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Chiral quark soliton model and flavor-asymmetric qq sea in the nucleon
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By making full use of the advantage of the chiral quark soliton model, we investigate the Aavor struc-
ture of the sea-quark components in the nucleon. First, through the analysis of the charge distributions
of the proton and neutron, we demonstrate that the efFect of sea quarks incorporated in this model can
be identified with that of the cloud of pions surrounding the core of three valence quarks. Next, not only
the integrated value but also the spatial structure of the qq scalar condensate in the nucleon is studied
with emphasis upon the separate functions of the valence and sea quarks. The enhancement of the dd
scalar condensate relative to the uu one in the proton is shown to be consistent with QCD phenomenolo-

gy. We have also carried out a theoretical analysis of the Gottfried sum on the basis of the chiral quark
soliton model and obtained a satisfactory agreement with the recent New Muon Collaboration measure-
ment.

PACS number(s): 13.60.Hb, 11.30.Rd, 12.40.Aa, 13.40.Fn

I. INTRODUCTION

In constructing a low-energy effective theory of QCD,
an important question is which aspects of QCD should be
taken in among others. Quark confinement would cer-
tainly be a fundamental nature of the QCD Lagrangian,
but in most cases low-energy properties of hadrons are
rather insensitive to the mechanism of confinement, once
the hadronic wave functions with damping tail can be
successfully constructed. On the contrary, the long histo-
ry of hadron physics tells us that no theory of hadrons
could be realistic without taking account of the spontane-
ous chiral-symmetry breaking of the QCD vacuum. The
nonvanishing quark condensate and the appearance of
the Nambu-Goldstone pions are characteristic features of
this chiral-asymmetric vacuum. The appearance of this
nearly massless excitation is naturally expected to have
significant effects also on the properties of baryons.
Shuryak even emphasized that spontaneous chiral-
symmetry breaking determines not only the long-range
part of hadronic physics (the one-pion-exchange forces,
etc.) but also turns out to be the key ingredient for under-
standing the opposite limit, providing the main nonper-
turbative corrections to the correlation functions in the
QCD vacuum at small distances [1].

Some years ago, Diakonov and co-workers proposed a
model of the nucleon based on an extremely simple
effective chiral action which incorporates the above
features of low-energy QCD [2,3]. This effective action
contains only two residual effective degrees of freedom
parametrizing the low-energy QCD: i.e., the Nambu-
Goldstone pion and the quarks. (The gluon fields are in-

tegrated out to obtain this effective action, and in this
sense they are contained in it as implicit degrees of free-
dorn. ) The pion field, which is treated at the classical lev-

el, plays the role of the Hartree-type mean field for
quarks to form a solitonlike bound state [3—10). The
nontrivial topology of this Hartree potential makes the
above bound state closely resemble a Skyrrnion, although

one should not also forget about crucial differences be-
tween them [10,11].

From a practical viewpoint, the greatest advantage of
the chiral quark soliton model is that it enables us to
solve the nucleon bound-state problem with full inclusion
of the Dirac-sea-quark degrees of freedom. Moreover,
owing to the fundamental nature of the model, the in-
duced polarization of the Dirac-sea quarks has an inti-
mate connection with the cloud of pions virtually excited
around the core of three valence quarks inside the nu-
cleon [12,13]. (The Skyrme model also takes account of
such effects of pionic cloud. However, it has been argued
that the lack of the valence quark concept in this model
sometimes misses important physics [10,11).) This
unique feature of the model should in principle be tested
through observations.

In recent short articles [12,13], we have tried to clarify
this deep connection between the pionic and sea-quark
components in the nucleon through the analysis of vari-
ous QCD phenomenology in the low-energy domain. The
present paper is a more complete report of these studies,
including the detail of the method of calculation as well
as more thorough explanation of the physics behind. The
paper is organized as follows. First, in Sec. II, we review
the basic physics of the chiral quark soliton model. Al-
though the material here has considerable overlap with
that in our previous paper [8], we think it useful to un-
derstand the discussion in the following sections. Next,
in Sec. III, the charge distributions of the nucleon (espe-
cially that of the neutron) are investigated with the spe-
cial intention of revealing the role of the Dirac-sea
quarks. This analysis demonstrates in the most transpar-
ent fashion that the effect of sea quarks incorporated in
this model automatically simulates that of a pion cloud
surrounding the core of three valence quarks. The elec-
tric form factors of the proton and the neutron are also
calculated and compared with experimental data.

In Sec. IV, we investigate the quark condensate in the
nucleon. We emphasize that the chiral quark soliton
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model naturally predicts the spatially varying quark con-
densate inside the nucleon. It is demonstrated there that
this local structure of the qq condensate can be under-
stood as an interplay of the valence and sea quark degrees
of freedom. The spatial integrals of the qq condensates
are known to be related to interesting observables such as
the m.N X term etc. We shall calculate these quantities
and compare them with the existing empirical informa-
tion. We also try to obtain the separate knowledge of the
uu and dd condensates, which turn out to give important
information on the isospin asymmetry of the qq sea. In
Sec. V, the physics of the Gottfried sum is shortly re-
viewed and our analysis based on the chiral quark soliton
model is reported. Finally, some concluding remarks will
be given in Sec. VI.

S,e[ U] = —iN, Sp ln
(ij8 —MU ' —m)

(i8 —M —m )
(2.4}

The standard proper-time regularization means the re-
placement [14—19]

S,s[U]~ iN—,f q)(r)Sp[ —e ' ],
7

(2.5)

where

DtD=(/+M +mM(U '+U ' —2)+iMrIU ', (2.6)

DoD =8 +M

Here y(r) is a cutoff function satisfying the condition
y(0) =0,qr( 00 ) = 1. By using the derivative expansion
technique, it is easy to show that

II. THE CHIRAL QUARK SOLITON MODEL

The chiral quark model is specified by the vacuum
functional [2,8]

X,s[U]- 1

f2

N, M 2

y(r)e ™—(8 n)4~' 2

Z= f2)m2)$2)g exp i f d x P(i8 MU —' m)P— 4~ N M d7,Q2. q(r)e

where

(2.1) + o ~ ~ (2.8)

ir5r mfx)/fUx=e (2.2)

Here 1(t(x) and n.(x) stand for the quark and pion fields,
respectively. The absence of the kinetic term for the
latter field implies that it is not an independent field of
quarks, but is eventually interpreted as a composite field
in the qq channel. In addition to the dynamical quark
mass M, which is assumed to be generated through the
spontaneous chiral-symmetry breaking of the QCD vacu-
um, here we have introduced a small but finite bare quark
mass m, so as to reproduce the physical pion mass. (See
below. } The effective quark mass in the physical vacuum
(U = 1) then becomes M =M +m. Including an intrinsic
physical cutoff' A, the model contains four parameters:
M, m, f, A. Throughout the study, we always set

f =93 MeV. On the basis of the instanton picture of the
QCD vacuum, Diakonov and Petrov argued that the
reasonable value of M is around 350 MeV [2,3]. In the
following, we regard it as an adjustable parameter within
the range M =(350—450) MeV. (We recall that this pa-
rameter plays the role of the quark-pion coupling con-
stant, which controls the character of the resultant soli-
ton solution [3,8].) To determine the remaining parame-
ters, we make use of the derivative (gradient) expansion
technique for obtaining effective meson actions [14—19].
We require that the effective meson action derived from
the vacuum functional (2.1) reproduces both the kinetic
and mass terms of the pion field with the correct
coefficients. To this end, let us first define the effective
meson action S,s[ U]—:fd x X,s.[ U] by performing the
path integration over the quark fields:

