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Dipole transition matrix elements for systems with power-law potentials
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We study the behavior of dipole matrix elements for systems bound by power-law potentials of the
form V(r)-r, which are useful in the descriptions of quarkonium systems. The experimental feature
for which further understanding is sought is the apparent suppression of the transition f(3S)~pbbs.
We find that this matrix element actually vanishes in a power-law potential r for a certain power
ao= —0.4. The suppression of transitions between states with different numbers of nodes in their radial
wave functions is a universal property of most physically interesting power-law potentials. We derive re-

sults in the limit of large orbital angular momenta l, checking that they agree with the known answers

for the Coulomb and spherical oscillator potentials. For states with n„nodes in their radial wave func-

tions, we find that the matrix elements (n„, l ~r~n„, 1+1) behave as 1'~"+ ' for small n, and large l.
Transitions with hn, =+1 behave with respect to those with hn, =0 as const/&I, with constants calcu-
lated for each n, Mo. reover, we find that (n„=O, l~r~n„=2, l —1) /(n„= Ol~r~n„=O, 1+1)~4&(a)/ las

I~~, where 4(a) is calculated explicitly.

PACS number(s): 12.40.Qq, 13.20.Gd, 13.40.Hq, 14.40.Gx

I. INTRODUCTION

One of the interesting features of the spectrum of
atomic hydrogen is the suppression of transitions where
the principal quantum number n and the orbital angular
momentum l change in opposite directions relative to
those where n and l both increase or both decrease [1,2].
For instance, the radial part of the dipole transition ma-
trix element for a 4d-3p transition is 7.6, compared with
1.3 for a 4p-3d transition. We see that the transition
where n and I change in opposite directions (that is, the
4p-3d transition} is roughly 30 times less probable than
the transition where n and l both decrease.

Similar features are observed in the spectra of systems
bound by non-Coulombic potentials. An example is the
system consisting of a b quark and a b antiquark, for
which the potential is approximately logarithmic (a =0)
[3]. The spectrum of this system, and the levels predicted
by a logarithmic potential, are shown in Fig. 1. Two p-
wave levels lie below the f(3S) state. The matrix ele-
ment for the electric dipole transition from the Y(3S) to
the lower fine-structure multiplet of these two levels [the
line (a}] is highly suppressed [4] in comparison with that
for the transition to the higher fine-structure multiplet
[the line (b)]. The transition (c), which involves a change
in the number of nodes in the radial wave function, has a
smaller matrix element than the transition (d), which
does not.

Given the appearance of such spectral features in wide-

ly differing systems, it is of interest to ask whether this
suppression of certain transitions relative to others is a
universal feature of all power-law potentials.

In this paper we compute the radial integrals appearing
in the dipole transition matrix elements for a variety of
power-law potentials. We are particularly interested in
transitions between states having large angular momenta
l and whose radial wave functions have only a few nodes,
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FIG. 1. Spectrum of bb bound states. Solid horizontal lines
correspond to observed levels; dashed ones correspond to pre-
dictions based on a potential V(r)=const+0. 72 GeVlnr. The
electric dipole transitions (a), (b), (c), and (d) are discussed in the
text. Levels are labeled by the number of nodes of the radial
wave function in the interval 0 ( r (~.

for this is the case where the suppression of certain tran-
sitions is the most dramatic. We find that the degree of
suppression is indeed directly dependent on the difference
in the number of nodes of the radial wave functions, and
estimate this suppression quantitatively for large l. We
also find that the transition illustrated by (a) in Fig. 1

vanishes for a specific power ao= —0.4.
The correspondence principle [1] allows one to visual-

ize the favored dipole transitions for large l. An electron
in a state of the highest possible l for a given energy has a
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circular Bohr orbit. Radiation is emitted by loss of angu-
lar momentum. Thus, for high l, one should expect tran-
sitions with b, l = —1 for emission and El =1 for absorp-
tion to be favored over those with the opposite signs of
51. Another argument leading to the same conclusion
may be given in terms of WKB wave functions [2].

To provide benchmarks for the general result, we first
review the exact results for the Coulomb potential in Sec.
II and for the spherical harmonic oscillator in Sec. III.
We then give approximate results in Sec. IV, valid for
large /, for general power-law potentials having the form
V(r) =r la, with —2 (a. Section V contains a brief dis-
cussion of the application of our results to the bound
states of heavy quarks, while Sec. VI concludes.

