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Color transparency is commonly accepted to be a prediction of perturbative QCD. However it is
more a phenomenon probing the interface between the perturbative and nonperturbative regimes, lead-
ing to some intricacy in its theoretical description. In this paper we study the consequences of the im-
pulse approximation to the theory in various quantum mechanical bases. We show that the fully in-
teracting hadronic basis, which consists of eigenstates of the exact Hamiltonian in the presence of the
nucleus, provides a natural basis to study color transparency. In this basis we can relate the quark wave
function at a small transverse separation distance b2 <1/Q? directly to transparency ratios measured in
experiment. With the formalism, experiment can be used to map out the quark wave function in this re-
gion. We exhibit several loopholes in existing arguments predicting a rise in transparency ratios with en-
ergy, and suggest alternatives. Among the results, we argue that the theoretical prediction of a rising
transparency ratio with energy may be on better footing for heavy-quark bound states than for relativis-
tic light-quark systems. We also point out that transparency ratios can be constant with energy and not

at variance with perturbative QCD.

PACS number(s): 12.38.Qk, 12.38.Bx, 24.85.+p, 25.30.Fj

Color transparency, namely, the reduced attenuation
of hadrons in nuclear matter under certain circumstances
[1], has recently received much theoretical study [2]. It is
commonly understood to be a prediction of QCD, so that
most work concentrates on calculating the magnitude of
the effect in specific reactions, rather than questioning its
foundations. On the other hand, it should be emphasized
that color transparency is interesting precisely because it
combines perturbative and nonperturbative physics.
Therefore it is useful to reexamine the strength of the
prediction, to become the devil’s (or doubter’s) advocate,
especially since there is still no conclusive support for
color transparency from data. Toward this purpose, our
goal will be to give as thorough a discussion as possible of
conceptual issues that are often swept under the rug.

Our primary concern is the correct use of the impulse
approximation in hard exclusive reactions. For
definiteness, we consider the ee’p reaction in a nucleus of
atomic number A4, namely, e+ A4 —e'+p+(4—1). A
virtual photon knocks the proton elastically out of the
nucleus. This reaction is to be compared with the analo-
gous one in free space, namely, e +p—e'+p’, which
proceeds through the electromagnetic form factors. We
assume that the momentum transfer Q* has large
Q?>>GeV? and that the experimental setup selects
quasiexclusive kinematics, so that the energy of the fast
outgoing proton is close to @2/2m. Much of our analysis
can also be applied to quasielastic hadron-initiated reac-
tions such as p4 —p'p'(4—1). We outline some dis-
tinctions between these reactions involving relativistic
quark bound states and those involving nonrelativistic
bound states such as charmonium production.

In the impulse approximation, a sudden perturbation
applied to a system is represented by finding the overlap
of the “before impulse” or initial state |i ) onto the “after
impulse” or final state |f), which then time evolves ac-
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cording to the Hamiltonian. If a system has a Hamiltoni-
an H _ for time ¢t <0 and Hamiltonian H . for time ¢ >0,
then the time evolution after the sudden perturbation is
approximately given by

lf())= S exp(—itE, )E, )E,,li),

where |E . , ) are the eigenstates of H. . So long as the
impulse approximation applies, the suddenness of the
perturbation is irrelevant, and the system does not de-
pend on the duration of the sudden impulse A¢;. This is
an important point, potentially at odds with the
AE At > 1 uncertainty principle, which one might think
would give a range to the final-state energies of order
1/At;. The reason this would be incorrect is that the sys-
tem is not really prepared, in the quantum-mechanical
sense, by a measurement with a time scale At;, but in-
stead has no time to react to the sudden change.

Let us elaborate on this crucial point. Quantum dy-
namics is Hamiltonian and first order in time, exactly as
classical dynamics; so the impulse approximation applies
to both. If we represent the state immediately after the
impulse as |i’) and expand its difference from the initial
state as

—iAyE, _

li"y=li)+ 3 c,(At))|E, e ,

then a short calculation of the coefficients resulting from
the impulse Hamiltonian 8H,(¢) gives
,-> .

