where the first bound applies if one requires that the F4
lattice cutoff effect be no larger than 0.3%, whereas the
second bound is applicable if one tolerates a 3.0% cutoff
effect. These bounds imply that if the Higgs boson does
not satisfy them, then new physics (beyond the standard
model) is guaranteed at about this energy [2]. We note
that these bounds are too stringent: They correspond to
m & 204 (227) MeV. Experimentally, m does not satis-

fy them. Thus we conclude that L is not the fundamen-
tal theory which governs pion dynamics. Nevertheless,
L describes the pion physics below 300 MeV so well

that we do not learn anything about the new physics,
namely, QCD, from the low-energy experiments. In the
Higgs sector, we may be in the same situation. The
Higgs-boson mass could violate the bound. Yet no new

physics effect may show up in the energy region given by
the triviality bound —the relevance of the lattice pronun-
ciamento must be called into doubt on purely experimen-
tal grounds.

We expect that L is a low-energy effective theory of
QCD. But the region of its validity may be confined to a
very-low-energy region. Perturbatively, it cannot explain
mm dynamics in the energy region below 1 GeV. There is,
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namely, a P-wave resonance, the p particle, which is not
contained in the perturbative spectrum of the o. model.
There are two possibilities.

(1) Some nonperturbative dynamics contained in L
generates the p. One might guess, in this case, that J
can generate all observed phenomena in ~~ scattering, at
least until KK effects become significant.

(2) The existence of p in n.~ scattering is due to a rem-
nant of the underlying QCD dynamics; i.e., p is predom-
inantly a bound state of qq, and an effective Lagrangian
governing the dynamics of p has to be added separately
[31.

That is to say, if the dynamics required to bind the p
meson is already present in L (a low-energy effective
theory of QCD), then L& too should generate a P-wave
WW resonance, while the origin of L& does not need to
be specified. On the contrary, if p is mainly a qq bound
state not implicitly contained in L, QCD is required to
account for the properties of p. In this case, if it turns
out experimentally that there is a P-wave WW bound
state, we would have to conclude that physics beyond the
standard model is playing an essential role [4].

In this paper we shall investigate the possible existence
of resonances in the Higgs sector of the standard model.
The pion dynamics observed in nature, as well as past
theoretical studies of L, can be used to analyze the
Higgs-boson and W interactions when the coupling is
large —i.e., when the Higgs boson is heavy.

Twenty years ago, Basdevant and Lee [5] (BL) claimed
that the dynamics implied by L generates a resonance in
the P-wave amplitude. Using a Fade approximant, they
obtained

m =760 MeV,

I =35 MeV .

This result, if true, would imply that L&, when the Higgs
boson is heavy, generates a resonance in WW scattering.
Furthermore, it is likely to be narrow, and therefore it
would be easier to find than the Higgs boson itself. Its
existence would have a profound consequence for SSC ex-
periments. However, we shall show below that, while
this BL result can be reproduced numerically, it is an ar-
tifact of the Pade approximant.

Two years ago, Dawson and Willenbrock [6] (DW)
studied L& to the one-loop level. The renormalization
prescriptions of BL and DW are quite different. For ex-
ample, BL define A, at m, while DW define m~ on its
mass shell. As a check on our results, each computation
will be done independently in these two renormalization
schemes.

II. PRELIMINARIES

A. Higgs Lagrangian

It has been widely recognized that the Higgs Lagrang-
ian is isomorphic to the O(4) 0-model Lagrangian. For
completeness, we describe the isomorphism here.

The Higgs Lagrangian is written in terms of the SU(2)z
doublet

y
+

0

(()++ 0+

4'+ 0' (2)

The SU(2)U(1)-symmetry breaking is caused by the La-
grangian

L,~ =a„y'w4+,' (3)

A, vH—[a) co+H] ,'A, [co—a—)+H]

where we identified

(4)

The Higgs mass is m& =2k, U . Now note that if we make
the identification

Ci)~77, H ~ET,

L~ becomes the linear cr-model Lagrangian. In the o.

model, the ~'s are the pseudoscalar Nambu-Goldstone
bosons associated with chiral-symmetry breaking. When
P& acquires a vacuum expectation value, the gauge bosons
become massive and co turns into the longitudinal com-
ponents of the gauge boson. In L and L,~, the energy
scale is set by v. For L, u =f =93 MeV, the pion de-
cay constant. For L&, U =2 '

GF ' =246 GeV, where
GF is the Fermi coupling constant. Since v is the only en-
ergy scale appearing in the theory, the Higgs-boson mass
bound given in the Introduction can be translated into
the 0. mass bound by means of a scaling factor
f„(&2GF)'~ . Because of this isomorphism, it is clear
that both BL and DW actually computed one-loop
corrections to the same processes.