, ( )
(2.3)

where only the lowest-order terms relevant for our argu-
ment below are explicitly shown. Requiring that this
effective meson Lagrangian reproduces the kinetic and
mass terms of the pion field with the correct coefficients,
we are led to the two conditions

M
2

N -« —,u2f = y(r)e
4 o

f m N, M
p(r)e ™

m 2m

(2.9)

(2.10)

(Pg)„„= (E„„[m]/V), (2.11)

[Here the misprint of Eq. (4) in Ref. [13] has been
corrected. ] Assuming the cutoff function of the simplest
form q&(r) =8(r 1/A~) (w—hich corresponds to
Schwinger's proper-time cutoff in the original form), the
above two relations can be used to determine A and m.
Their numerical values are A=1.85M, 1.71M, 1.59M,
1.50M, 1.42M, and m =14.2, 15.0, 15.7, 16.3, 16.8 MeV,
respectively, for M=350, 375, 400, 425, 450 MeV. We
have no freedom of taking other values of m, as far as we
require that the pion mass is reproduced with the sim-
plest choice y(r)=8(r 1/A ) for the—cutoff function.
The resultant bare quark masses are about two times as
large as the generally accepted value deduced from the
current-algebra analysis, i.e., m =—

—,'(m„+md)=7 MeV
[20]. This in turn means that the vacuum quark conden-
sate is underestimated for the above choice of the regu-
larization function. To see this, notice first that from Eq.
(2.1), the vacuum quark condensate ( fg )„„= (0~uu +dd ~0) can be obtained as

This gives where
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E„„[m]=8
'—f —&p(r }ge

4&m

with ek =')i k +M, M =M+ m. This gives

(2.12)

—(Oluu+ddlO&= ', f q(r)e ™.(2.13)
2m

Combining Eq. (2.13) with Eq. (2.10), we then obtain

The presence of the potential term proportional to ~-r
destroys both the angular momentum and isospin symme-

try. That is, the above Dirac Hamiltonian commutes
with neither the angular momentum operator J nor the
isospin operator r for quarks [23—26]. A linear combina-
tion of them, E=J+—,'~, called the grand spin, however,

commutes with H. As a consequence, the eigenstates of
H are specified by the parity, the magnitude of the grand
sPin, and its Projection Mx as [26]

f~ = y—m(Oiuu+ddiO&, (2.14) (2. 18)

The quark field then obeys the Dirac equation

(2.15)

with y =(1+m iM) '. Except for the factor y, which is
thought to be a higher-order correction to the chiral per-
turbation theory (its numerical value is very close to 1),
this is the celebrated Gell-Mann —Oakes —Renner relation
[21]. It is known that since the left-hand side (LHS} of
Eq. (2.14) depends only on physical observables, the prod-
uct of the current quark mass and the vacuum quark con-
densate should be renormalization scale invariant. As
pointed out above, the proper-time regularization scheme
with the simplest choice p(r) =8(1—1 iA ) leads to
larger bare quark mass as compared with the standard
current algebra estimate. Consequently, the numerical
value of the vacuum quark condensate is necessarily un-
derestimated. Taking M=375 MeV, for example, we
have (Oiuu ~0& = (O~dd ~0& = —(179 MeV), while the
empirical estimate with m =7+2 MeV gives
(Oiuu i0& = (Oidd ~0& = —(225+25 MeV) [20]. This
problem could be circumvented by making use of the
freedom of taking a more general form of the cutoff func-
tion y(r) [22]. For simplicity, here we use Schwinger s

proper-time regularization function in the original form.
[We shall report elsewhere on the cutoff function depen-
dence of the final physical predictions, which turned out
to be very weak once the above physical conditions (2.9}
and (2.10) were imposed. ] It should be emphasized that
the derivative expansion is used only to fix the parame-
ters of the model. We shall never use it to obtain the
8=1 soliton solution. In fact, it is known that the
effective meson action obtained by truncating the deriva-
tive expansion has no stable soliton solution.

Now let us briefly review how we can construct the
physical nucleon and how we can calculate its properties
on the basis of the effective action (2.1) [3]. We expect
that this short review would be useful for the readers to
understand how the isospin asymmetry in the qq sea in

the nucleon arises in this extremely simple model and
how it can be calculated in a nonperturbative manner.
We start with a static pion field (mean-field) configuration
of hedgehog shape as

with E =0—,1—,2 —+
, . . . . A characteristic feature of

the above Dirac equation is that one deep single-quark
bound state having the quantum number of K =0+ ap-
pears from the positive-energy continuum [26]. We call it
the valence quark orbital. An object with baryon number
one with respect to the physical vacuum is obtained by
putting N, ( =3) quarks into this valence orbital as well as
all the negative-energy (Dirac-sea) orbitals. (This 8=1
object is sometimes called the quark hedgehog. ) Accord-
ingly, the total energy of this quark hedgehog is given as

E.t.t;.[U]=&,EO[U]+Evp[U] . (2.19)

Here Eo represents the energy of the valence quark level,
and therefore X, times Eo gives the valence quark contri-
bution to the static energy. On the other hand Evp
stands for the vacuum polarization contribution. Regu-
larizing it in the proper-tiine scheme, we have

Evp[ U] = —f —y(r) ge —ge

E„„;,[U]=0 .6
5F r

(2.21)

By using the explicit form of E„„;,[U], this leads to the
equation of motion

S(r )sinF(r) =P(r)cosF(r), (2.22)

with

S(r)=S„„(r)+Svp(r),

P(r) =P„,&(r) P+vp(r),

where

(2.23)

(2.24}

(2.20)

The energy of the true (U= 1) vacuum is subtracted here:

ek is the eigenenergy of the unperturbed Hamiltonian

Ho =H( U~ 1 ). —The most probable pion field

configuration (the self-consistent Hartree field) is now
determined on the basis of the stationary phase approxi-
mation [2—10]. Under the hedgehog assumption, this
gives the extremum condition

Hlm&=E Im&,

with

(2.16) (2.25)

u. VH= +MP[cosF(r)+gyp rsinF(r)]+mP ..
1

(2.17) (2.26)
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and the corresponding expressions for P„,|(r) and Pvp(r)
are obtained from S„,|(r) and Svp(r) with the replace-
ment of y byiy y5r. r. In Eq. (2.26), g(E;A) is a regu-
larization function given as

g(E;A}=sgn(E }erf c(iE i/A},

which is obtained from the more general definition

—7.E
g(E )= —f —q)(r)E e

77 0

(2.27)

(2.28)

(2.29)

by making the special choice y(r)=e(1 —1/A ). Equa-
tion (2.22) combined with the Dirac equation (2.16)
reduces to a self-consistent problem which will be solved
by the iteration method [4-8]. After the satisfaction of
self-consistency, the hedgehog pion field, which was origi-
nally treated as an external background field for quarks,
becomes an implicit functional of the quark field.