The integral is of order At;, showing that the impulse ap-
proximation becomes exact as At;—0. (There is a possi-
ble loophole, however, if the sum over n, weighted by the
matrix elements, diverges like 1/At,. In Feynman-

c,,(Az,)=—i<E,,<

’ ’ it'En <
i) o, 4t SH(1)e
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diagram language, there could potentially be a problem
with ultraviolet divergences, which physically react faster
than any probe. This might be aggravated by the singu-
larities of the infrared interplaying with the ultraviolet.
But, in fact, the perturbative theory is safe, as shown by
more than ten years of study, dedicated to just the issue
of justifying the impulse approximation. Ultimately, we
can use the impulse approximation because no detailed
properties of the renormalized theory upset it. The con-
siderations of the uncertainty principle are a puny worry
in comparison and a red herring for this reason.)

Now, in more detail, the perturbative description of
hard scattering is actually a three-step process. There is
the long-time evolution of the soft wave function before
the process, then the hard scattering, and then the long-
time evolution after the scattering. The impulse approxi-
mation is used twice, in decoupling the hard scattering
from the “before” and ‘‘after” hard-scattering time evolu-
tion. The approximations to the time evolution are
represented mathematically by

|f(£))=exp(—iE,st )|E, s ){E,|3q")
X<3q'|shard(At1)l3q>
X<3q| exp(—iE0<t< )IE0> ’

assuming we begin with a proton as a ground-state eigen-
vector |E,). Here S is the hard scattering, a time-
dependent process which couples for dynamical reasons
predominantly to the lowest (three-quark) state [3¢g). S
is calculated perturbatively, and except for the fact that
only leading-order pieces are retained, the impulse ap-
proximation is not specifically invoked for S. Naturally,
the perturbative calculation is consistent, and the uncer-

|
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tainty principle does not have to be applied again. Yet it
is to the intermediate states while S is acting that the un-
certainty principle is useful. In fact, in an inclusive ex-
periment at large Q? and energy v, we can experimentally
measure all of the states ranging up to the maximum en-
ergy indicated by the uncertainty principle (or dimension-
al analysis). In contrast, color transparency refers to an
exclusive experiment. Then the experiment kinematically
selects a particular term among all the amplitudes gen-
erated. All of the complexity of the hard scattering just
turns into a calculable matrix element. The uncertainty
principle is true, but incapable of saying anything about
the size of the matrix element needed. We conclude that,
where the uncertainty principle applies, it is irrelevant to
the coupling of the soft and hard time evolution.

Let us examine the approximations in more microscop-
ic detail. In a free-space ee'p experiment (namely,
e+p—e'+p’'), we want the amplitude for the hard-
struck initial proton carrying momentum p to look like
three quarks and then look like an outgoing proton with
momentum p +Q. This can be appreciated with a “‘car-
toon” [Fig. 1(a)] showing the scattering of pancakes in a
frame where both the initial- and final-state protons move
fast, and the virtual photon delivers no energy and a large
momentum Q. (Since in this reference frame the photon
has no energy, we do not have a definite time for the
event to occur. But the internal dynamics of the quarks
absorbing the photon give energy denominators deter-
mining the duration of the event, At;.) Since the proton
states are used as eigenstates for the impulse approxima-
tion, they have a typical size of 1 fm.

The crucial perturbative step is replacing the true am-
plitude M by a product of hard-scattering kernel and dis-
tribution amplitudes [3]:

M= [ []dxdx;s lzx,.—zxj ]dzkr,,-dzkmlp}(km,xj VH (kp3x;0%)0;(kr i, x;)
iJj i j

= [ Tax3 531 3 |65, @IH Q% kr =0.5)8x,,07)
iJj J

i

where
#(x,0)= [ Cd%piher,x)
=2wQ [ “db J,(6Q)¥(x,b)
=P(x;b2<1/Q?%) . (1)

The last two lines (abstracted from Ref. [4]) illustrate the
point that inspired much of the study, namely, that the
important part of the wave function is the part with
transverse separation b2<1/QZ% Assuming that the
wave function near the origin is smooth, this is just a
number, like a “‘coupling constant,” fixing the normaliza-
tion of the process. [We neglect slow logarithmically
varying corrections to the wave functions near the origin.
With our convention, the hard scattering is put into the
perturbative quark dynamics (S) and is not a part of the

wave function.]

