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Pressure in thermal scalar field theory to three-loop order
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In scalar field theory, with a g2$4 interaction, at temperature T we compute the complete contribution
to the pressure to order g . This involves a three-loop thermal diagram. We neglect the zero-
temperature mass.

PACS number(s): 11.10.Ef, OS.30.—d

I. INTRODUCTION

(2)

This Brief Report is about scalar field theory with an
interaction potential g2$4 in thermal equilibrium at tem-
perature T. We assume that T is much greater than the
zero-temperature mass, which we consequently neglect.
Contributions to the pressure of orders T, T g, and
T g are well known [1]. The purpose of this Brief Re-
port is to calculate the contributions of order T g . This
involves the three-loop diagram (h) of Fig. 1, whose com-
putation is our main new result.

For completeness, we first discuss lower-loop diagrams.
We employ the resummation method [2], as formulated
for scalar field theory in [3]. Thus we use the "free" La-
grangian

-'[(t}P) —M P ]
and the "interaction" Lagrangian

2M'O' L'g—'4'+aL—'g'4'.
Here

M2 g2T2— (3)

is the leading term in the thermal mass. (We employ di-
mensional regularization with space-time dimension 4—e
and minimal subtraction with the unit of mass, p, .) The
insertion of the canceling M terms in (1) and (2) consti-
tutes the resummation [3]. The last term in (2) is the
(zero-temperature} ultraviolet renormalization (to the or-
der we require}, with

a= 9 1 (4)
277

In the diagrams the M "counterterm" in (2) is

represented by a black dot and the counterterm (4) is

represented by an open circle [in graph (d) of Fig. 1]. The
propagators all have mass M.

We employ the imaginary-time formalism rather than

the real-time one. We cast the imaginary-tine formalism

into a form, explained in Appendix A, which is quite
close to the real-time one, but which avoids singular
terms which would occur in graphs (e)-(g) of Fig. 1. The
method we use would be applicable also for thermal
Green's functions, in which case it would generate the
analytically continued imaginary-time formalism.

(e)

1/4

II. LONER-LOOP DIAGRAMS

(5)

(6)

and

We list, for completeness, the contributions from
graphs (a)-(d) of Fig. 1 to the pressure

P =Tlnz/V .
Graph (a) has two contributions:

d pP,'= 3
Tin% m +u

(Zn. )

l2

FIG. 1. Thermal graphs contributing to the pressure to the
required order. The black dot denotes the M "counterterm" in

{2), and the open circle represents the ultraviolet divergence
counterterm a in (2). Combinatoric factors are shown in the di-

agram.

d3 6p
pet

(Zsr }
where

( 2+M2) 1i2

and

N (co)= [ exp(to/T) —1]
Equation (6) has the known expansion [1]

m2P' = T4— M~T2+ M3T
90 24 12m

+ M [In(g/4n)+C —
—,']+.. ..1

8(2n )

(7)
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(C is Euler s constant). Because of its implicit T depen-
dence, we must also keep (7), which gives, in dimensional
regularization,

1 4 4 I
P,"=

qg T ——31nT+21np —lng
2(4m)'

l2 48

1 C 3+—ln(42r) ——+—
2 2 4

Note that the lng terms cancel between (10}and (11}.
The contributions from graphs (b) and (c) of Fig. 1 to-

gether may be written

P~+P, = —12g L +M /(48g ),
where

(12)

1 1 d 'p
2 (2n}' '

d3P N' Mz 24
(2n )'

1 MT.
8m

(14)

2
d3

Pz= —3ag P' (2w) + f '[2N(ru)+(]

Thus

Ps+P, =
—,', M T —3M /(4m')

Graphs (e)-(g) are each separately of order g4, but the
terms of this order cancel in their sum.

Graph (d) gives

72

FIG. 2. Expansion of graph (h) of Fig. 1 in terms of
Minkowski-space graphs, according to Appendix A. The cut
lines represent (17). The other lines represent ordinary Feyn-

man propagators.

IH. THREE-LOOP DIAGRAM

In this section we compute graph (h) of Fig. 1. The
first step is to show that this thermal graph gives the
graphs of Fig. 2. In these graphs an ordinary line denotes
a zero-temperature, Minkowski-space propagator. A cut
line carrying momentum p denotes

$(p02 co )N(co)—.