B. How good is the o model below 1 GeVP

The 0. model was introduced to study the consequences
of chiral symmetry and to translate the results of current
algebra into a field-theory language. While it should de-
scribe the physics of the m.m. interaction at low energy, its
validity at high energy is not guaranteed. This is particu-
larly true if the coupling A, is large, so that the usefulness
of the perturbative expansion is in question. BL have in-
troduced the Pade approximation of the partial-wave am-
plitudes to remedy the lack of convergence of the pertur-
bation series. They point out that the unitarity con-
straint is preserved in this approximation.

Before we go into the details of our computation, we
wish to show that the o. model, together with the Pade
approximation, gives a reasonably satisfactory descrip-
tion of the S-wave I =0 and 2 m.~ phase shifts below 1

GeV. Although the cr is no longer classified as a reso-
nance, the I =0 S-wave phase shift passes through m. /2 at
858 MeV. By choosing m~/v =

93 9.23, we can ensure
that the u-model result has an S-wave resonance at this
point. In Fig. 1 we show the experimental I =0 and 2 S-

This Lagrangian has an O(4) symmetry, as it is invariant
under a rotation among (p,+,pz+, pv, (()z). In terms of the
vacuum expectation value U,

L~= —,'8 cu 8"co+—,'B„H d"H —
A, u H
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1.0
S-wave phase shift

1
I

I—
cf

the Basedevant-Lee mass-independent subtraction
scheme. Understanding the precise difference is crucial
in cross-checking the results.

A. On-shell subtraction scheme

The loop contributions to the Higgs self-energy are
given by

kmH
A, II(s)= Q (x),

8~

where

(6)

0.0

and

S
2

mH

I

0.4 0.6
(GeV)

I

0.8
I

1.0

FIG. 1. o.-model computation of I =0 and 2 S-wave phase
shifts (solid lines) are compared with the available experimental
data [10]. The dotted line is an extrapolation of the experimen-
tal data to the threshold using the Roy equation [11].

Q2(x) =
—,
' [ln( —x)+3I (x)+6—n v'3] .

The integral I (x ) can be written
1I(x)= J dt in[1 xt(1 ——t)]

0
1/2

x —4 &4—x+&—x
ln —2.

X &4—x —&—x
(9)

wave phase shifts, up to 1 GeV [10] (dotted lines). The
corresponding output of the [1,1] Pade calculation is also
shown (solid lines}. For comparison purposes we chose
the parameters f =125 MeV and A. =5.63, the values
used by Basdevant and Lee [5], but very similar results
can be obtained by setting f =93 MeV. The agreement
of these phase shifts may be said to be reasonable up to
900 MeV, although our threshold behavior seems to be
different from that of the interpolation by Roy's equation
[11]. Above 0.9 GeV, the EK threshold opens up, and
the experimental phase shift shoots up through and
beyond 3n/2 [the fn(1400) resonance]. This is not ac-
counted for in the 0. model. With this discussion we con-
clude that the [1,1] Pade approximation to cr-model pre-
dictions at the one-loop level is reasonable trustworthy in
the energy region below about 1 GeV.

To first order in A, , the Higgs propagator is

Xll(s)
s —mH (s —mH)

(10)

Re[A H '(mH ) ]=0 . (12)

This expression has a second-order pole at s =mH, which
is not correct physically. The standard way out of this
difficulty is to sum an infinite number of bubbles:

1
b,H(s)=

s —mH —
A, II(s)

This function has the expected pair of conjugate simple
poles on secondary Riemann sheets. At s =mH, the real
part of this function vanishes and its imaginary part is
proportional to mH .