II. COULOMB POTENTIAL

trary number of times [6]. Rather, there exists a max-
imum l, l,„,for which

u, l =O (8)

Equation (8) is significant for two reasons. First, it allows
us to determine the energy eigenvalue e: multiplying (8)
on the left by Al and comparing with (3}gives

max

1 I,„=O,1,2, ... .
2(lm, „+1)

Defining the principal quantum number n by n =l,„+1,
we see that (9) gives the usual hydrogenic energies. Equa-
tion (8) is also important because it gives us a first-order
difFerential equation for the "key" eigenfunction u, l

from (2) we have

The radial Schrodinger equation for the Coulomb po-
tential, in appropriate units, is

I,„+1+
dp IIlRX T

1
"el~ max ( + 1 ~lmax

max

1 d "el 1 l(1+1) 1+— u ——u =auel el e

d l+1
dr r

d l+1
dT

1

l+1
1

I+1
(2)

and observe that Eq. (1}may be written in either of the
following forms:

Here we are using the rescaled radial wave function
u, l(r )= rR, l(r). In evaluating the radial dipole integrals,
it is convenient to factorize Eq. (1) using the method of
Infeld and Hull [5]. This factorization enables us to
derive recursion relations for the dipole integrals, which
then make their evaluation quite straightforward. We
first introduce the raising and lowering operators Al and
Al, defined as

The normalized solution to this equation is
n +1/2

"nl
1 2 ne r/n

max Q(2n )t n

1
2+

n

1 00

u ldr(i+1)'

where we have replaced the subscript e with the
(equivalent) subscript n (We .shall use n in this section to
denote the principle quantum number; elsewhere we have
used n as a shorthand for n„, the number of nodes in the
radial wave function. ) We can now determine the nor-
malization constants a and p appearing in Eqs. (6) and
(7). Squaring (6) and integrating over all r gives

a f "(u„ l+&) dr =f (Alu„l) dr
0 0

unl Al Al u„ldll
r

2~+
(l+1) (3) If all the radial wave functions unl are to be normalized,

this implies

or, alternatively, 1 1

n (l+1)

' 1/2

Al 1Al 1u l= 2&+—
2

u
$2

(4)

To illustrate how Al and Al can be used as raising and
lowering operators, multiply Eq. (3) on the left by A, .
This gives

1

(l+1)

' 1/2
1

n

A similar argument can be used to determine p. Defining
the normalization constants cnl by

Al Al ( Alu, l ) = 2E+
2 Alu, l .

(1+1)

Comparing with Eq. (4) we see that

(5)
we see that Eqs. (6) and (7}may be rewritten as

A lunl —Cnlun l+1& Al 1unl
—

Cn l 1u„ l

A lu el u el+1 (6) We are finally in a position to derive the desired recursion
relations. First we observe the identity

where a is a normalization constant. A similar argument
beginning from Eq. (4) yields 21Alt, =(21+1)Alt+ Al—4l +2

(12}
A I —1 u el pu el —1 (7)

In general, of course, it is not possible to raise I an arbi-
Multiplying this on the left by ru„ l and on the right by
unl and integrating, we obtain, after a little manipulation,
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21c„i,f "run &u„ i,dr=(21+1)c„i f "ru„.i+iunidr+c« f "run, un i+idr —3(21+1)f u„ iu«dr .
0 0

Finally, defining the radial dipole integrals by

Dn. l
= r&nl "n'l dr,nl

0

we see that (13}may be rewritten as

2lc„ i iD„"(' i =(21+1)c„iD i' +'+c«D„"i+,—3(21+1)6„.„.

(13)

(14)

We may now apply Eq. (14) to compute radial matrix elements for various transitions. Examples of electric dipole tran-
sitions for the Coulomb potential are illustrated in Fig. 2.

