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Surface tension in SU(3) at finite temperature
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In a first-order phase transition two phases can coexist in thermal equilibrium at the critical tempera-
ture with a stable interface inbetween. We explore the spectral density reweighting techniques to calcu-
late the bulk free energy barrier hF and the surface tension n associated with this interface. We analyze
data from a Monte Carlo simulation on L,L' (L, =2,4) lattices for the SU(3) deconfining phase transi-
tion. By combining diferent Monte Carlo simulations with finite-size scaling we establish a procedure to
improve the evaluation of LF.
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I. INTRODUCTION

During recent years the lattice Monte Carlo (MC) cal-
culations of QCD at finite temperature have led to a
better understanding of its phase diagram [1]. Because of
the first-order nature of the phase transition there exists a
mixed phase at the critical temperature T„at which the
hadronic phase and quark-gluon plasma phase can coex-
ist. Corresponding to these coexisting bulk phases there
is an interface tension. The free energy per unit surface
area associated with this interface, or surface tension a, is
an important parameter to describe the dynamics of in-
terfaces. It plays an important role in achieving a quanti-
tative description of the nucleation process in the phase
transition from quark-gluon phase to the hadronic phase
in early Universe [2].

Recently, Monte Carlo methods have been proposed to
calculate the surface tension in lattice QCD [3,4], and re-
sults have been reported to its pure SU(3) gauge sector.
For L, =2 the values are a/T, =0.12(2), using the path
method in the P coupling space [3,5], and a/T, =0.08(2)
for the operator method [4].

For L, =4 the values are less conclusive and the results
have been compatible with zero due to large statistical er-
ror [4]. The recent generalization of the path method
gave the first estimate for the surface tension [5]
a/T, =0.024(4). This confirms the trend of a weaker
first-order transition as one increases X, from 2 to 4 in

SU(3) deconfining phase transitions [6].
Here we also address the same problem: the calcula-

tion of the free energy and the surface tension in SU(3) at
finite temperature.

For this purpose we apply an alternative method [7,8]
which exploits the finite-size scaling (FSS) of the barrier
between the coexisting phases at the critical point by
means of the energy probability distribution. This
method is extended to the continuous energy distribution
obtained in previous investigations of SU(3) deconfining
phase transitions on L,L (L, =2,4) lattices [9]. The
simulations were done by using the MC updating of Ref.
[10] and to obtain the energy distribution at the critical
point we apply the reweighting technique [11].

II. SPECTRAL DENSITY MC CALCULATIONS
AND SURFACE TENSION

We simulated the SU(3) Wilson action

S =g Sz with S~ =
—,'Tr( U~ ), (2.1)

where U is the ordered product of link matrices around
the plaquette p on a L,L lattice, with periodic boundary
conditions. P is related to the coupling constant,
P=6/g, and the temperature is given by T = I /aL„ for
a lattice with spacing a.

We measured the action S and introduced a convenient
normalization, the action per plaquette s =S/V~, where

V~ =6L,L is the total number of plaquettes.
Because of the continuous nature of SU(3) action densi-

ty we collected all measurements after every sweep
through the lattice to a disk. Thus we avoided the initial
introduction of a histogramming as a storage method.
This storage procedure provided us with the full empiri-

We show that an improvement can be reached when
we combine MC simulations at different couplings in
such a way that the error of the calculated quantity is
minimized [9]. This improvement is more relevant for
L, =4, where the signal for the transition is pronounced
only for large lattice sizes. However, the suppression of
tunnelings increases with the lattice size and in that case
we would need a suSciently long MC run to include
many tunneling events. To overcome this diSculty the
multicanonical MC algorithm was recently proposed [12]
to enhance configurations dominated by the interface.
Nevertheless for L, =4 a good estimate of the probability
distribution was achieved when one combines MC simu-
lations obtained in a small neighborhood of the critical P,
which enabled us to evaluate hF and a.

In Sec. II we review the spectral density reweighting
technique and our procedure of patching different MC
simulations to obtain the energy distribution at the criti-
cal P. In Sec. III we present our estimates of the bulk
free energy and the surface tension for L, =2 and 4, while

Sec. IV contains a summary and conclusions.
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cal time series of configurations for each MC simulation.
With the available time series, the reweighting tech-

nique allows us to calculate an estimator f(P} for the
physical observable f, in a small neighborhood hP of the
simulated point Pp.

Nf(P)=—with F= g f„exp(EPS„),z n=1
(2.2)

Z= g exp(DES„) and bP=P —Pp,
n=1

where N is the total number of measurements. This
range will depend on whether our statistics obtained at Pp
can still give meaningful results at the distance b,P. We
defined this appropriated range depending on which per-
centage of our statistics we expect to be representative of
an importance sampling at the new coupling P. This
translates into a relevant interval bP=P,„—P;„where
one can apply the reweighting technique. This interval
was obtained from our empirical action density values by
using the concept of q tiles s~ [9,13],with q =0.025.