More precisely, the real parts of each of these graphs
should be taken. This result is established in Appendix
A.

,'g T /—(4—n)[e ' 2'1nT+—in@,+ inn.

+C —12('(2)/m ],
where we have used

f dt t lnt(e' —1) '=g'(2)+( I —C)H/6,
0

g being the Riemann zeta function.

(15)

(16)

To the requisite order, we may replace M by zero in
each of the graphs of Fig. 2, because they remain infrared
convergent and the error is of less order than g . Then
graphs (i) and (ii) of Fig. 2 give zero, since their zero-
temperature subgraphs vanish in dimensional regulariza-
tion.

The contribution from graph (iii} of Fig. 2 is

p =72g't "(2~) '+"f P f N{p)N(q)(4~)-""'r(e/2) ' ' 4(l —cos8) '~~(2pq)
d3 g d3 [I (1—e/2) ]~

2p 2q r{2—e}

{18}

Here the factor 4 comes from the four possibilities p0=+p, q0= kq. Because we take the real part, they all give the
same contributions up to order e. A short calculation, using again (16},gives

P3=g (4n) T [e ' —31nT+21np+ —,'inn+ —'(1+3C)—18$(2)/m ] . (19)

In graph (iv) of Fig. 2, there are eight contributions corresponding to the eight possible signs for po, qo, and ko. We
begin with the case when they are all positive. The contribution is

48g (2n ) f [(p+q+ k) —(p +q +k) ] 'N (p)N(q)N (k)
8pqk

3g (2 ) sf d'p d'q f dk l„klp+ql +p.q —pq —qk —kp

pq Ip+ql —klp+ql+p q —pq
—qk —kp

We now change to a variable y = lp+ql, so that d cos8& z=y dy/(pq}. Then {20}gives

+2k —26g (2~) f dp dq dk N(p)N(q)N(k) f dy ln
)p —

q)
' y~ —p —

q
—2ky —2/7

(21)
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where m =pq +qk +kp. This gives

12g (2m ) f dp dq dk N(p)N(q)N(k)[(p +q +k) ln(p +q +k)+p lnp +q lnq +k ink

—(q +k) ln(q +k) —(k +p) ln(k +p) —(p +q) ln(p +q)], (22)

(24)

where we have everywhere taken real parts.
We must now add the other seven contributions in which

(p, q, k)~(p, q, k)—, (p, q, k—), ( p, q—, k), ( —p, q, k—), ( —p, q,
—k), (p, —q, k)—, ( —p, —q,

—k) .
The result, again taking the real part, is

24g4(2m )
6f dp dq dk N(p)N(q)N(k)[(k +p +q) ln(k +p +q) —(p +q —k) ln~p +q —kI

—(p —q+k)»lp —q+kl —( —p+q+k}lnl —p+q+kI] (23}

We have attempted to do these integrations analytically (see below) with little practical success, but numerically we find
that (23) gives

Pg=24g T (2n) X14.17= 'g T (-4n. ) X1.74.
Finally, we combine the contributions from (10), (11), (14), (15), (19), and (24) to get

P=T — g + +—
[
—31n(T/p) ,' inn ——2—1n2+—'C —5+1.74]4 ~ 1 2 g ~ g

90 48 12m. 2 (4g )
2 2

Note that this contains the renormalization-group invariant (to the required order)

2

g (T)=g 1+9 1n(T/p)
2772

(25)

(26)

Last, we mention an attempt (which relates to work in [4]) to do some of the integrations in (23) analytically. Consid-
er the integral

(b)= ,' f d
—tin(t —b )

e' —1

In terms of this, (23) may be written

144T g (2n ) Re f dp dq N(p)N(q)[J[(p+q)/T] —J[(p q)/T] ) .—

We find, for J (see Appendix B},

J(b)= —
—,'b [ ln(b/2mt') —

—,']+iamb[ lnl (b/2m i) —
—,
' ln(2m )]+2m g'( —l, b/2ni)+ —,'n ln(2m ),

(27)

(28)

(29)

where in the last line g is the generalized Riemann zeta function and the derivative is with respect to the first argument.