We first consider transitions where the principal quantum number changes by one. We may obtain our starting point
for the application of the recursion relations by explicitly evaluating the integral at the "top" of the ladder. Using the
eigenfunctions given by (10) we have

22n+2D"'" ' = ru u dr =&(2n + 1)(2n +2) (n + 1 }n+3/2n n+5/2 n
2

n+1, n n, n —1 n+1, n
(2 + 1)2n+3

(15)

We have given the limiting form, valid for large n. Ap-
plying the recursion relation (14) to lower 1 by one, we
find

complicated form, but the leading dependence on n is the
same as that given in (17). We therefore find that the ra-
tio of the integrals is

Dn'" 2 2n —1 +1' 1 Dn'n
n+1, n —1 n+l, n2n 2 cn, n —2

~ nl
Dn+1 t —1 1

Dnl —1 ln+1, 1

(18)

D I ~ nnn —1 2
n+1, n (16)

and

n, n —1 1
n+'" 2n —2 n+1, n 2

Cn+1 n —1nl + i n i
D) n n i n

( 17)
c "+'" 2v'2

By repeatedly lowering I in this manner, it is straightfor-
ward to show that similar results hold quite generally for
n »1 and I —n: the radial integrals for transitions where
n and l change in the same direction scale as n, while
those for transitions where n and l change in opposite
directions scale as n. In the case of transitions where n

and 1 change in the same direction, the overall coefficient
of n is the same as that given in (16); namely, one. In
the case of transitions where n increases while l decreases
(or vice versa), the overall coefficient of n has a rather

for n »1 and n -I. Hence we see that, as n and I in-
crease, the suppression of the "weak" transition becomes
more and more pronounced. The results of Eqs. (16) and
(17) may be restated in terms of the number of nodes of
the radial wave functions: we find that transitions be-
tween states having equal numbers of nodes are strongly
preferred over transitions between states having k nodes
and states having k+2 nodes.

We may also compare transitions in which the number
of nodes changes by one with those in which the number
of nodes does not change.

When the principal quantum number does not change,
the number of nodes n, and the orbital angular momen-

tum l satisfy An„= —hl =+1 for electric dipole transi-
tions. For the transition from a state with one node to a
state with none, direct calculation using the eigenfunc-
tion (10} for u„„, and the eigenfunction

~n n —2= An —2~n n —] / Cn n —2 yieldS

~ ~

2 1 0

D„"'„":,= f ru„„ iu„„2dr = 3n 2n ——1/2 . (19)

This expression behaves as n for large n, intermediate
between the cases (16}and (17). The change in the num-
ber of nodes in the radial wave function here is one; in
(16) it is zero, while in (17) it is two.

Equation (19) provides the starting point for a recur-
sive relation allowing calculation of other electric dipole
transitions between states of the same n. Taking n'= n in

Eq. (14) we find

Ic„ i D„"ii' t' =(l + 1)c«D„"'(+i
—3(2l + 1)l2 . (20}

3 I

FKJ. 2. Spectrum of Levels and some electric dipole transi-
tions for a Coulomb potential. Levels are labeled as in Fig. 1.

If we choose l =n —3 in this relation we find from (19)
that

D„"'„":2= —3n&n —1 .
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This expression also behaves as n for large n. One can
see that the same will be true for any matrix element
D„"l' ' in the limit n ~ ao, n —l fixed.

Transitions with hn, =El=+1 involve a change in
principal quantum number by two units. An explicit cal-
culation leads to the result

& "+(5/2)()1 +2)"+2+2& + 1
D ~+a, ~ n

2( + 1)2"+(7/2) (22)

III. SPHERICAL HARMONIC OSCILLATOR

The radial Schrodinger equation for the spherical har-
monic oscillator, in appropriate units, is

1 d "nl 1 1(l+1) 1 2+— u +—r u =e u . (24)
dr2 2 r2 nl 2 nl nl nl '

The normalized solutions can be written in terms of gen-
eralized Laguerre polynomials [8,9] as

' 1/2

u„i(p)= n!2
I'(n+ l+3/2)

&1+)I (I+)/2)(&2)e r /2—
n

(25)

The corresponding energies are

which behaves as n /&2 for n-+00. Application of
the recursion relation (14) for n'=n+2 leads to the re-
sult

D"+ '2 /D"+ ',"=&2n —1&n —1/(n+2), (23)
t

which tends to &2 as n~~. We shall in Sec. IV see
that the asymptotic results are part of a more general pat-
tern.

we obtain the desired result

D„"l' '=Qn+I+Y(5„„+&n+15„„ (30)

corresponding to (16), and

D2, l —1 0O, l

(31)

(32)

corresponding to (17). Hence we find that the transitions
described by the latter equation, which are suppressed in
the case of the Coulomb potential, are strictly forbidden
in the case of the spherical oscillator. Setting n'=n+1
in (30) we find that

D n + ), l —1 —i/r
n, l (33)

corresponding to (19) and (21). The transition matrix ele-
ments are not zero, but they do not grow with l. As in
the Coulomb case, there is a hierarchy of transition
strengths according to the change in the number of nodes
of the radial wave function. The allowed electric dipole
transitions for a harmonic oscillator are shown in Fig. 3.