The distribution amplitude onto the proton state is the
perturbative QCD version of the overlap used in the im-
pulse approximation. The “complete set” whose time
evolution must be well followed is seen to be three
quarks, integrated over x ~, with any momentum fraction
x, and within a specified distance of the origin. We do
not overlap this with a complete set of hadrons: In fact,
the kinematics were selected to overlap onto an on-shell
final-state proton and nothing else.

There is a popular semiclassical notion that the entire
system actually becomes small, as if the multicomponent
soft wave function had been compressed (or “prepared”’)
into the region b?<1/Q?% The mathematics shows that
the concept of ‘“small” applies only during the hard
scattering (S) and indeed only to the three-quark com-
ponent selected by the hard scattering. The instant the
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(a)

(b)

FIG. 1. Cartoons of different approximations. (a) In the im-
pulse approximation, we need the overlap from an initial-state
pancake onto a hard scattering (small circle) and then onto a
final-state pancake. (b) In the adiabatic approximation, the sys-
tem is gradually prepared to a small size which can interact
with the hard scattering and then expand.

hard scattering is over, we want the overlap onto the en-
ergy eigenstate, which is ‘“big,”” namely, a normal hadron.
The popular picture of compressing all the soft com-
ponents into a small system, by superposition, would,
however, apply in the adiabatic limit, a case in which the
system has unlimited time to react [Fig. 1(b)]. But in the
impulse approximation the system itself does not have
time to react, and it would not be right to invoke an un-
certainty principle such as Ax Ap, > 1 to estimate the size
of the eigenstates. Although our presentation of the im-
pulse approximation implicitly contradicts some of the
“uncertainty principle” logic dominating discussions, we
think it is correct. As mentioned above, the uncertainty
principle can lead to unreliable conclusions.!

Now we turn to the color-transparency experiment
deep in a nuclear target. Our goal is to see what can be
learned from the transparency ratio, which is the ratio of
reaction rates inside the nucleus to the corresponding
free-space rate. The hard scattering and impulse approx-
imation are the same as in free space. However, the dis-
tribution amplitude knows about the nucleus and should
be different [4]. Models of color transparency are models
for the distribution amplitude in interaction with the nu-
cleus.

IFor example, certain estimates of the expansion time used in
Ref. [5] actually violate causality, inasmuch as the quarks ex-
pand at a speed greater than light in the hadron rest frame and
in a broad family of boosted frames. Careful definitions need to
be made to obtain reliable estimates.

The physical picture of what is happening depends on
the quantum-mechanical basis. There are three relevant
choices for the basis to use. (1) One can use the Fock-
space basis of the perturbative theory. This is the good
basis for the hard scattering and, in fact, the only one in
which we know the hard scattering. However, it is not a
good basis for the subsequent time evolution of a relativ-
istic light-quark system, which is nonperturbative. (2)
One can use the free-space basis of noninteracting ha-
dronic asymptotic states. Here we need the overlap of
three quarks separated by a distance of order 1/Q onto
the free-space proton and all other free-space states with
the right quantum numbers that evolve into a proton at
infinity. (3) One can use the fully interacting basis. By
the interacting proton we mean the exact energy eigen-
state that becomes a proton at infinity in interaction with
the nucleus. (We do not mean the eigenstates in infinite
nuclear matter, because these would have to be patched
onto outgoing states. We mean the exact scattering
eigenstates with finite-size nuclear effects and all.) In this
basis we need the overlap of three quarks separated by a
distance of order 1/Q onto the interacting proton.