The 8= 1 mean-field solution obtained as above cannot
yet be identified with the physical nucleon, since it does
not have good spin and isospin quantum numbers [2,8].
(The situation is entirely analogous to the classical solu-
tion of the Skyrme model [27,28].} This is due to the de-

generacy of the soliton energy under the SU(2)-isospin ro-
tation. To obtain a baryon state with good spin and iso-
spin, this zero-energy mode must be quantized. It can be
achieved by considering a time-dependent isorotation of
the symmetry-breaking mean field [2,8]:

U(x, t)=A(t)U(x)At(t) .

velocity operator defined by

Q=r A A =
—,'Q, ~, , (2.31)

J(J+1)
2I

(2.32)

Here I is the moment of inertia introduced through the
quantization rule:

J0 ~——
a (2.33)

It is given as a sum of the valence and vacuum polariza-
tion contributions:

I=I..i+iv p

with

(2.34)

with 3 =(d/dt)A(t). The quantity id, H—+0 in Eq.
(4.2} corresponds to the Dirac Hamiltonian in the isoro-
tating system, and then H —0 is the familiar cranking
Hamiltonian with 0 the analogue of the Coriolis force
[29]. To obtain the energy of the rotating soliton, we an-
alyze the energy change of the quark hedgehog induced
by the isorotation, by treating the Coriolis coupling as an
externa1 perturbation. The first nonvanishing correction
to the static energy results from the second-order term in
Q. This leads to the expression for the energy of the
quantized soliton with the definite angular momentum as
[3,29]

Here U(x) is the stationary pion field configuration of
hedgehog shape obtained before. 3 (t) is a time-
dependent SU(2) matrix characterizing a global rotation
in isospace. By using Eq. (4.1), the Dirac operator
D = it) M— U —' is expressed in the form

2 E E—
mPO m 0

Ivp= gf(E,E„;A)(nir3im)(mir3in) .
m, n

(2.35)

(2.36)

D=A(t)y (iB, H+Q)A (t—), (2.30)

where H is the time-independent Hamiltonian introduced
in the preceding section, while 0 is the collective angular

Here im ) denote the eigenstates of H, while i0)
represents the valence quark level. The cutoff function
f(E~,E„;A) with the choice qr(r)=e(1 —1/A ) is given
as

sgn(E )erfc()E i/A) —sgn(E„)erfc( iE„i/A)f(E,E„;A)=
m n

E2 yP2 E2gA2
2 e —e—A

E2 E2 (2.37)

For more general form of y(r), this function should be replaced by

f(E,E„)= — —f —y(r)

—7E —7.E

E +E„
1 e+—
7 E2 E2

—rE —7.E2 2—e
(2.38)

The induced Coriolis coupling, which generates a change in the intrinsic quark wave functions, also gives some
influences on any physical quantities. These effects are again estimated under the assumption of slow isorotation, i.e.,
by truncating the power series expansion in Q. Retaining terms up to the linear order in 0, we are led to the following
general formula which enables us to evaluate the nucleon (and b, ) matrix element of arbitrary quark bilinear operator
0O "0 [8]:

(J J;r3io HAJJ, T, ) = fdg, +,",' [g, ]o"[gA]+",'T, [4~] (2.39)
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where
' 1/2

( 1) D(J) (g )
8m. 3 3

(2.40)

1s the wave function describing the collective isorotation of the quark hedgehog. The operator OI'[g„] ts agatn gtven as
a sum of the valence and vacuum polarization contributions:

0"[g„]=0"„,
1 [g„]+0 vp [g„],

with

o&„[g„]-N,(oI A'y'0 ~A Io)

(OIr. Im &(mI A'y'0 &A IO&
+N, g —Q„

m%0 E —E0

(2.41)

(2.42)

0(vp[g„]—— gg(E;A)(n I
A y 0 "A In )

n

+ gf(E,E„;A) —Q„(nIr, Im)(mIA y 0 "A In)
m, n +

(2.43)

The physical meaning of the above formula can be easily
understood from the schematic diagrams depicted in Fig.
1. Here Fig. 1(a) corresponds to the valence quark con-
tribution 0"„,1[(„],whereas Fig. 1(b) to the vacuum po-
larization one Ogp[gg ]. [To be mole pt'ec1se ow1ng to
the introduction of the finite momentum cutoff, the
second term of (2.43) contains some other minor contri-
butions that do not correspond to the second diagram of
Fig. 1(b}.] All the physical quantities investigated in the
following sections can be evaluated by using the above
general formula together with the expression of the mo-
ment of inertia.

n
0

&&m

III. NUCLEON CHARGE DISTRIBUTIONS

%e are interested here in the nucleon charge distribu-
tions [13]. The relevant quark bilinear operator is the
charge density operator given by

1)'I (X) +—$(x)
2X, 2

with N, ( =3) the independent color numbers of quarks.
It is convenient to treat the isoscalar and isovector part
separately. Owing to the peculiar hedgehog nature of the
mean-field potential, the dominant contribution to the
isoscalar part arises in the zeroth order in the collective
angular velocity Q [8], whereas the isovector part sur-
vives only in the first order in Q. Consequently, the
theoretical expression for these two quantities have rath-
er dissimilar structure as shown below. First we show the
formula for the isoscalar charge density:

(a)

( I 0 )
( r ) p

( I 0 )
( r ) +p

(I 0 )
( r )

where

(3.1)

(I =0) 5( I
x

I
r )

Pva) 0
7

(3.2)

n

O + 0 + ii n
Pvp (r)= — gg(E;A} m —

1 m(I =0) 1 5(IxI r)—
2. 1

(3.3)

(b)

FIG. 1. The schematic diagrams representing the contribu-
tions to the matrix element of the operator ()'IO„Q. (a) and (h),
respectively, corresponds to the valence and vacuum quark con-
tributions.

(I=1)(r) (I=))( )+ (I=))(
)P Pva1 Pv p

where

(3.4)

Here Im ) and E denote the eigenstates and associated
eigenenergies of the single-quark Dirac equation (2.16}.

The theoretical formula for the isovector charge is
slightly more complicated. It is given in the form
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p'„'„="(r(=— ' x (o(,(m &(m
m&0 m 0

5( [x[ r—) 0
r

(3.5)

pyp (&)= xf(E,E„;A((n lrzlm ) m r, 2 nl .
(I=&) 1 Nc g/x/ —r)

m, n r
(3.6)

Here I is the moment of inertia of the soliton that ap-
pears through the quantization procedure of the collec-
tive iso-rotation.

The numerical algorithm of Kahana and Ripka ensures
practical utility of the above formulas [26]. Following
them, the plane-wave basis, introduced as a set of eigen-
states of the free Hamiltonian Ho =a 7 li +P( M+m ), is
discretized by imposing an appropriate boundary condi-
tion for the radial wave functions at the radius D chosen
to be sufficiently larger than the soliton size. The basis is
made finite by including only those states with the
momentum k as k (k,„. The eigenvalue problem (2.16)
is then solved by diagonalizing the Dirac Hamiltonian H
in the above basis. We are thus able to solve the self-
consistent Hartree problem and also to calculate any nu-
cleon observables with full inclusion of the sea-quark de-
grees of freedom. The stability of the final answer against
further increase of D and k,„has been carefully
checked.

This numerical method works remarkably well for the
calculation of the isoscalar charge density [4—7]. Ac-
cording to the classification in Ref. [8], this isoscalar
charge density operator is that of the first type. The vac-
uum polarization contribution to such quantities can be,
calculated by performing a single sum of the diagonal
matrix element over all the quark orbitals. On the other
hand, in order to calculate the vacuum polarization con-
tribution to the isovector charge density (this is an opera-
tor of the second type), we must perform a double sum of
the product of the nondiagonal matrix element. As was
explained in Ref. [8], the calculation of such quantities is
rather involved, because of the mixture of the "spurious"
vacuum contribution resulting from the unphysical
boundary effect of the plane-wave basis of Kahana and
Ripka. The detailed analysis described in Ref. 8 shows
that a simple subtraction procedure

p' "( ) p' ="( ) —p" " (;&= I) . (3.8)

(3.7)

works well in the calculation of the moment of inertia. In
the present problem, this means the replacement

In a recent paper, Goeke et al. proposed another simple
prescription for eliminating "unphysical" vacuum contri-
bution to the moment of inertia [30]. According to them,
the problem is circumvented by rewriting the matrix ele-
ment &n~r3~m & as