A more elementary derivation of the selection rule (32)
can be given if we use the factorization of the spherical
oscillator Hamiltonian. The full Hamiltonian for the
spherical oscillator is

To make the connection with the corresponding results
for the Coulomb case, we observe that Eq. (16}refers to
transitions between states which both have one node,
while (17}refers to transitions between a state having no
nodes and a state having two nodes. Hence setting
n = n

'= 1 in (30}will give the result corresponding to (16)
and setting n =0, n '= 2 will give the result corresponding
to (17). We find

p„l =2n +l +—,', n =0, 1,2, ... . (26) (34)

In this section the quantum number n refers to the num-
ber of nodes of the radial wave function. %e now wish to
compute the radial dipole integrals D„"l' ' given by

Dnl' =f ""nl un, l )d"— (27)

These integrals can be readily evaluated if we first make
note of the identity [5]

As is well known, this Hamiltonian can be rewritten in
terms of raising and lowering operators in the form

—ata +~~a +~~~ + 3

L (l —1/2)(r2) I (l+1/2)(r2) L (I+1/2)(r2) (28)
9(Ql2

0

1

Substituting the eigenfunctions (25) into Eq. (27) and us-
ing this identity, we find

~'

an', l —1 4n.n .'t
I (n+I+3/2)I (n'+I+1/2)

21+2L (l+1/2) r2
0

x [L (I+1/2)( 2) I (I+1/2)( 2)] rd—

7t)Q()2

5(0/2

3fJ01t2

If we now change variables from r to x =r and use the
fact that

f ~( )( )L( )( ) „d I'(n+a+1}~
0 n!

4 I

FIG. 3. Spectrum of levels and allowed electric dipole transi-
tions for a harmonic oscillator potential. Levels are labeled as
in Fig. 1.
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where a =(x+iiz )/&2, and similarly for a and (z, .
The eigenstates of this Hamiltonian are the usual Fock
states ln, , nz, n3), which satisfy

Hln(, nz, n3) =(n(+nz+n3+ —,')ln(, nz, n3) . (36)

If we now introduce a dipole interaction term of the form
V(t)=Eoze ' ', corresponding to a linearly polarized
electromagnetic wave, we see that the relevant dipole
transition matrix elements have the form

n3lzltn(, mz, m3 & (37)

a, ln„n„n, & =Qn3ln„n, , n, —1) (39)

For simplicity we have chosen the polarization of the in-
cident wave along the z axis, but this clearly involves no
loss of generality. To evaluate these matrix elements we
erst observe that z may be written as

a, +a,z= (38)
2

Furthermore, the action of the raising and lowering
operators on the basis kets is given by

1 1(/ —1) 1
U (r)=- +—r

2 r cx
(44)

In general, it is not possible to give exact analytical
solutions to these equations. For very large l, however,
we may construct approximate solutions by expanding
U+(r) about the average of their minima:

l 2/(2+a) (45)

4

U+ ( r ) = ( a) x + g c,
—xJ+

j=l
(46)

where x:—r —r, and the coeScients for j )4 will not be
needed. The parameters ~,c —are

This method has been applied elsewhere [10,11] to the
large-1 behavior of other problems. Equation (42) then
reduces to the Schrodinger equation for a shifted one-
dimensional harmonic oscillator, with perturbing terms.
Approximate solutions can then be given in terms of a
perturbation expansion. The corresponding unperturbed
energies are given by the familiar formula
e„=(n + 1/2)co, where co is the oscillator frequency.

Explicitly, we may write

and

u. In(, nz, n3 & =V'n3+ ]in( nz n3+1& . (40) and

~2 ( 2+a )(t
2(a —2)/(a+ 2) (47)

Using these results to evaluate D ' ' ' gives
] 2 3

' 1/2

c+ —+ l(a —4)/(a+2)
C1

C
+ —+. 3 l (a —6)/(a+2)
2 —

2

(48)

(49)

n ] n2n3
Dm] m2m3 ~n]m]~n2m2

m3

1/2
m3+1

2 ~n3, m3+1

(41)

2
c+ = l ( —3)/(a+2) a —3e —10 2
C3

6 l

iz( 4(/„+z( (a —1)(a—2)(a —3) + 5 1+ 1

24 2 l

(50)

(51)
From this we see that the allowed transitions are those
that take place between states whose energies differ by

one; all other transitions are strictly forbidden. This
selection rule is in fact equivalent to the selection rule
given by Eq. (30): since the states uo t and uz t ( have

energies which differ by two, dipole transitions between
these states are forbidden.