When one has runs at different Pp values (Pp+')Pp,
i =1, . . . , P) we can presumably combine them to im-
prove our estimate for f(P}. Various methods have been
proposed for patching [14-17]. However, for our pur-
poses of combining different histograms we patch only
the ones whose validity P ranges overlap and this leads to
a very straightforward approach [9].

Any valid estimator for f can be obtained as a linear
combination:

where N(sj, fh) is the number of configurations in the
histogram bin and n.k is the empirical frequency distribu-
tion. In MC simulations n k is an approximation to the
probability distribution and represents a measuring for
the probability P(sj fh'13p) to observe the system in the
state with energy s and observable value fh with cou-
pling Pp.

In terms of the canonical distribution, the above equa-
tion can be reweighted to give the probability at P:

P(sj fh'»)=
—(P —P)s. V

n ejk
(Pp P)s V

j knJke

(2.8)

where the denominator accounts for the normalization
factor.

Now we restrict ourselves 'to the action per plaquette
probability distribution. This distribution, for first-order
transition, has a double maximum corresponding to two
coexisting phases at s =@1 and s =e2, and separated by a
minimum at s=e . For a fixed lattice size L it is de-
scribed by Pl (s;P).

The bulk free energy barrier associated with these
coexisting phases can then be calculated as [8]

The relative number of times a set of measurements
falls into a given bin is proportional to the probability of
observing the system in the state labeled by s~ and fh ..

N(sj, fh )

,a, F, .f 13 —
pi

(2.3) PL, (&i'»h }
bF(L) =ln

l. em& h

(2.9)

where the non-negative weight factors a;=a;(P) are
chosen in a way of minimizing the error of the final calcu-
lated physical observable f.

We impose the normalization

P

g w, =1 with w, =a,Z, , (2.4)

and Eq. (2.3) becomes

F.f= g w; f; with f; =
i=1 Zl

(2.5)

The optimal choice for the normalized weight factors w;
is simply the inverse variance of f;, which can be estimat-
ed as the empirical error bars,

1

(&f; )' (2.6)

from each MC simulation at Pp. The overall constant is
fixed by the normalization condition (2.4}.

In the following, we shall make the corresponding his-
togram for the observable f probability distribution.

In order to obtain the histogram we divide the allowed
ranges for f and s into intervals of equal width, the histo-
gram bins. We label these intervals by the values sj and
fh. It is a natural description for spin systems where the
number of bins is the number of states.

where the finite lattice critical point p=ph(L} is defined

by

PL(~l&»h } PL(~2&»h } (2.10)

hF(L)
2AL, L

(2.11)

The condition (2.10) defines a critical coupling for finite
lattices. However, this definition should also lead to the
infinite lattice critical point as obtained by other
methods. Thus we also investigate the P dependence on
L through the FSS fit:

13h(L) =P, + (2.12)

The comparison with results obtained by other methods
is a good test for this procedure in defining the critical
coupling at which we have equal heights in the empirical
distributions.

To estimate the surface tension a we further need to
know the L dependence of hF. For sufficiently large L,
the two phases are separated for domain walls [7], whose
energy is proportional to the total area 2A. We then
have EF(L)I2A =aL, . To take into account possible
linear corrections to the bulk free energy we fit our data
to
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III. NUMERICAL RESULTS

b F(12)=3.49(29) (3.la)

Pg(12) =5.0934(7) . (3.1b)

At this coupling, each time series contributed with
weights 0.37 and 0.63, respectively, in order of increasing
po. To fit (2.11) we have used our data from Table I, but
the result for L = 12 was substituted by the patched value
in (3.1a}, which represents our best estimate for EF(12).
This fit gives, in units of T„

and

T,
=0.078(8) (3.2a)

To avoid the initial introduction of a step size to define
the histogram bin and consequently to reweight (2.8) with
s- as the average value on that interval, it is preferable to
reweight size zero bins. This means we are reweighting
every entry s" with the proper Boltzmann factor to a
new coupling p, which belongs to the validity range,
pE [p;„,p,„]. This is done by identifying s" with its
Boltzmann factor. At this stage we can get a pictorial
representation for the energy histogram by distributing
the reweighted entries on ordered energy intervals.

Our statistical analysis were carried out using the jack-
knife method. This method was applied to the probabili-
ty distributions and the reported errors were calculated
with 20 jackknife bins.