We may, without loss of generality, define the branch of the functions in (27) by taking the limit where b approaches the

real axis from the upper-half plane. This choice has been assumed in (29). However, this does not seem to be a very

practical way to evaluate (23).
In conclusion, we note that the total constant term in the curly brackets in (25) is —4.93, and this may be replaced by

,'n to q—uit—e good accuracy. In this approximation, (25) and (26) give

g'(T)+ g'
90 48 12m 64

This simple form might be a useful approximation to the pressure at three-loop order.

(30}
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APPENDIX A

Consider the contribution to the pressure P from graph (h) of Fig. 1. It is

12g (2m)T f d pd . qd rd k5 (p +q +r +kX}„„„„5„+„+„+„(0pq r k )

where

(A1)

p =p —po=p +(2mTn~), etc.

We write
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T 5,+ +,+,,o= (po+ qo+ro+ ko } [N (po+qo+ro+ko ) ]

=(p, +qo+ro+ko) '[N(po)N(qo)N(ro)N(ko)]
X[1+N(po)+ . +N(po)N(qo)+ +N(po)N(qo)N(ro)+ ] . (A2)

Now we use

TX„=(2m i )
' f dpoN (po ), etc. , (A3)

P C

where C is a contour surrounding the poles of N but no other poles, and note that (A2) has no poles. Then (Al) may be
evaluated in terms of the poles in the Feynman denominators. This gives (writing now p =

~p ~, etc.)

d d drdk
24g (2m. ) f „5(p+q+r+k)

16pqrk

X((p+q+r+k) '[N(p)N(q)N(r)+ +N(p}N(q)+ +N(p)+ +1]
+(p+q+r k) '—[N(k)[N(p)N(q}+N(q)N(r)+N(r}N(p)+N(p)+N(q)+N{r)+1]

—N (p)N (q)N (r}]+
+(p+q —r —k) '[N(r)N(k)[N(p)+N(q)+1] —N(p)N(q)[N(r)+N(k)+1]]+ ), (A4}

where we have used N( —k}=—N(k) —1, etc., and each term appears twice, hence providing a factor or 2. Note that
the rule for determining the numerators in (A4) is as follows: For any positive (negative) product of N's in the numera-
tor, delete the corresponding momenta in the denominator, and then only positive (negative} terms will remain in the
denominator.

It is not difficult to see that the graphs of Fig. 2 represent the terms in (A4). The denominators in (A4) are just the
denominators of nonrelativistic perturbation theory encountered in evaluating the T-independent parts (the parts
without the cut lines) of the graphs.

The apparent singularities at p +q +k r=0, p —+q r —k—=0, etc. in (A4} are removed when the graphs of Fig. 2
are combined. Therefore it is correct to take the denominators in individual terms in (A4} each to be principal values.
This is equivalent to taking the real parts.

In this example the graphs in Fig. 2 are almost the same as the corresponding real time graphs for the pressure, ex-
cept that the graph with four cut lines (which would be purely imaginary anyway) is omitted.

Now take graphs (e)—(g) of Fig. 1. For simplicity, we concentrate on (e). The above method leads to the contribution

'Ms(2 ) f d pd q N(p)+N(q)+1 N(p) N(q) 5 ( +
—}=—'M4(2 ) f d p 2N(p)+1 —N'( )

4pq p +q p —
q 4 2p

There is no ambiguity in the second term, which arises from integrals containing double poles, such as

N(po) —N(p)
(2m i) '

dpo
(po p)

This version of the analytically continued imaginary-time formalism is expressed in terms of (zero-temperature)
forward-scattering amplitudes [5]. We have used it in other contexts [6].

APPENDIX B

In order to derive (29), we differentiate (27) and obtain (for Imb & 0)

dJ 1 im .

dy~ 4 b
—ln(b /2n i)+g(b j2n.i)

where g is the Euler psi function. Using the relation [4]

fyf(y}dy =
—,'(y —y}+y [ lnI (y) —

—,
' ln(2n. )]—g( —l,y)+const,

together with the boundary condition [see (16)]

J(0)=g'(2)+ 6(1—C)H=2n [g( —1,0)+ —,', ln(2m )],
{29)is easily deduced.

(Bl)
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