IV. GENERAL POWER-LAW POTENTIALS

In this section we consider the radial Schrodinger
equation for a general power-law potential:

The corresponding Hamiltonians have the form

4a =0 + ~ c-+x~+
j=1

with
1/2

CO

Ho ——(a a+ —')co, a = — x+i
2 '

2

The zero-order states are Fock states l
k ); we have

(52)

(53)

1

2 dl z
+ U+(r) un( en(un( (42)

where the problem with orbital angular momentum l cor-
responds to the effective potential U+ (r) given by

1 l(1+1) 1

2 r a
(r)=- +—r (43)

and the one with orbital angular momentum l —1 corre-
sponds to

elk)=&k lk —»,
u'Ik & =&k+ ilk+1) .

(54)

The perturbing Hamiltonians can be written in terms of a
and (z using x = ((z +a ) /(2')'

Notice that co is real, according to (47), only for 2 (a.
It is only in such a case that the effective potential has a
minimum at r =r&. Otherwise, the point at which its first

derivative vanishes actually is a local maximum.
The leading matrix elements will be those which in-
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volve an expectation value of the quantity r between un-

perturbed states. Thus, for any finite number of nodes n„
of the radial wave functions, as long as our oscillator ex-
pansion is valid, we can conclude that

& n„, / —1lr ln„, / & = r =/

Bearing in mind the expressions for co and c &, we find

&n —1, /lrln, / —1&=v n 4+(a)/"

and

(62)

We next calculate matrix elements for which the num-

ber of nodes of the radial wave function changes by 1.
We shall be concerned with the transitions

In„, / —1&~In„—1, /& and In„1,/ ——1&~In„,/&. We
shall drop the subscript r on n in what follows.

One contribution to such matrix elements will come
from the term x in r=r+x, since x connects unper-
turbed states lk & differing in k by 1. However, another
set of contributions comes from the expansion of the
states in the presence of the perturbing terms in the po-
tentials (46). Denoting the unperturbed states by labels
without l, we may write

&n —1, / —llrln, /&=v'n 0' (a)/"

where

(63)

1+1 2
21/2(2+a)1/4 (2~a)&/&

(64)

The results (62)—(64) agree with special cases dis-
cussed previously. Since

n l 1 —n +c,
CO

ln —1&&n —llx'ln &

+C3 (56)

(
—1)=3/+2, 4 ( —1)=—1/v'2, (65)

we obtain results corresponding to Eqs. (19) and (21)—(23)
for the Coulomb potential. Since

+ + ln&&nlxln —1&

+ In &&nlx'In —1&+c3+ (57)

+ ln —1&&n —lixin&
N

+c3+ (58)

ln —1, / —1 &
= ln —1&+c

~

In &&nlxln —1&

in &&nix'in —1&+c3 (59)

where we have retained all terms which can contribute to
the matrix element to order 1/v'/ in the large-/ limit.
Since the leading-order terms in c 3+ and c 3 are equal [see
Eq. (50)t, one finds that these terms cancel in the final re-
sult, so that only the perturbations in U+(r) linear in x
need be taken into account.

Taking account of the relation c, = —c+, , we find in
the limit of large l that

4'+(2) = 1, q/ (2)=0, (66)

we find results corresponding to (30) for the harmonic os-
cillator.

The result when the number n of nodes in the radial
wave function changes by two is considerably more in-
volved. For the general n~n —2 transition, one must
expand the states in terms of unperturbed states ranging
from

I
n —3 & to

I
n + 1 &. One is interested in contribu-

tions of order 1/l with respect to the leading behavior
r =l ' + '. Five such contributions are proportional to
r&mlm &, n —3~m n+1, while four involve matrix
elements of x between states differing in n by 1.

For purposes of illustration, and because it is relevant
to the most highly suppressed transition illustrated in
Fig. 1 [the line (a)], we calculate the matrix element for
the transition I2, / —1 & ~ IO, / &.