Note that the mass counterterm was introduced in the
Lagrangian so that

III. RENORMALIZATION SCHEMES

First, note that mH and A, are related by

2
mH

2U

B. Mass-independent subtraction scheme

The cr propagator given by BL is

D '(s) =s —M, —
A,II(s),

(5)
where

(13)

Thus, once one is renormalized, the value of the other
is predicted. In the on-shell (OS) subtraction scheme, the
physical-Higgs-boson mass, i.e., the position of the pole
of the propagator, is an input. In the mass-independent
(MI) subtraction scheme, one introduces a renormaliza-
tion constant for A, , defined at some energy scale p, such
that a simple P function can be obtained.

In this section we shall describe the Higgs propagator
in two subtraction schemes corresponding to (1) the
Dawson-Willenbrock on-shell subtraction scheme and (2)

II(s)=M, [9B (s)+3B (s)[, (14)

with

Bxy =BE—Bo

«i' (2 )4 2 2 (k p)2 2
(16)

Bo arises from the counterterms in the Lagrangian. If
one defines a divergent integral such as Eq. (16} by di-
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mensional regularization, one can set

1 1Bo=
16& ~

(17)

prescription to the other, we can check for the consisten-

cy of the two computational schemes.

IV. SECOND-ORDER RESULTS

With this choice, simple mass-independent renor-
malization-group equations can be derived.

BL in their work adopt the definition
'2

d 4p 1Bo=i
(2m) p —m

(18)

In our work we propose a slightly different regularization
prescription:

d4p 1Bo=I,B »~I 4

4 2 ~ 2(2n) p —p

'2

1 1 1——y+ln4~ + lnp,
16m2 8m

(19}

which reduces to Eq. (18) in the case p = m„. In this way
we obtain the same P function as in the usual renormal-
ization method (see Sec. V). We thus loosely call Eq. (19)
the mass-independent subtraction prescription.

C. Relationship between OS and MI subtraction schemes

We now discuss the relationship between the OS and
MI subtraction schemes. In the m =0 limit, BL ob-
tained

f =U 1+ ~MI

16m
(20)

1 2 3
IIM, (s)= M, . —ln

8m.

s +9I s
M 2 M

The self-energy can then be written in terms of
M, =2k,M&f „as

In terms of the Mandelstam variables s, t, and u, we
define the dimensionless quantities

s tX= 27 27 z—
mH mH

u
2 7

mH
(24)

with x +y +z =0. To order A., the 8'L+ 8'L ~ZI ZI am-

plitude is

Mo(A, ,x)= 2'
1 —x

(25)

We write the order A, contribution, in the on-shell for-
malism, in the form

2A, x
M, (A, ,x,y) = P(x,y, —x —y),

(1—x)
(26)

where, following the analysis of Dawson and Willenbrock
[6], we split up the function P into six terms:

6

P(x,y, z)=—,g Q; .
8m x;—

1

(27)

A. Higgs propagator and Pade approximation

Nate that the x in the denominator here is canceled by an
x in the numerator in Eq. (26). It is included to em-
phasize the fact that M&(A, ,x,y) tends to zero as x ~0 (in

fact, faster than x).
The Q's come, respectively, from the wave-function re-

normalization constant, the two-point function, the
three-point function, the bubble diagrams, the triangle di-
agrams, and the box diagrams: They correspond precise-
ly to the six terms in Eq. (2.31) of Ref. [6], and so we shall
not reproduce them here.

M,+ 12 ln
p 2

(21)
The contribution of the Higgs propagator to the

8'L, O'L, Zl ZL, amplitude is

Note that if we set
M= —2AmHbH(s) (28)

and, with use of Eq. (10) for the propagator M up to and
including k, is

2S
and M =m at p=m exps H H 8 24

2A, mHMo+M1=-
s mH

2A, mHII(s)

(s —mH }

we obtain

1 2 3
IIMq(s) = mH . —ln

8~
s +9I s

mH 2 mH
2 2

(22)
The bars indicate that these are not the full o.-model first-
and second-order terms, but only the propagator contri-
butions. The second-order term has a double pole. How-
ever, the [1,1) Pade approximant of this expression is

9m

2&3
(23) 1 —M1/Mo

and then IIM, coincides with II [see Eq. (6)): Thus Eq.
(22) gives the OS subtraction scheme in terms of the MI
subtraction scheme.