&n[[H, r, ](m &

&n(r, /m&= (3.9)
n m

and evaluating the right-hand side. Here it should be un-
derstood that the matrix element in the RHS is calculated
after analytically evaluating the commutator. We have
verified that this method and our previous method give
the same answer within 1% for large enough values of D
and k,„. This new method due to Goeke et al. however
seems to be superior in the case we need to calculate
quantities having slowly damping tail such as the isovec-
tor square charge radius. As pointed out by them, this is
probably because the analytical evaluation of the commu-
tator [H, r3] introduces a natural cutoff at long distances
larger than the soliton size and the unphysical boundary
effects are removed. We solved the self-consistent Har-
tree problem for several values ranging from 350 to 450
MeV. The calculation here introduces a finite bare quark
mass m, which was discarded in our previous paper [8].
We show in Table I, the theoretical prediction for the
moment of inertia as a function of the dynamical quark
mass M. The corresponding values for the Nh mass
difference, which are given as 3/2I, are also shown. One
sees that the moment of inertia is a decreasing function of
the mass parameter M [8,30]. The choice M =425 MeV
approximately reproduces the Nh mass difference. We
however think it premature to regard it as the most
favorable value for the model parameter M. It may be
safer to think that this gives an upper bound for M, since
the residual one-gluon-exchange interaction (not fully in-
corporated into the Lagrangian of the chiral quark mod-
el) might also contribute to the Nh mass difference.

Shown in Fig. 2 are the isoscalar (a) and isovector (b)
charge densities. (These figures as well as Figs. 3 and 4
are taken from Ref. 13.) In both figures, the dotted and
dash-dotted curves stand for the valence and vacuum po-

TABLE I. The moment of inertia and the N —6 mass difference as functions of M.

M (MeV)

350
375
400
425
500

ival

0.00755
0.00567
0.00470
0.00405
0.00357

Ivp

0.00113
0.00121
0.00126
0.00128
0.00130

ltotal

0.00868
0.00688
0.00596
0.00533
0.00487

M~ —M& (MeV)

173
218
252
281
308
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larization contributions, while their sum is shown by the
solid curve. One immediately finds that the vacuum po-
larization contribution to the isoscalar charge density is
very small for the self-consistent solution obtained here
[5,7]. On the contrary, the vacuum polarization effect on
the isovector charge density turns out to be appreciable.
In particular, it dominates over the valence quark contri-
bution for r & 1.5 fm. It is also instructive to examine the
integrated charge. The spatial integral of Eq. (10) gives

0.1 5—

0.1 0

E

0.05
C

O

/X

I
g

I

I l
1

I \

neutron charge density

valence

2.5

(3.10)

where the first and the second terms on the RHS, respec-
tively, correspond to the valence and vacuum polariza-
tion contributions to the isovector charge. (Their sum is
unity since I=I„,&+Ivp, where I„,& and Ivp are, respec-
tively, the valence and vacuum polarization contributions

—0.05

FIG. 3. The neutron charge density with M=425 MeV. The
curves have the same meaning as in Fig. 2.

0.5

0

1.0—
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Nl =425

valence

sea

total

1.0 15

r (fm)
I

20

valence

sea

isovector charge density

lvl =425

f dr r pv'p= '(r)~ ——gsgn(E ),
m

(3.11)

which counts the difference between the numbers of the
positive- and negative-energy levels [31,32]. Assuming
that the valence level lies in the energy range 0 & Eo &M
[which means that no single quark level crosses zero ener-

gy as the background potential U(x) is adiabatically
changed from the vacuum value (U = 1) to the self-
consistent one], the RHS of Eq. (3.11) is clearly zero.

to the total moment of inertia. ) Numerically, we find
Iv p /I =0.24 for M =425 MeV. (See Table II for the pre-
dictions for other values of M. ) This roughly means that
about 24% of the nucleon isovector charge (or the iso-
spin) is carried by the Dirac-sea quarks. It should be
contrasted with the fact that the isoscalar charge or the
baryon number totally comes from the valence quarks.
This last statement is not very precise, however. Because
of the introduction of a finite cutoff, the vacuum polariza-
tion contribution to the isoscalar charge does not vanish
exactly. The reason is as follows. Under the presence of
the CP-violating static mean-field of hedgehog shape, the
energy spectrum of the Dirac equation is generally asym-
metric with respect to the positive and negative energies
(the so-called spectral asymmetry). In the infinite cutoff
limit of A —+ ~, the integrated vacuum charge reduces to

L

II

Q
C4

L

0.5
0.15-

0.1 0

E

neutron charge density

0.5 1.0 1.5 2.0

C
O

CV
L

0.0 5

FIG. 2. The nucleon isoscalar (a) and isovector (b) charge
densities calculated with the dynamical quark mass parameter
M =425 MeV. The dotted and dash-dotted curves, respectively,
stand for the valence and vacuum polarization contributions,
while the solid curve represents their sum.

—0.0 5

FIG. 4. The neutron charge density with M=375 MeV. The
curves have the same meaning as in Fig. 2.
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TABLE II. The isovector charge as a function of M.

M (MeV)

350
375
400
425
450

Valence

0.870
0.824
0.789
0.759
0.733

Sea

0.130
0.176
0.211
0.241
0.267

Total

1.000
1.000
1.000
1.000
1.000

However, the introduction of a finite cutoff combined
with the above spectral asymmetry necessarily lead to
nonvanishing vacuum polarization contribution to the
isoscalar charge (or the baryon number). This physically
undesirable consequence cannot be avoided as far as a
cutoff of finite value is introduced. The question is then
whether or not it is intolerably large. We show in Table
III the detailed contents of the theoretical isoscalar
charge as functions of M. The problematical vacuum po-
larization contribution to the isoscalar charge grows with
M. This is only natural, since the spectral asymmetry be-
cornes larger as the quark-pion coupling constant M in-
creases. The degrees of the violation of the baryon num-
ber is not extremely large even for the largest value of M.
It is (2.2—3.6) % for the favorable range of the model pa-
rameter, i.e., M=(375—425) MeV, and can be safely
neglected as compared with the precision of the model it-
self.

Returning again to the comparison of the isoscalar and
isovector charge densities, what is the physical explana-
tion of the remarkable difference between these two? The
answer lies in the old day's meson theory of the nucleon.
This tells us that the isovector charge density receives
large pionic effect, whereas the effect would be less im-
portant for the isoscalar density. (The pion is an isovec-
tor meson. ) As emphasized in our previous paper [8], the
vacuum polarization contribution in our chiral quark sol-
iton model simulates such pionic effects, since the pionic
degrees of freedom are incorporated as a composite qq
field that takes the form of the background potential for
quarks. Further support to this interpretation may be
obtained by investigating the neutron charge distribution
shown in Fig. 3. (It is obtained as the difference of the
isoscalar and isovector charge density, i.e.,
p'"'(r)= —,'[p' '(r) —p' ="(r)], so that a drastic cancel-
lation occurs between the valence quark contributions to
the isoscalar and isovector charge densities. ) The dom-
inant role of the vacuum polarization contribution, espe-
cially at large distances, is almost self-explanatory. In
particular, it gives a sizable negative contribution to the

charge density. This is certainly interpreted as simulat-
ing the effects of negatively charged pion cloud generated
through the virtual dissociation process n ~p+m at the
nucleon level of d~u+~ at the quark level. (In the
quark level description, the virtual dissociation process
u ~d+m+ is also expected to occur. Note however that
the neutron contains two d quarks and one u quark as
valence particles. ) To see the M dependence of the above
result, we also show in Fig. 4 the neutron charge distribu-
tion for a slightly smaller value of M, i.e., M =375 MeV.
A qualitative feature is unchanged, although the effect of
sea quarks is somewhat less drastic as compared with the
case of M=425 MeV.