In principle, we need terms in the potentials U+(r) up
to order x . It turns out that the contributions of c4+ and
c4 to the term of interest cancel, so that in fact only
terms up to order x are important. Each state is ex-
panded in terms of unperturbed Fock space states lm &,
0 ~ m & 3. The expansions are

2c, r
&n —1, /Irin, / 1&=-

CO 2'

' 1/2

+&n —llxln &

I0, / &
= I0 &+a; I 1 &+a 2+ I2 &+a 3+ I3 &,

12, / —1&=a, lo&+a, ll &+12&+a3 13& .

(67)

(68)

and
The coefficients are of the order

60

a 0,a 2+ —1//, a —, 3
—1/&/ (69)

n

CO 2'

' 1/2

+&n —llxln & .

(61)

In order to calculate the terms of order 1/l correctly, one
has to go up to second order in perturbation theory. Ex-
plicitly, the coefficients a;—are expressed in terms of the
coefficients c;*as
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+ 1 + 3
3/2 2N

(70a)

1.0

0.8

I 1 1 I

[
I I t I

i

I

Qp
1

3/ 2CO

1 + 3 +
2 C4 + (C+)

N 2N

0.6

1

5/2

+ +5 c, c3 + (c+)
SN

(70b)

(70c)

0.2

0.0
I

1 2 3

Qo
1 —c4 +—( )'3 1

N N

93
C — 3C3)2ci C3 ( (71a)

(X

FIG. 4. F. Function 4(a} [E . (7q.

cur at u= —0 and a=2.

1 3
3/QC i +C

N N
(71b)

where the ellipses denote
i o large I. Th e final re-

Q3
v'6

3n 2N
(71c) DOI }I a/(2+—a)

where

(76)

Defining

f a}—= —,'(a —3a —10
a —2)[1+(a —1)/(a+ 2 '

6&2(a+2)
(77)

g(a) —= —,', [(a—1 (a —2)(a —3)+60],

h(a}—=V a+2

(72)

1
1 3/'2h 3/2

2h 3f—
I (73a)

1
2 &Zh'

—6h —126h —12gh +4h —20fh +27
Sh

1

and usin t
'

g the results (47)—(t —51) for co and th ec;—,we fin

The matriatrtx element (76) beh aves as 4( )/
( h o h

e function 4(a ) i
'

t . 4
h =2 ord 'th th

ho has a

-1
root at

z, I q g
entials.

(73b)

+
2&3h'" (73c)

Qo
1

&Zh2

—6h +112gh +4h +12fh —9
Sh

I
—1

(74a)

Q3

h +3f
A

5/P
J

&6(2h +9f )

4A 5/2

Th e matrix clem ent is

(74b)

(74c}

D01 —= (2, I —1
I
r IO, I )

=r(2, t —llo, i)+(, — I2, 1 —1lx10,1)

=r(a 0 +QZ +Q+Q +a3a3 + )

+(2') (a, +3/'Za i++3/3a+ . , 53a3++ . ), (75

V. APPLICATIOON TO QUARKOMUM
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n„= ~n„=o) transi
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or a wide ra g o d

e transition (b) is o
chan es fro

is one in which
is transition is less

y a factor of con t/&ns I with
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respect to the dominant one for high I. The correspond-
ing suppression factor for n, = 1~n, =0 transitions
found in Sec. IV is 0'+(r}/&I, where ql+(r) is the func-
tion defined in Eq. (64).

The transition (c} involves a change in the number of
nodes (1 the initial and 0 in the final state). This transi-
tion is expected to be suppressed in comparison with (d),
which involves no change in the number of nodes.

We summarize the Coulomb and harmonic oscillator
results for the ratios of dipole matrix elements (a)/(b) and
(c)/(d) in Table I. Also shown are the matrix elements as
calculated for the logarithmic potential [12]. The ratios
are shown as functions of the power a in Fig. 5.