With this procedure to go from one renormalization

2A, m H

s —m' —all(s)
' (29)

which has a pair of simple poles and is, in fact, exactly
the same answer one would have obtained by substituting
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the infinite sum [Eq. (11)]into Eq. (28).
This is not the end of the story, since the full amplitude

to order k contains a contact term as well as the Higgs
propagator, giving

2A,mH
Mo = —2A,

s —mH

2A,s
s mH

2 (30}

The complete [1,1] Pade approximant can be written

M[1,1]
1 —M, /M

2A,s

s —mH + (s —mH ) M, /(2As)
(31)

where M, is the full second-order amplitude. This con-
tains M1, from the propagator, and so has a double pole,
but it also contains many other terms. Note that, if one
were to replace M1 here by M1, there would be problems
at s =0, since M1 is not zero at s =0; indeed, it diverges
logarithmically. This would lead to an amplitude behav-
ing like s /Ins at threshold, which is wrong. However,
the complete second-order amplitude M, behaves like
s lns as S~O, which means that the threshold behavior
of the Pade approximant [Eq. (31)] is the same as that of
the first-order contribution, namely, 2A,S/mH.

Dawson and Willenbrock [6] observed that M, has a
double pole at s =mH: They suggested the ad hoc re-
placement of the first two terms in the perturbation series
[Eq. (10)] by the infinite sum of bubbles [Eq. (11)], but
only when s is close to the Higgs-boson mass. The
difficulty is that use of Eq. (11) for small s values destroys
the threshold behavior 2As/mH. Thus the above authors
were led a procedure of using Eq. (10) for small s, to
maintain the correct threshold behavior, but Eq. (11) for
larger values of s in order to remove the unwanted double
pole. As we have seen, the [1,1] Pade approximant au-
tomatically takes care of both the threshold and pole in a
unified manner.

The Spence functions that are needed for the calcula-
tion of the box and triangle diagrams were computed in a
FORTRAN program using the algorithm of 't Hooft and
Veltman [7].

In the discussion of the [1,1] Fade approximant in this
section, M(") in Eq. (31) is a function of s and t. For
technical reasons, in the calculation of phase shifts it is
more convenient first to project onto the pure isospin

states (I=0, 1, and 2), then to compute the first- and
second-order contributions to the partial waves, and
finally to make the [1,1] Pade approximation. This has
two advantages: (1) The partial waves so obtained are ex-
actly elastically unitary; (2) the occurrence of poloids is
avoided (see Ref. [5] for a discussion of this point).

V. LANDAU GHOST AND ASYMPTOTICS

The cr model is a low-energy effective theory of QCD.
The phase transition from the cr model to QCD has to
occur below the energy at which the model develops the
Landau ghost [8]. Thus the position of the Landau singu-
larity gives us a rough idea of the point beyond which we
can no longer trust our results.

The usual p function for LH is

p(~)
8 1nl,

8 lnjM

3i
2m2

' (32)

to the lowest order, where p is the renormalization point.
In our mass-independent subtraction scheme,

1,0
—= A, ( 1 —12K,BO ),

where Bo is defined by Eq. (19). Noting that

dBo
p dp 8~'

(33)

(34)

we get the same p function [Eq. (32)] as in the usual
momentum renormalization scheme.

The coupling runs as follows:

A,(po)
A, (p, ) =

1 —(3/2~ )A,(}uo)ln(lu/po)
(35)

2
I L I oexp (36)

The position of the Landau ghost depends critically on
the p function and thus on the details of the renormaliza-
tion scheme. A somewhat more physical procedure is to
look for an illegal singularity in the four-point function.
Let us start with an asymptotic form of the scattering
amplitude, which we can express in analytic form.