Table I presents our data L, =2. These results rely on
120000 measurements for each data point. Although
this case has been recently studied [18], we also apply
patching here. We have simulated two different points
for L =12, Pc=5.092 and 5.095. These two measure-
ment series were patched and gave the result

use the FSS fit (2.12}. We obtain p, =5.0938(7}, with

Q =0.50. This value is in very good agreement with the
more recent FSS results obtained by other methods [9].

Now we address our attention to L, =4. A complete
overview of our data can be found in Ref. [9].

We had to restrict our analysis to larger available lat-
tice sizes, i.e., L =20 and 24. This is because for smaller
lattices it was hardly possible to distinguish a double
peak structure in the energy distributions and our tenta-
tive to calculate AF gave results compatible with zero due
to their large error bars. This fact had already been in-
vestigated [20] and for lattice sizes up to 16 the con-
clusion of a second-order behavior could be drawn [6].

For L =20, we simulated three points: Pc=5.690,
5.691, and 5.692. Only for Pc=5.691 did we obtain a
nonzero compatible value, b F(20)=0. 11(09) at
pz(20)=5. 6914(6), although its error is quite large. In
this case patching does not improve this calculation
presumably because we still have a weak signal for the
transition. In Fig. 1 we present the distributions for
L, =24. We carried out 180000 measurements for each
simulated Point: Pc=5.691 and 5.693. As we can ob-
serve, these runs do not show a clear double peak struc-
ture because they do not contain enough configurations
of both phases. This fact is related to the critical slowing
down due to the presence of the interface between the
bulk phases, leading to a fast suppression of tunnelings
with increasing lattice size.

At the right side of Fig. 1 we present the reweighted
histograms. The calculation of AF also gives a value
compatible with zero. In Fig. 2 we show the two patched
distributions, which now we believe contain enough in-
formation for both phases. Each run contributed respec-
tively with weights 0.38 and 0.62, in order of increasing
po. Equation (2.10) then defines the critical coupling at

CX1

3
= —0.38(6)

T,'
(3.2b) 400—

L,=4 L=24
I

.691 400-

Reweighted Distribution
I

' ' '
I

' '
1

p=5.6933

for the linear correction. The goodness of fit [19] is

Q =0.24. Although we have good agreement with previ-
ous calculations for u, the correction term (3.2b) seems to
be important. This may be due to the fact that we are
working with rather small lattice sizes and in this situa-
tion we might have deviations introduced by interface
shapes other than planar ones [7].

To estimate the infinite volume critical p for L, =2, we

300—

200-

100—

400—
P0

——5.693

300-

0 I

0.545 0.55 0.555

300—

200—

100—

400—
I

P=5.691O —.

300-

0 I

0.545 0.55 0.555

TABLE I. L, =2 data and their reweighting p range. pq and

the bulk free energy AF were obtained, respectively, from Eqs.
(2.10) and (2.9).

200—

100—

200-

po min s max P&(L) AF(L) 0 . . 1

0.545 0.55
I

0.555
0 I

0.545 0.55 0.555

6
8
10
12
12

5.094
5.090
5.090
5.092
5.095

[5.026, 5.155]
[5.042, 5.122]
[5.050, 5.108]
[5.064, 5.107]
[5.078, 5.114]

5.0910(14)
5.09}4(11)
5.0938(11)
5.0935(07)
5.0934(07)

0.32(06)
0.89(09)
2.24(24)
3.42(31)
3.63(40)

FIG. 1. Histograms for the action per plaquette distribution
probabilities. The left side shows the distributions obtained
with MC data for L, =4 and L =24, with couplings po= 5.691
and 5.693. The right side shows the same distributions re-

weighted to critical couplings, defined according to Eq. (2.10).
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Reweighted Distribution (2 patches)
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Ps(24) =5.6920(3) .

At this coupling we obtained

(3.3)

FIG. 2. Histogram for the reweighted distribution obtained
when we combine the action per plaquette distribution probabil-
ities of Fig. 1 (left side).

This lattice size gives a lower value than the first calcula-
tion [5]. However, to obtain a FSS estimate we would
need larger lattice sizes and in this case patching can give
an important contribution to the hF evaluation.

IV. SUMMARY AND CONCLUSIONS

We investigated the distribution probability method to
calculate the bulk free energy associated with coexistent
phases when one introduces patching. The distributions
were obtained from a time series of a continuous variable
and single entries were reweighted to the critical point.
For a strong first-order transition, as seems to be the case
for L, =2, we were able to estimate the surface tension
using the FSS fit (2.11). However, for L, =4, the double
peak structure becomes pronounced only for lattices
larger than 16. This turns out to be a more difficult case.
By combining different MC simulations on both sides of
the critical coupling, it was possible to obtain a more
representative distribution for the transition which en-
abled us to estimate hF and a.

EI'(24) =0.47(12),

corresponding to

T,'
=0.007(2) .

(3.4a)

(3.4b)
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