A conventional choice of basis for modeling tran-
sparency is (2), the free-space one. Jennings and Miller
[6], for example, show that for the proton and a few ex-
cited states, destructive interference of nuclear forces
among the outgoing states can lead to color transparency.
As implemented so far, this procedure can be interpreted
as a “proof-of-principle” transcription of the expected re-
sult onto the hadronic basis: The off-diagonal couplings
between states and phase relations leading to destructive
interference of the outgoing protons’ interactions are not
so much predicted, but rather constructed to give the
desired result. In the same basis, the Ralston-Pire ap-
proach [2,4] uses the few-quark perturbative cross section
to estimate the survival amplitude of a free-space proton
upon crossing the nucleus and being filtered by interac-
tion with it. In this way one can confirm the semiclassi-
cal intuition predicting color transparency in the very-
high-energy (frozen) limit. In the frozen limit, any cou-
pling and mixing of channels becomes negligible because
of time dilation.

On the other hand, it is very interesting to consider the
calculation in the exact eigenstate basis, case (3). A4 priori,
little is known about the energy eigenstates of objects
with baryonic quantum numbers crossing the nucleus and
carrying many GeV of energy. (It is not safe to claim
their energy splittings AE =Am?2/2E, because this is an
approximation assuming the interacting dispersion rela-
tion is known, namely, E>=p2+m?. Perhaps the true
dispersion relation interacting with the nucleus is not too
far from this, but there is a problem of applying the ap-
proximation with a long “lever arm” far out on an uncer-
tain mass-shell hyperbola.)

The main advantage of the true eigenstate basis is that
there is no mixing of states. The concept of “expansion”
disappears in this basis. Plus, the impulse approximation
applies with a vengeance: we pay the price of coupling
the struck quarks onto the interacting states only once
(per leg), and the final-state evolution, filtering, and all
other interactions are included.
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The exact eigenstate basis allows us to state a result.
Consider the “transparency ratio” T, which is the ratio of
the measured rate in a nuclear target to the rate in free
space. (If there is an issue of oscillations or non-short-
distance contributions in the denominator [7], we assume
this has been taken out.) For definiteness, we are assum-
ing that the rate measured is the number of quasielastic
protons, which depends on the photon Q2. From our
analysis we can relate the measured transparency ratio T
directly to the relative probability of quarks to be at small
separation, namely,

T= ’<$p/A(b2< 1/Q2)>x‘2
(T, (> <1/Q)), 2

where ( ), indicates the convolution over the x variables
with the initial distribution amplitude and the known
hard-scattering kernel. Note that the leading power of
Q? of the hard scattering cancels out in the ratio. All
effects of color transparency, then, are coded into the
only available matrix element, namely, the wave function
for quarks to have b2<1/Q2. The experiment measures
what is basically a ratio of probabilities for quarks to be
found near the origin in the nuclear target, compared
with free space.

Equation (2) is one of the main results of this paper.
Suppose, for simplicity, we also consider a factorized
model of the x and b dependence of the wave function

By a(x,0)=0,, 4(b)ECx) .

This is not entirely compatible with detailed
renormalization-group predictions [3,8], but since loga-
rithmic effects will undoubtedly not dominate at the low
energies of the data, this is an acceptable ansatz. Then
the convolutions over x cancel out to some constants,
giving

) (2)

19,,4(b%<1/Q%)
[9,(b2<1/Q%)

T =const X (3)

It says that if the transparency ratio increases by a factor
of 2 going from Q3 to Q32 say, then the ratio of wave
functions squared, namely, the probabilities of the in-
teracting eigenstates, has increased by a factor of two
over the spatial region of b%><1/Q?% By taking ratios of
ratios, one can map out the wave function near the ori-
gin, up to the uncertainties caused by the x dependence.
To a good approximation, the region mapped out is b=+
fm (GeV /Q). Equation (3) depends on the factorization
ansatz Y(x,b)=y¥(b)&(x), but Eq. (2) is an “exact” re-
sult of the impulse approximation, inasmuch as we have
not made further approximations. It is quite simple, but
a point that has not received serious attention.

We now turn to what data can teach us.