The asymptotic form of the second-order amplitude for
large x and y is [9]

The running coupling blows up at the Landau point, say,

pL, defined by

2

Mi(k, x,y)- — [4 ln( —x)+ln( —y)+ln( —z) —
', sr&3 —

—,
'

] . — (37)

Since t = —s (1—cos8)/2 and u = —s(1+cos8)/2, where 8 is the scattering angle, it follows from Eqs. (24) and (37}
that, for large ~s~ at constant 0,

A,
2

M, (A, )- — 4ln
4m

+21n
mH

s
2

mH

3 — 1 j. —cos 0——wv'3 ——+ ln
2 2 4

(38)

The first logarithm here is real for s real and negative, while the second logarithm, which comes from t- and u-channel

terms, is real for s real and positive. If we write
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s = [sfe'4',

then, as ~s~ ~ 0o at constant P E(0,n. ) (i.e., along a ray in the upper half of the s plane on the physical sheet},

(39)

M, (A,}-— 61n +6iisi . 2m

4H m~~ 3

3 — 1 1 —cos28——n.&3——+ ln
2 2 4

(40}

However, in this same limit of very large ~s~, we see from Eq. (25) that

Mo(A, ) ——2A, ;

and so in this limit, along the ray P =2m. /3, the [1,1] Pade approximant is

(41)

1 —M, /M

——2A, , 1— Isl6 ln ——m.~ 3———ln
8H m&~ 2 2 1 —cos~8

(42)

Thus there is an unavoidable complex, first-sheet pole
of the four-point function, which we will by an extension
of nomenclature still call a Landau ghost. According to
the asymptotic estimate, this ghost pole occurs at the
points s =mL e* ', where

4&v m — 1 1
mL =mHexp +—&3+ +—ln2

3m 2 8 24 6

30—

Landau point
I

)
l

20—

This expression is obtained from the lowest point at
which the denominator in Eq. (42) is zero: This occurs at
cos8=0. We have also used Eq. (5) to eliminate A, in
favor of m~.

Of course, this estimate is approximate: It is only
trustworthy for large values of mL. To improve on it, we

simply return to the Pade result itself [Eqs. (31) and (26)],
which gives

(s —mH2)M("}(A, ) = 1 — P(x,y —x —y)
1 —x

(44)

A pole occurs at the point, say, x =xL, at which

1 —xL

P(xL, —xL /2, —
xL, /2)

(45)

The strategy for finding mL is as follows: (i) Choose an

~xL ~; (ii) calculate A, from Eq. (45), varying the phase of
xI until the right-hand side of Eq. (45) is real; (iii) set
mz=vt/2A, ; (iv) deduce mL =mH+~xL ~.

In Fig. 2 we show the ghost mass mL plotted against
the Higgs-boson mass mH, according to the above calcu-
lational scheme, as well as the asymptotic curve corre-
sponding to Eq. (43).

A cutoff below the Landau-ghost position cold be used
in order to make sense of the model. Alternatively, we
can work without a cutoff, but with the proviso that only
those features, such as resonances, that occur well below
the Landau mass mL are to be taken seriously.

Asymptote ~~
A. Where can ~e trust our resultsf

10—

Ghost mass

I

5
Tree Mass (TeV)

FICi. 2. Position of the Landau ghost obtained from Eq. (45}
and that obtained from the asymptotic formula Eq. (43) are
shown.

In our calculation we investigated the possibility that
the Higgs boson is heavy, or, equivalently, the coupling A,

is large. It is, therefore, important to have some quanti-
tative measure which can be used to determine the accu-
racy of our results. We shall show here that for the out-
put obtained using the MI renormalization scheme, a
quantitative test can be devised.

We know that physical quantities cannot depend on
the renormalization point p. Table I shows the p depen-
dence of A, , m~, I H, m, and I and the position of the
Landau singularity determined from Eq. (36). For each
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TABLE I. p dependence of o.-model parameters in the mass-independent subtraction scheme. All
quantities are in TeV except A, , which is dimensionless.

I.andau point

0.25

po =0.35
0.45

0.40
po= 0.522

0.60

0.60
po =0.697

0.80

1.817
+=2.0

2.169

3.805
A.o

=4.5
4.970

6.771
ko= 8.0

9.618

0.50
0.50
0.50

0.73
0.75
0.76

0.96
1.00
1.06

0.03
0.03
0.03

0.08
0.09
0.09

0.16
0.18
0.21

3.85
4.42
4.16

3.14
3.41
3.56

2.90
2.99
3.05

0.02
0.02
0.02

0.04
0.06
0.07

0.11
0.12
0.14

9.35

2.25

1.59

MH = Q.5TeV I = 0 S wave MH = 1.0 TeV I = 0 S wave
I I

t
I I

I
let ~ %et

CO

I

jl

I

I

lt
l

l(

0.6

0.4

C)