In order to compare the predictions of Table I with ex-
periments, we must extract ratios of dipole matrix ele-
ments from experimentally determined branching ratios
or decay widths. The information contained in Refs. [4]
and [13] allows us to do this. The partial widths for the
dipole transitions of interest are given in terms of the ma-
trix elements ( r ) by

I =
4e&aErCf /r ) (78)

~
(r ) ~

=(2.66+0. 10) GeV (79)

The CUSB Collaboration [4] quotes a product of branch-
ing ratios for the transitions (a) (summed over fine-
structure multiplets) followed by transitions to the
Y(1S). We may interpret this information as providing
the combination

where e&= —
—,
' is the charge of the b quark, E is the

photon energy, and Cf =(2Jf+1)/9 for S~J', Cf
=

—,
'

for P~S transitions.
Using the partial widths and photon energies quoted

by the CUSB Collaboration [4], we obtain for transition
(b) the dipole matrix elements

~ ( r )b ~

= (2.59+0.19,
2.78+0.20, 2.63+0.15) GeV ' for the J=(0, 1,2)
members of the fine-structure multiplet. These are con-
sistent with one another; their average is

', e&aE—&Cf (r ), [ —,'8[yb2~ Y(1S)y]+—,'8[y&i —+Y(1S)y]+ ,'B[ybo~—Y(1S)y]]=(1.7+0.4+0.6) X 10 I „,[Y(3S)],

(80)

where E =445 MeV is the average photon energy for
Y(3S)~ybJy transitions. We use the result quoted in
Ref. [4], I'„,[Y(3S)]=(24.3+2.9) keV, and the branch-
ing ratios [13] 8 [gb2 —+Y(1S)y ]=(22+4)%,
8[gsi~ Y(1S)y]=(35+8)%, 8[gbo~ Y(1S)y](6%
(so we neglect this last quantity). We then find

(770.3+2.9) MeV. We then find

(2.0+0.2+0.2)/(77O. 3)'
(4.2+0.6+0.5) /(236. 1)'

=0.117+0.014 . (84)

~
(r ), ~

=(0.043+0.010) GeV (81)

leading to the ratio quoted in Table I.
The corresponding calculation for the ratio of the ma-

trix elements (c) and (d) proceeds from the information
[4] that

g 8 [Y(3S )~gb J ]8 [g'b& ~Y(2S )y ]= (4.2+0.6+0.5 )%
J

(&2)

0.20 I I I I I I I i I I I I I I I i I I I I I I I I

0.15

Notice the change in sign of the ratio (a)/(b) in Table I
between a= —1 and a=0. This ratio actually vanishes
at a power ao= —0.4, as illustrated in Fig. 5. The experi-

with an average photon energy in the second transition of
(236. 1+2.6) MeV, while

+8[Y(3S)~g'iJ]8[gbj—+Y(1S)y]=(2.0+0.2+0.2)%
J

(83}

with an average photon energy in the second transition of

0.10

0
~~

0.05
CC

0.00

(a)/(b)

(c)/(d)

Ratio Coulomb Logarithmic Oscillator
(a= —1) (a =0) (a=2)

Expt.
(magnitude)

TABLE I. Predicted ratios of dipole matrix elements in vari-
ous potentials for transitions shown in Fig. 1, and experimental
values.

-0.05

-0.10 s» & I »» I & r & s I &» s I »» I s» s

-0.5 0 0.5 1.5

(a)/(b)
(c)/(d)

—0.074
0.168

0.016
0.101

0.016+0.004
0.117+0.014

FIG. 5. Ratios of dipole matrix elements in potentials
V(r) —r for transitions shown in Fig. 1.
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mental ratio (a)/(b) is compatible at the lo level with a
range of powers between —0. 1 and 0.2. The ratio (c)/(d)
is compatible with any power between 0 and —0.4. The
suppression of these ratios, as we have seen, is an exam-
ple of a much more general result.

VI. SUMMARY

We have presented both exact and approximate results
for the radial dipole integrals for a variety of power-law
potentials having the form r /ct for —2 (a. In all cases,
we have found that dipole transitions between states
whose radial wave functions have the same number of
nodes are favored over transitions between states having
different numbers of nodes. The larger the difference in
number of nodes, the greater the suppression. Transi-
tions with changes in the number of nodes by greater
than one are strictly forbidden in the case of the spherical

harmonic oscillator, and thus are suppressed in cases
resembling the oscillator [14]. The suppression of these
transitions indeed is found to be a universal property of
all power law potentials.¹teadded. It has been shown [15] that the dipole ma-
trix element between the 2S and 1I' levels of a two-body
system [e.g., between T(2S) and yb in Fig. 1] cannot van-
ish, and has the sign of the product of the reduced radia1
wave functions for the two levels as r~ao. %e thank
Andre Martin for informing us of this result.
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