(a) If transparency increases with energy. From Eq. (2)
we can make a surprising deduction about the exact in-
teracting eigenstates. Consider the region of energies
1 <E <20 GeV, where every theoretical model (so far) of
relativistic quark systems predicts that the transparency
ratio rises approximately like a power of the energy. Sup-
pose, moreover, that this prediction is correct. Then the
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quark overlap wave function near the origin of the exact
eigenstates is a strong function of the energy, rising like a
power.

This is a rather strange and unprecedented
phenomenon in a relativistic bound state. One would ask
whether the flow of probability toward the origin occurs
because the probability in the three-quark sector is ap-
proximately conserved, while flowing to the origin, and
the system is truly becoming “mini.”” Another possibility
is that the system is full sized and the central region sim-
ply rises. A third possibility is that the average size does
not change, but that the three-quark wave function devel-
ops a “spike.” These possibilities are sketched in Fig. 2;
the transparency ratio itself cannot distinguish between
them.

This brings up the distinction between the relativistic
quark system and the heavy-quark meson. For a heavy-
quark system such as charmonium or upsilon, the fully
interacting state may be a simple nonrelativistic few-body
system. The reduced attenuation predicted by perturba-
tive decoupling then applies to a dominant part of the
wave function. Thus we find that the prediction of tran-
sparency [9] is much more reliable here. As remarked by
others the observation of transparency phenomena in
QED [10] adds weight to the prediction, without adding
information about the issues of relativistic bound states.
Nevertheless, there are currently several predictions, in-
cluding decreasing transparency, when all possible reso-
nant states are brought into the problem [11].

Other measures of the transverse size of the hadron
could possibly settle the question of the smallness of the
interacting state. For one thing, the transverse spread of
the detected final-state momentum distribution is a mea-
sure of final-state interactions, convoluted with Fermi
motion. If the proportion of processes obeying the had-
ron helicity conservation rule [12] increases with Q2, then
the system is likely becoming more “small” [13]. All of
this is in accord with conventional thinking, in which nu-
clear filtering plays a role of reducing the size of the in-

Ub)

FIG. 2. Illustrations of possible nonperturbative few-quark b
space wave functions that could lead to color-transparency ra-
tios that rise with energy. Long-dashed line: a normalized
wave function, showing probability flow toward the origin with
increasing energy, compared with the conventional hadron
(solid line). Dot-dashed line: a wave function for a full-sized
system with a rise in the central region. Short-dashed line: de-
velopment of an increase in the wave function at the origin by a
spike at the origin.
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teracting system and enriching the three-quark com-
ponent. It would confirm that the concept of nuclear
filtering is inseparable from color transparency. Howev-
er, contrary to cherished belief, it is not the only possibil-
ity.

(b) If transparency is constant with energy. If tran-
sparency ratios are constant, it is telling us that the
three-quark wave function at the origin is constant.
There are a number of logical loopholes so that this
might happen.

Recall the motivation for transparency: The small per-
turbative cross section of the small-b region of a few-
quark color singlet allows one to relate the nuclear distri-
bution amplitude to the free-space one [1,4]. By follow-
ing this perturbative logic, one comes to a nonperturba-
tive conclusion about the interacting wave functions.
The conclusion is very reasonable, because the region of
the color singlet near the center is not filtered away. But
this does not precisely say that the interacting state is ever
small because the rest of the fully interacting proton may
not be specified by the three-quark component. Nor does
high energy save us: The time scale for forming the in-
teracting proton energy eigenstate is not the nuclear
crossing time, but infinity.

Indeed, nonperturbative properties are not necessarily
dependent on any perturbative result. Energy eigen-
states, in particular, require infinite time to define. A
small perturbation acting over a long enough time can
usually upset a perturbative result. Back in the free-
space (1) basis, this same long-time problem also appears,
because superposition is responsible for so much in this
basis: not only is mixing complicated, but multiple
reflections from the nuclear edges, expansion, reshrink-
ing, and probability back flow from excited states needs
to be included coherently, all the way out to infinity.
Such effects have been mentioned [2,11], but are not yet
well controlled by calculations on the market. Simply
put, it may not be important to the interacting system
that the lowest quark projection has a small cross section.