Now that all the relevant charge densities are given, it
is quite easy to calculate the square charge radii of the
nucleon which can be compared with the existing empiri-
cal data. As noted above, since the isoscalar charge den-
sity is not properly normalized to unity after including
the vacuum polarization contribution, we have renormal-
ized it as p' '(r) ~Zp' '(r). [This tentative prescrip-
tion is used also in calculating the isoscalar electric form
factor. An alternative prescription is to use (without
justification) the unregularized expression for p' '(r)
which is finite and only slightly different from the regu-
larized one. ] The numerical values of Z are 1.022 and
1.038, respectively, for M=375 and 425 MeV. It is
equivalent to evaluating the isoscalar square charge ra-
dius &r'&, , as

(3.12)

Table IV shows the theoretical isoscalar and isovector
square charge radii as well as the square charge radii of
the proton and neutron. One sees that the best agree-
ment between the theory and experiment is obtained with
the dynamical quark mass parameter around M=375
MeV. To see it more carefully, however, we find that
there is no parameter M which reproduces the isoscalar
and isovector charge radii simultaneously. If the isoscal-
ar radius is reproduced, the isovector one is overestimat-
ed. On the other hand, if the isovector radius is repro-
duced, the isoscalar one is underestimated. We suspect
that the problem lies in the isoscalar radius. In the well-
known vector-meson-dominance (VMD) picture, the
external photon couples to the isoscalar charge through
the e meson. Then, if one introduces the e-meson de-

TABLE IV. The isoscalar and isovector square charge radii
and the square charge radii of the proton and the neutron in
dependence of M. All entries in [fm2]. For the experimental
numbers see [38] and references therein.

TABLE III. The isoscalar charge (or baryon number) as a
function of M. M (MeV) (r'&r=0 (r'&I = i

350
375
400
425
450

Valence

1.000
1.000
1.000
1.000
1.000

Sea

—0.015
—0.022
—0.029
—0.036
—0.045

Total

0.985
0.978
0.971
0.964
0.955

350
375
400
425
500

Experiment

0.723
0.583
0.512
0.464
0.428

0.62

1.098
0.903
0.826
0.768
0.727

0.86

0.910
0.743
0.669
0.616
0.578

0.74

—0.188
—0.160
—0.157
—0.152
—0.150

—0.12
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grees of freedom into the chiral quark Lagrangian, the
isoscalar charge radius may be replaced by [17,19]

1.0 (Q

(~2&,=o, +(~~&I=0
m„

(3.13)

Here ( r ) I 0 in the RHS is the square radius of the core
without the VMD mechanism. It has been pointed out
by several authors that this co-meson contribution offers a
possibility to explain the isoscalar charge radius with
rather small intrinsic core radius [33,34]. It is interesting
to investigate this problem in the generalized chiral quark
soliton model which minimally introduces the co-meson
degrees of freedom [35]. One might raise a question why
the isovector charge radius is not also increased by the
similar p-meson-dominance mechanism. A possible
answer may be as follows: the 2~ correlation having the
quantum number of p meson is already incorporated into
the model more efBciently than the 3~ correlation simu-
lating the effect of the co meson. We can expect this, for
example, from the experience of the analysis of the nu-
clear forces based on the Skyrme model [36,37]. The
definite conclusion will of course be obtained only after
investigating the model which includes all these freedom.

In Table V, we show more detailed contents of the
square charge radii for several values of M. Crucial im-

portance of the sea-quark contribution to the isovector
radius is evident. Naturally, its effect is most drastic for
the neutron charge radius. However, even the proton
square charge radius receives a sizable sea-quark contri-
bution. Large effects of sea quarks (or the effect of pion
cloud) on the square radius is due to its dominance in the
long-range region.

In Fig. 5, we show the theoretical predictions for the
proton electric form factor (it is a Fourier transform of
the charge distribution) together with the semiempirical
fit of Gari and Kriimpelmann [38]. A good agreement is

0.5

M =425
G-K
M =375

10
Q (fm )

15 20

FIG. 5. The theoretical proton electric form factors with
M=375 and 425 MeV in comparison with the semiempirical fit

by Gari and Kriimpelmann.

seen to be obtained for the parameter M=(375 —425)
MeV. In Fig. 6, the theoretical prediction for the neu-
tron electric form factor is compared with the recent ex-
perimental data by Platchkov et al. [39]. The theory ap-
pears to overestimate the experimental data in the whole
momentum transfer ranges. This is probably related to
our previous observation that the difference between the
isoscalar and isovector charge radius is overestimated by
the present model. It should be noted, however, that the
experimental uncertainties are very large for the neutron
form factor. In fact, it was determined through the
analysis of the electron scatterings on the deuteron tar-
get, and is strongly dependent on the theoretical model
(especially on the nucleon-nucleon potential) used in the
analysis. The experimental data in Fig. 6 were obtained
by Platchkov et al. with use of the Paris NN potential

TABLE V. The detailed contents of the square charge radii in dependence of M.

M (MeV)

350

Contents

Valence
sea

total

(r')i= 0

0.676
0.047
0.723

(r')a=i

0.875
0.223
1.098

0.775
0.135
0.910

—0.100
—0.088
-0.188

375
Valence

sea
total

0.534
0.049
0.583

0.629
0.274
0.903

0.582
0.161
0.743

—0.047
—0.113
—0.160

valence
sea

total

0.462
0.050
0.512

0.506
0.320
0.826

0.484
0.185
0.669

—0.022
—0.135
—0.157

425
valence

sea
total

0.414
0.050
0.464

0.426
0.342
0.768

0.420
0.196
0.616

—0.006
—0.146
—0.152

450
valence

sea
total

0.378
0.050
0.428

0.369
0.358
0.727

0.374
0.204
0.578

0.005
—0.155
—0.150

Experiment 0.62 0.74 —0.12
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0.08-

GE(Q )

425

0.06-

0-04-

002- „

[39]. To show the size of these uncertainties, we show in
Fig. 7 the two-parameter fit of the neutron electric form
factors obtained with other NN potential models [39] to-
gether with the Gari and Kriimpelmann fit [38]. One
confirms that the uncertainties are very large. More pre-
cise determination of the neutron electric form factor as
well as the square charge radius is highly desirable.

~ ~ ~ I ~ ~ ~ ~ ~ I

5 10 15 20

Q~ (fm 2)

FIG. 6. The theoretical neutron electric form factors in com-
parison with the experimental data by Platchkov et al. The
theoretical curves corresponds to M=375 and 425 MeV,
whereas the experimental data are obtained through the
analysis of the electron-deuteron scatterings by using the NN
potential model of Platchkov et al.

may be thought to be a kind of defect in the homogene-
ous vacuum quark condensate is of course generated by
the presence of N, (=3) valence quarks contained in it.
This physically apparent fact can be explicitly verified
through our model analysis below. Let us first study the
qq scalar condensate density S' = '(r) of isoscalar type.
It is easily obtained by evaluating the nucleon matrix ele-
ment of the quark bilinear operator P(x)g(x). Note how-
ever that this isoscalar scalar condensate density has al-
ready appeared in the process of solving the meanfield
equation. That is, one immediately notices that
S' = '(r)=S(r), where S(r) is defined in Eqs.
(2.23)—(2.26). By using these formulas, we can then
separate the contributions of the valence and sea quarks
to this scalar density. Figure 8 shows the result obtained
with the solution of the self-consistent Hartree problem
with the mass parameter M=375 MeV. The dashed and
dash-dotted curves here, respectively, represent the
valence and sea-quark contributions to the isoscalar sca-
lar density, while their sum is shown by the solid curve.
One clearly confirms that the valence quarks really works
as a kind of impurity in the translational invariant QCD
vacuum.