CS

CL

Q 25

p, = 0.35 (on-shell)—=- p. = 0.45

0.2

0.0

0.2
(TeV)

I

1.0

0.0

0.5
I

(TeV)

1.5

(b) 1.0
MH = 0.5 TeV I = 1 P wave

I
I

I
I

g = 0.25

p = 0.35 (on-shell)

g = 0.45

(d) 1 0

MH = 1.Q TeY l = 1 P wave

t

I
I
I

l

V)

a) 05- ——————
Vl
CO

CL

(D 05 - ————
C3
CD
Cg

CL

,' L
(

0.6
p. = 0.7 (on-shell)

p. = 0.8

0.0

(TeV)

0.0

3
(TeV)

4

FIQ. 3. g- and p-wave phase shifts for M& =0.5 and 1 TeV. It can be seen that there is very little p dependence for MH =0.5 TeV-

For MH = 1 TeV, a considerable p dependence begins to appear.
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(a)
I OS ~ave
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seen that results for m~ below 1 TeV are reasonably p in-
dependent. Around 1 TeV and above, the p dependence
becomes severe and the trustworthiness of our results is
then marginal. In Fig. 3 we show the p dependence of
the S- and P-wave phase shifts for m& =0.5 and 1 TeV.

In Fig. 4 we show the p-dependence of the S- and P-
wave phase shifts from which BL have computed the
mass of the p meson [5]. There is considerable p depen-
dence in the results. From Eq. (36) we see that pL =450
MeV for A(go= 140 MeV) =5.6, corresponding to the pa-
rameters chosen by BL. Yet the on-shell renormalization
point given by Eq. (22) is p=540 MeV for mH=800
MeV. Because of the fact that the Landau ghost at pi
lies between p=140 and 540 MeV, it is not possible to go
from the BL solution (MI scheme with p =m „)to the OS
scheme. This finding, together with the fact that we can
never obtain such a light p using the OS renormalization
scheme, validates our conclusion that the BL result is an
artifact of the Fade approximation.

Let us examine the origin of the p dependence shown
in Table I. The main source of the variation is the sharp
variation of A,(p), when p,o is close to the position of the
Landau ghost, pL. The position of the Landau ghost is
controlled by the P function and is highly dependent on
the renormalization scheme. The p dependence shown in
Table I applies only for the MI subtraction scheme. In
particular, the results shown in Table I do not invalidate
the results obtained by the OS renormalization scheme.

To what extent can we trust the results obtained by the
OS renormalization scheme? At any rate, when the re-
sults obtained from OS and MI schemes agree, they are
trustworthy (i.e., results below 1 TeV). Also, as seen in
Fig. 2, the Landau singularity obtained in the previous
section never dips below 3 TeV. Hence we can be reason-

I ~OSmave

0.0
l

0.5 1.0
(GeV)

FIG. 4. p dependence of the I =0 S-wave and I= 1 P-wave
phase shifts for the set of parameters which yields the result of
Basdevant and Lee [5] shown in Eq. (1). There is a considerable
dependence on the renormalization point. We also emphasize
that this result cannot be reproduced if the on-shell renormal-
ization scheme is used. From Eq. (36), we see that pL =450
MeV for A,(po=140 MeV)=5.6, corresponding to the parame-
ters chosen by BL. Yet the on-shell renormalization point given
by Eq. (22) is p=540 MeV for mH =800 MeV. Because of the
fact that the Landau ghost at pL lies between p=140 and 540
MeV, it is not possible to go from the BL solution (MI scheme
with p= m ) to the OS scheme.
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FIG. 5. Typical phase shift obtained for MH=1 TeV, using
the on-shell renormalization scheme.
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essentially be cut off, in view of the occurrence of a Lan-
dau ghost.

6.0—
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FIG. 6. Mass and width are shown as functions of the input
tree mass, using the on-shell renormalization scheme. The posi-
tion of the Landau singularity is also shown.

ably sure that when the energy is sufficiently smaller than
3 TeV, the OS results can be trusted.