If transparency were constant with energy, we would
find that the transmission of eigenstates through nuclear
media is not affected by the reduced interaction of the
three-quark part. In fact, we already know that the total
cross sections of hadrons are fairly constant with energy
over the region of interest. The total cross sections are
dominated by the multiquark components. After divid-
ing out the oscillations, the data of Carroll et al. [14]
show a flat energy dependence of pp — pp scattering in a
nucleus, consistent with this (Fig. 3). Moreover, both the
data of Carroll et al. and the preliminary data of SLAC
NE18 [15] measure the transverse momentum distribu-
tion (of outgoing proton momenta about the measured Q
vector), which is interpreted as originating in the Fermi
motion of the target. The data show the puzzling
phenomenon of scaling with Q2 that is, the data lie close
to the same curve when one goes from one Q2 to another.
Actually, these data represent the convolution of the Fer-
mi motion with final-state interactions of the outgoing
proton. Why apparently don’t final-state interactions de-
pend on Q?? Naive transparency predicts decreased in-
teractions and no scaling. A constant transparency
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FIG. 3. Data from the Brookhaven experiment of Carroll
et al. (Heppelmann [14]) showing the energy dependence of s'°
do ,/dt for proton nucleus quasielastic scattering
[pA—p'p"(A—1), A=27]. The plot shows that the cross sec-
tion in the nuclear target scaled by s'°, which is the transparen-
cy ratio (T) times the free space cross section do /dt with the
same scaling, is rather flat with energy.

might be expected, and perhaps has already been seen, if
the three-quark component is not autonomously evolving
in nuclear interactions, but instead is a mere slave driven
by the interactions of the proton with itself.

(c) If transparency decreases with energy. This is an
unusual possibility, but we list it to emphasize that the re-
lation (2) remains useful even if there are disappointing
surprises. One can easily come up with scenarios to in-
terpret a decrease of the wave function at the origin. In
the case of nonrelativistic systems such as charmonium,
transparency decreasing with energy has been obtained
[11] as a result of strong mixing of resonances in the
free-space eigenstate basis. This translates to a prediction
that the exact interacting eigenstate is strongly mixed, if
correct. For light-quark systems, nuclear filtering should
decrease the multiparton components, perhaps destabiliz-
ing the unknown processes which feed the three-quark
amplitude. Since so little is known, we just give an exam-
ple to make the point: In diagonalizing the interacting
proton, suppose we found the coupling of the three-quark
plus multigluon sectors made a huge difference for the
three-quark amplitude at the center. This sort of thing is
not impossible, and as long as we have no reliable theory
of the relativistic three-quark amplitude, it should be
considered. Then, disturbing the balance of these com-
ponents by filtering, the energy eigenstate reflects the
change by reducing the amplitude at the origin, with ap-
parently catastrophic results.

From the list above, one sees that one can use pertur-
bative QCD, require the reduced interaction of a small
three-quark color singlet, and yet doubt the prediction
that the wave function at the origin grows rapidly with
energy. Color transparency is not so much a prediction
of QCD, but rather a prediction of imperfect models of
QCD. The most positive thing that can happen is in-



3812

creasing transparency, because it would allow us to con-
tinue with the belief that the three-quark component of
the proton is an important part.

However, one could equally well surmise, on the basis
of cross-section data, that the interacting wave functions
near the origin will be fairly independent of the energy.
Given the current theoretical attitude, this can be con-
sidered speculative and bizarre, but it is a view by which
Glauber theory might be vindicated in the end. What is
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needed is data, which we claim will measure something of
value regardless of the predictions.
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FIG. 1. Cartoons of different approximations. (a) In the im-
pulse approximation, we need the overlap from an initial-state
pancake onto a hard scattering (small circle) and then onto a
final-state pancake. (b) In the adiabatic approximation, the sys-
tem is gradually prepared to a small size which can interact
with the hard scattering and then expand.