In order to obtain independent knowledge of the uu
and dd scalar condensate, we need the isovector scalar
condensate density in addition to the isoscalar one. We
find that in the chiral quark soliton model the isovector
scalar condensate survives only in the first order in Q.
Accordingly, its theoretical expression is slightly more
complicated than that of the isoscalar one. It is given as

IV. THE FLAVOR STRUCTURE OF THE QUARK
CONDENSATE

s"="( )=s"="( )+s"="(.),
where

(4.1)

An interesting feature of the chiral quark soliton model
is that it naturally predicts the spatially varying qq con-
densate inside the nucleon. This local structure, which

mAO m 0

(4.2)

008-
.——.—.——G- K

006 .

004 .

M =425
M =375

Nijmegen

-Argonne V14-- Paris
-RSC

100 — &44&

50—

M =375

valence

sea

total

~ ~ a I ~ I ~ ~ I ~ ~ ~ I I

5 10 15 20

Q (fm ~)

0.0
1.5

r (fm)
I

2.0

FIG. 7. The model dependence of the neutron electric form
factor obtained by Platchkov et al. Their two-parameter 6ts
with different NN potential models, i.e., the Paris, Reid soft-
core, Argonne V14, and Nijmegen NN potentials, are shown by
dashed curves. Also shown by the dash-dotted curve is the Gari
and Krumpelmann fit. The theoretical curves are shown by the
solid curves.

-50—

FIG. 8. The isoscalar scalar condensate density with M =375
MeV. The dashed and dash-dotted curves, respectively, stand
for the valence and vacuum polarization contributions, while
the solid curves represents their sum.
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S(vp="(r) =—
g f(E,E„;A)(n ~r&~m )I 8

40—

(4.3)

Once both of S' '(r) and S' "(r) are given, the uu
and dd scalar condensate densities in the proton are ob-
tained as

3-0

&uu &„=-,'[S '="(r)+S"="(r)],

(dd ) ) [S(I=0)(r) S(1=1)( )]

(4.4)

(4.5)

2.0

The corresponding densities in the neutron are obtained
by changing the sign of S' "(r). (Since the present
model assumes the degenerate mass for the u and d
quarks, isospin symmetry is exact, or the neutron is an
exact isospin partner of the proton. )

We show in Fig. 9 the theoretical isovector scalar con-
densate density in comparison with the isoscalar one.
(The isoscalar scalar density here is with respect to the
vacuum value. ) The theoretical curves here corresponds
to the soliton solution with M=375 MeV. One sees that
the isovector scalar density is much smaller in magnitude
than the isoscalar one (i.e., the isoscalar dominance of the
scalar condensate). This equivalently means that there is
not so much difFerence between the magnitudes of the uu
and dd condensates as expected from the asymmetry of
the valence quark numbers in the nucleon. (See Fig. 10.)
We claim that the above isoscalar dominance of the sca-
lar condensate has some phenomenological support. For
showing this, it is better to study the spatial integrals of
the above condensate densities. We recall that, when one
talks about the quark condensates in the nucleon, one
usually means these integrated quantities. For instance,
the uu condensate in the proton (p ~uu ~p ) is obtained as
the integral

(p~uu~p &= f "dr r'[&uu &„—(uu)„„], (46)
0

8.0-

1.0

0.0 0.5 'l. 0

FIG. 10. The uu and dd scalar condensate densities with
M =375 MeV.

with the similar expression for the dd condensate. Here
(uu )„„means the value of the uu condensate in the
spatial infinity (i.e., the vacuum value). We show in Table
VI, the theoretical predictions for the isoscalar and iso-
vector condensates in the proton, i.e., (p ~

uu +dd ~p ) and
(p ~

uu —dd ~p ), as functions of the dynamical quark mass
M. One sees that the values of isovector scalar conden-
sate are order of magnitude smaller than those of isoscal-
ar one. Let us now compare this prediction with the phe-
nomenology of low-energy QCD [13].

As is well known, the isoscalar combination of the uu
and dd condensates is related to the mN X term through
the relation

Z=m(piuu+ddip& . (4.7)
7.0-

60

5.0

4.0

3.0

2-0

1.0

0.0
0.5 1.0

Here rn is the average of the u- and d-quark masses. (We
have set m„=mz =m, so that m =m. ) The numerical
value of X has been a cause of controversy. Its estimate
ranges from 30 to 60 MeV, with the first value arising
from a fit of baryon mass formulas (under the assumption
that the nucleon contains no ss component) and the
second value coming from an analysis of low-energy pion
nucleon scattering [20]. These values of the nN X term
are compared with the theoretical predictions shown in
the fifth column of Table VI. The agreement is satisfac-
tory, although both the experimental and theoretical un-
certainties are still very large. Also interesting is the
difFerence between the uu and dd condensates, which is
known to be related to the proton-neutron mass
difference as [20,40]

FIG. 9. The isovector scalar condensate density in compar-
ison with the isoscalar one. The curves are obtained with
M=375 MeV.

(M —M„)Qco=(m„—mz)(P ~uu —dd ~P ) . (4.8)

Here (M~ M )QCD means the proton-neutron mass
difference of purely QCD origin. That is, it is obtained
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TABLE VI. The flavor contents of the qq scalar condensates in the proton as functions of M.

M (MeV) (p luu+dd lp ) (pluu d—dip& &pluu lp&/&plddlp&

350
375
400
425
500

3.03
2.78
2.56
2.36
2.18

0.584
0.498
0 AAA

0.404
0.371

1.48
1.44
1.42
1.41
1.41

43.0
41.9
40.3
38.5
36.7

from the observed mass difference by correcting the elec-
tromagnetic effects:

(M M& }geo=(M M& )&x t (M M& )&m (4.9)

Using the theoretical estimate (M~ —M„), =0.76 MeV
[20), this gives (M —M„)&cD———2.0 MeV. Taking
m„=5. 1 MeV and md —-8.9 MeV, we then obtain

&pluu —ddlp & =0.526 . (4.10)

This value is roughly consistent with our theoretical pre-
diction given in the third column of Table VI, especially
around M=375 MeV. The dominance of the isoscalar
scalar condensate relative to the isovector one in the nu-
cleon therefore seems to win a phenomenological sup-
port.

It may be also interesting to look at the same physics in
a diff'erent way. Combining Eqs. (4.7) and (4.8), and using
(md —m„)/(mz+m„) =0.27, we obtain

r= p =1.13 to 1.28,luu

(p ldd lp )
(4.11)

&p luu lp &vp/&p luu lp &„,=0.37,

(p ldd lp )vp/(p ldd lp )„&=0.64 .

(4.12)

(4.13)

These theoretical numbers imply the enhancement of the
dd sea relative to the uu one in the proton, although they
are not such quantities as directly observable.

where the lower and upper values corresponds to taking
X=60 and 30, MeV, respectively. We point out that the
additivity rule (p l uu lp ) = (p l

u u lp ), (p ldd lp )
= (p ld d lp ) which would mean r =2, is badly broken.
(Notice that the quark-number-conservation law means
(plu ulp) =2, and (pld dip) =1.) The theoretical
predictions for the ratio r in the chiral quark soliton
model is shown in the fourth column of Table VI. They
are slightly larger than the above semiempirical estimate,
but certainly reproduces the tendency of the phenome-
nology in that they are definitely much smaller than 2.
The enhanced dd condensate relative to the uu one in the
proton already indicates isospin asymmetry of the qq sea
in the nucleon. To see this more clearly, let us examine
the prediction of our model in more detail. For example,
with M=375 MeV, we have

um targets, and extracted the so-called Gottfried sum
defined as

F x —F2x
SG= dx

0 x
(5.1)

where F((x) and Fz(x) are the structure functions of the
proton and the neutron, respectively. In the quark-
parton model, Fz(x) is expressed in terms of the quark
momentum distribution functions q;(x}, and the
Gottfried sum is given by [42]

SG= f dxge, Iq/'(x)+q~(x) —
q,"(x)—q,"(x)],

(5.2)

where e; is the charge of a quark of flavor i. Assuming
that the proton and the neutron form an isospin doublet,
the quark distribution functions in the proton and those
in the neutron can be related as

u (x)=d"(x)—=u(x}, dr(x}=u "(x)=d(x),
s~(x) =s "(x)—=s(x), . . . ,

(5.3)

SG= —f dx[u(x)+u(x) —d(x) —d(x)] .
3 0

(5.4)

One may further separate the quark distributions into the
valence and sea components as

u(x) = [u(x) —u(x)]+ u (x)—= u z(x)+ us(x),

d (x)=[d(x)—d(x)]+d(x) =—dz(x)+ds(x) .