B. Results

With the provisos mentioned in the previous section,
we present the results of the OS renormalization scheme.
In Fig. 5 we show typical results for the I =0 and 2 S-
wave and I =1 P-wave phase shifts, corresponding to a
Higgs-boson mass of 1 TeV. The I =0 S wave carries the
Higgs resonance as a broad, asymmetrical peak. The
phase shift goes through ~/2 at &s =mH, and it is con-
venient to define the lower half-width to be the energy
difference between the m/4 and m. /2 points. For example,
with mH =1 TeV this half-width is 0.18 TeV. The I =2 S
wave is small and repulsive, as expected. The I =1 P
wave has a sharp, symmetrical resonance, and we define
its mass by the m/2 point, the full width by the energy
difference between the n/4 and 3m. /4 points. The "p"
mass and full width are in this case 2.99 and 0.12 TeV, re-
spectively.

These masses and widths have been calculated for a
number of input tree masses; in Fig. 6, we display these
parameters up to 5 TeV tree mass. Note that, in the on-
shell formalism, the output Higgs-boson mass is equal to
the tree mass below about 2.6 TeV: Above that point, it
is smaller [6]. The reason is that, although the subtrac-
tion scheme guarantees that the real part of the I =0 S-
wave amplitude vanishes at s =mH, there is a second
point at which this happens, and when mH )2.6 TeV,
this point is actually lower than mH.

The "p" mass is never less than 2.6 TeV, this minimum
being reached when the Higgs-boson mass is 2 TeV. In
the following section, we will discuss what significance
such a high mass can have, since an effective theory must

IHr, &
l W

(46)

In this paper we have studied the simplest Higgs La-
grangian in order to search for effects which can be
detected at the SSC. In particular, we are interested in an
alternative to a Higgs-boson search, should the Higgs bo-
son be too heavy to be detected.

We have used the well-known isomorphism between
the Higgs Lagrangian and the O(4) cr model. The latter
has been studied quite extensively in the literature. In
particular, Basdevant and Lee [5] have claimed that nm. .
resonances are generated dynamically. If substantiated,
this claim would, after scaling to the TeV domain, have
interesting consequences for the SSC. In view of the fact
that it is much easier to detect the p meson than the 0.

resonance in ~m. scattering, we pointed out that a P-wave
8'W resonance is likely to be seen before a Higgs boson
with mass above 800 GeV is detected.

Our first step was to check the result of Basdevant and
Lee. We could indeed reproduce their results; but the
value of the coupling constant (defined at m ) needed to
produce their effect is unacceptable. In fact, for their
value of the coupling constant, the Landau ghost sits be-
tween m and m . For this reason a slight change in the
renormalization point changes the coupling constant con-
siderably, and it also changes the mass of the p. We have
shown that m can never be below 1 GeV.

We have computed the mvr phase shifts and compared
them with experiment. The agreement between theory
and experiment is reasonable for the S waves, considering
the fact that we have confined ourselves only to the [1,1]
Fade approximation. The P-wave phase shift agrees qual-
itatively with experiment: Quantitatively, it is, however,
unsatisfactory, since it is resonant only at 1 GeV.

The agreement between theory and experiment for the
S-wave phase shift up to 1 GeV gives us the courage to
trust the o.-model predictions up to about that energy.
Thus we can be confident that the absence of a resonance
at -m =760 MeV is a reliable result. This implies that

P
other particles must be added in order to construct an ac-
curate low-energy effective theory of QCD. The fate of
our P-wave resonance around 1 GeV is not clear:
Perhaps kaon or nucleon loops will pull its mass down to
m, but it may be that the resonance is largely created by
exchange of the other particles and that our 1-GeV effect
is a Pade artifact. We expect that the introduction of
more massive states will not change the prediction for the
S-wave phase shift by more than 10%%uo.

Turning to our predictions for the Higgs model, from
Fig. 6 one can read off the mass of the P-wave 8'8'reso-
nance p~ as a function of mH. Our picture becomes
suspect around m~-2. 5 TeV. In the same figure, we

also show the width of the p ~. Note that
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While the vector state is considerably heavier (1.5 —4
times) than is the scalar one, its narrowness may make it
detectable. %'e can be confident that the o. model pre-
dicts the absence of a P wa-ve resonance below 2 TeV; con-
versely, the experimental discovery of such a state would
definitely imply violation of the standard model and
would consequently herald new physics.
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