(5.5)

(5.6)

Then, by using the standard sum rules [42]

f dx uy(x)= f dx[u(x}—u(x}]=2, (5.7)
0 0

f dx dz(x}—:f dx[d(x) —d(x)]=1, (5.8)
0 0

for the valence quark distributions, we can also express
SG as

(The isospin invariance is expected to be a reasonable as-
sumption, since the mass difference of the u and d quarks
is negligibly small as compared with the typical mass
scale of hadron physics. See however the discussion
below. ) The Gottfried sum then becomes

V. THE GOTTFRIED SUM SG= —+—f dx[u(x) —d(x)] .1 2
3 3 0

(5.9)

Far more direct evidence for the suggested isospin-
asymmetric sea has recently been obtained by the New
Muon Collaboration (NMC) [41]. They investigated
deep-inelastic muon scatterings on hydrogen and deuteri-

Now assume that the qq sea in the proton is fiavor (iso-
spin) symmetric (u =d ). The expected answer for SG is
then 1/3 (the Gottfried sum rule). Experimentally, how-
ever, it turned out that [41]
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SG =0.240+0.016, (5.10)

or equivalently Idx ( u —d )= —0.140+0.024, which

means an excess of dd sea quark pairs over uu ones in the
physical proton state. This is a striking conclusion, con-
sidering that most of the previous parton model analyses
have been performed under the assumption of isospin
symmetric sea. It has been suggested by several authors
that this isospin asymmetric sea is due to the pionic con-
tribution to the sea quark distribution [43—46]. The idea
of Henley and Miller is especially simple [43]. According
to them, the qq pairs in the nucleon are created through
the virtual dissociation processes of the valence (u and d)
quarks as follows:

u~m++d, u~m +u,
d +, d +d.

(5.11)

(5.12)

Taking account of the quark content of the pion as

ud (5.13)

77 — —(Q14 dd ), —
v'2

7T du

(5.14)

(S.15)

one immediately notices that the emission of m creates
the same numbers of the uu and dd pairs and consequent-
ly does not contribute to SG. On the other hand,
u~m++d and d~m. +u generate the difference be-
tween the numbers of uu and dd pairs. By this reasoning,
Henley and Miller concluded that the pionic contribution
to the difference between the number of dd pairs and uu

ones in the proton is equal to the difference between the
number of m+ and n- in the proton. This is a quite prob-
able explanation, but the problem lies in the difticulty of
getting a reliable estimate of the pion numbers in the

I

S =-,'(PIOIP &

of the operator 0 given as

(5.16)

physical nucleon state. As a consequence, there also exist
many other explanations of the NMC result. For in-
stance, some authors have tried to explain the NMC data
as nuclear effects, i.e., the meson exchanges and binding
effects etc. [47,48]. (Remember that the NMC measure-
ment uses the deuteron target instead of the neutron. )
Other author suspects the isospin invariance itself [49].
That is, the possibility that the quark distribution func-
tions of the proton and the neutron are not related by the
isospin transformation has been discussed. It is certainly
true that all these possibilities must be examined very
carefully before getting a decisive conclusion [SO—52].
Nonetheless, an important message from the Henley-
Miller analysis is that there is an apparent asymmetry in
the numbers of u and d valence quarks in the nucleon,
and because of this asymmetry, there is no a priori reason
to believe that the qq sea in the nucleon is isospin sym-
metric, even though the isospin symmetry itself holds ex-
act.

Now combining the above discussion with the analysis
in the preceding sections, it is quite obvious that the
chiral quark soliton model is such a model that takes ac-
count of the physics of the Gottfried sum just enough in
the sense that it automatically simulates the effect of pion
cloud [12,13]. A key problem here is how to relate such
high-energy measurements to predictions of low-energy
models as studied here. Although the quark distribution
functions themselves cannot be calculated reliably within
the framework of 1ow-energy models, some of their linear
combinations integrated over x variable may be related to
low-energy matrix elements at least approximately. As
for the Gottfried sum, a plausible candidate deduced
from Eq. (5.4) is the proton matrix element

O= J'd3x 1+~3 ) 1+~,
7)'j+(x) 7)'4+(x) —

hatt

(x) g (x)
2 + 2

1 —z3 1 —z3
g+(x) P+(x)—

7)'j (x) f (x)
2

= J d'x [1(4+(x)r3lP+(x)—f (x)r3t( (x)] . (5.17)

[The variable x here denotes the spatial coordinate and

should not be confused with the Feynman variable ap-

pearing in Eq. (5.1) etc.] Here g+ and g are, respective-

ly, the positive- and negative-frequency parts of the quark
field operator g. (This peculiar expression appears since

IOdx [u (x ) —u (x) ] etc. are conserved but

IOdx [u (x)+u (x) ] etc. are not. ) Unfortunately, this

decomposition is somewhat ambiguous. This ambiguity
originates from the fact that there is no rigorous
correspondence between the valence- and sea-quark con-

cept in the present model and the corresponding idea in
the standard quark parton model. Two simple possibili-
ties have been studied here The first (most reasonable)
decomposition is based on the expansion of' the field
operator P in terms of the eigenfunctions of the free (vac-
uum) Hamiltonian Ho. As an alternative second choice,

e, &0 e,. (0

where l k; ) are the eigenstates of the free hamiltonian Ho

we also investigate the decomposition of 1t in terms of the
eigenfunctions of the static Hamiltonian H with the (self-
consistent) background potential U(x). These two lead
to different decomposition of g into 1(t+ and 7}'j,although
their sum is unique. We expect that the first choice rath-
er than the second matches the quark-parton model inter-
pretation of the Gottfried sum. (Incidentally, we found
that the numerical difference between these two alterna-
tives is fairly small for S&. See the discussion below. )

It is convenient to introduce projection operators P+
(with the property P+ +P = 1) defined by P+ =P+ P
For the first choice, it is expressed as

(5.18)
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SG =
—,'(1—5G),

where

(5.20)

~G oval+ ~VP

with

1 N, &Olr3lm &&ml[r3, P J+l0)
I 2 Em —Eo

(5.21)

(5.22)

g f(Q,g„;A)(n lr3lm ) (m l [r3,P ]+ le ) .1 N,

m, n

(5.23)

A slight complication as compared to the case of the iso-
spin expectation value arises through the appearance of
the projection operator P . This however causes no
essential difBculty, since we know all the single-quark
wave functions which are numerically given as linear
combinations of the (discretized) plane-wave basis lk; )
[8,26].

To get some feeling about the size of the uncertainties
resulting from the ambiguity of the decomposition
/=1(++/, let us also investigate the second choice.
This amounts to taking

P+= g lm)(ml, P = g lm)(ml . (5.24)
m)0 m&0

Here
l
m ) is the eigenstates of the static Hamiltonian H,

with g &o and g &o, respectively, stand for the sum-
mation over the positive- and negative-energy eigenstates.
In this case, the theoretical expression for SG reduces to

1 1
SG =— 1 ——(I„„+2Ivp) (5.25)

where

N,I„,) =
m&0

&0lr3lm & & m lr310)

E —E0
(5.26}

N,
Ivp= g f(E,E.;A)&n lr3lm &&mlr3ln &

m, n(n &0)

with the eigenenergies e;, i.e., Ho l k; ) =e; l k; ). [They are
the plane-wave states and the sums in Eqs. (5.18) should
be actually replaced by integrals. ] With the quantities
defined so far, the operator 0 is expressed as

0= fd x g (x)(r3—[r3,P ]+)g(x) . (5.19}

Now we are ready to use general formulas given in Sec. II
for evaluating the nucleon matrix elements of arbitrary
quark bilinear operators. The first nonvanishing contri-
bution to the Gottfried sum comes from the first-order
term in the collective angular velocity. The answer is
given in the form

Ivp —I—vp/2, so that

1 IvpS' =—1—
G (5.28)

On the other hand, based on an intuititve reasoning
within a similar model, Stern and Clement claimed that
SG is related to the isospin fraction of the proton carried
by the pion fields as [46]

1 I
S =—[1—(r) J=—1—

G 3 I (5.29)

TABLE VII. The isospin contents, the parameter 5z defined
in Eq. (5.21), and the Gottfried sum SG, given as functions of M.
The numbers in the parentheses of the fifth column of the table
corresponds to SG in Eq. (5.25).

M (MeV) Ival /I Ivp/I SG (SG )

where I represents the pionic contribution to the mo-
ment of inertia. By identifying Ivp/I with I /I, our ar-
gument leading to Eq. (5.28) then roughly justifies the
above simple formula given by Stern and Clement [46].
We however emphasize that SG in Eq. (5.20) is more real-
istic than SG above. Anyhow, in the light of our deriva-
tion here, we clearly see that there is no rigorous
justification of their simple formula. The same is also
true for the Henley-Miller assertion that the Gottfried
sum measures the difference between the numbers of m+

and m. in the nucleon [43].
Shown in Table VII are the theoretical predictions for

the Gottfried sum SG together with the parameter 5G
defined in Eqs. (5.21) and (5.23). The vacuum polariza-
tion contribution to the isovector charge (or the isospin
fraction carried by the sea quarks) and SG evaluated with
the formula (5.25) are also shown for reference. One cer-
tainly confirms that the values of SG are not extremely
different from those of SG especially for not so large
values of M. For the quantity 5G, only the total contribu-
tion is shown, since the decomposition into 5„,& and Bvp
has no particular physical tneaning. (We only comment
that 5„,& term gives almost negligible contribution as
compared to the 5vp term. ) One might notice that the
magnitudes of (r3)vp=Ivp/I and 5G are comparable to
each other, although the difference becomes a little larger
as M increases. By definition, the quantity 5G
parametrizes the deviation of SG from 1/3. Putting all of
these together, we then conclude that the observed devia-
tion of SG from 1/3 can be attributed to isospin-
nonsinglet excitation of qq pairs. In other words, qq sea
is likely to carry a sizable fraction of the nucleon isospin.
Since this qq excitation is roughly identified with the pion
cloud surrounding the core of N, valence quarks, our
analysis of the NMC experiment gives a strong support
to that of Henley and Miller and others [43—46].

(5.27)

Here we have attached prime on SG, to distinguish it
from the Gottfried sum obtained from more reasonable
first choice. Numerically, we find that I„,& ——0 and

350
375
400
425
450

0.870
0.824
0.789
0.759
0.733

0.130
0.176
0.211
0.241
0.267

0.136
0.189
0.230
0.265
0.296

0.288
0.270
0.257
0.245
0.235

(0.291)
(0.277)
(0.265)
(0.256)
(0.247)
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To sum up, the isospin asymmetry of the qq sea in the
nucleon is most likely to exist as a combined effect of the
spontaneous chiral-symmetry breaking and the asym-
metry of the u and d valence quark numbers in the nu-
cleon.

VI. CONCLUDING REMARKS

According to Shuryak again [1],a new general trend of
hadron physics is to understand the properties of the
QCD vacuum rather than to just explain the properties of
hadrons such as their masses and magnetic moments. He
also emphasizes that the understanding of the role of the
light quarks (u, d, s) is a key ingredient in the phenome-
nology of the QCD vacuum. As is widely believed, the
QCD vacuum is characterized by the nonvanishing quark
condensate which signals the spontaneous breaking of the
chiral symmetry possessed by the original Lagrangian.
(The gluon condensate is not considered here, since the
gluonic degrees of freedom is treated only implicitly in
the present analysis. ) Although there still remain some
questions as to how this fundamental property of the
QCD vacuum is realized, there is no doubt that this phe-
nomena would not be expected without the Dirac-sea-
quark degrees of freedom. This in turn means that, if we
attempt to understand the properties of baryons simul-
taneously with that of the QCD vacuum, we must neces-
sarily deal with the valence and sea quarks on equal foot-
ing. At first sight, it seems to be a formidable task, but it
in fact turned out feasible on the basis of the chiral quark
soliton model.

The most instructive example for understanding the
above statement may be provided by our analysis of the
spatial dependence of the isoscalar scalar condensate in-
side the nucleon. This analysis most clearly shows that
the nontrivial local structure of the quark condensate
arises from an interplay of the valence- and sea-quark de-
grees of freedom. This local defect in the nonperturba-
tive QCD vacuum (with the homogeneous quark conden-
sate) is far from an "empty" bubble containing three
valence quarks as suggested by the original version of the
MIT bag model. Instead, the valence quarks contained in
it turns out to be surrounded by the qq excitation or the
cloud of pions. This interesting spatial structure of the
quark condensate is however not directly measurable. In
order to connect the prediction of the model with some
observables, we have analyzed the spatial integrals of the
scalar condensates, especially their isospin structure. We
found that the isoscalar dominance of the qq scalar con-

densate relative to the isovector one (or the enhancement
of dd scalar condensate relative to the uu one in the pro-
ton) predicted by the theory is consistent with the low-

energy QCD phenomenology. It was also shown that the
chiral quark soliton model naturally explains the charac-
teristic feature of the neutron charge distribution, by au-
tomatically simulating the effect of the negatively
charged pion cloud at long distances. In this neutron
charge density problem, it is almost self-evident where
the isospin asymmetry of the pion cloud (or equivalently
that of the qq excitation) comes from. The obvious asym-
metry existing in the valence quarks numbers inside the
nucleon is the eventual cause of the above asymmetry.
From this consideration, the flavor asymmetry of the qq
sea suggested by the recent NMC experiment seems noth-
ing surprising but only natural. In fact, the size of the
asymmetry of the qq sea extracted from this experiment
turns out to be order of magnitude consistent with the
prediction of the chiral quark soliton model with the
reasonable range of the model parameter M.

To summarize, the degrees of freedom of the Dirac-sea
quarks are not only essential for generating nonvanishing
vacuum quark condensate but also important for creating
the flavor- (isospin-) asymmetric pionic excitation inside
the nucleon through the mutual interaction with the
valence quarks contained in it. The resultant nucleon
picture appears to be completely consistent with the re-
cent NMC measurement of the Gottfried sum.
Throughout the paper, we have neglected the strange
quark degrees of freedom under the assumption that the
ss components in the nucleon is very stnall [53]. Howev-

er, the essential features of our findings in the present
study would not be altered, even if this assumption is a
little modified.
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