PHYSICAL REVIEW D

VOLUME 46, NUMBER 8

15 OCTOBER 1992

Towards the chiral limit with dynamical blocked Wilson fermions

I. Barbour
Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom

E. Laermann
Hochstleistungsrechenzentrum HLRZ, c¢/o Kernforschungsanlage Jiilich G.m.b.H.,
Postfach 1913, D-5170 Jiilich, Federal Republic of Germany

Th. Lippert and K. Schilling
Fachbereich Physik, Universitdt Wuppertal, Gaussstrasse 20, 5600 Wuppertal 1, Federal Republic of Germany
(Received 13 April 1992)

The approach to the chiral limit in full QCD is investigated with a blocked Wilson fermionic action.
Finite size effects prohibit taking the chiral limit on small lattices. We find that various observables ex-
pected to be influenced by chiral and finite temperature properties of the theory reveal patterns which
suggest a transition to chiral-symmetry restoration and deconfinement to be the origin of the observed

phenomena.
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I. INTRODUCTION

Wilson’s formulation of (full) quantum chromodynam-
ics (QCD) on a lattice breaks chiral symmetry explicitly
and therefore requires careful preparatory work to show
that it is a meaningful discretization of QCD. In order to
perform the proper continuum limit, it is mandatory to
establish the existence of a chiral limit at which the dy-
namics of the theory is chirally symmetric. At this value
of the hopping parameter, the symmetry of the ground
state is expected to be spontaneously broken, leading to a
massless Goldstone boson, the pion. In the quenched ap-
proximation, the determination of the chiral limit is
achieved by varying the valence quark hopping parame-
ter k** towards its critical value x* where the pion
mass vanishes. This is done configuration by
configuration on a quenched equilibrium ensemble. On a
finite lattice the value of «\"*" fluctuates among different
equilibrium configurations and one usually quotes the
average of the distribution as the “critical value.”

When the dynamics of quarks is taken into account,
the approach to «k, becomes much more involved because
the quarks now play an active role in the updating pro-
cedure. One has to vary the hopping parameter of the
dynamical quarks « and tune it towards its critical value.
Thus, a variety of equilibrium gauge field ensembles at k
values increasingly closer to the expected chiral limit has
to be generated. Clearly, as it is the case in quenched
QCD for "2, one cannot reach «,, because the fermion-
ic matrix acquires a zero mode in this limit and renders
the application of linear equation solvers utterly
inefficient. In order to determine the location of k., one
has to perform an extrapolation of a suitable observable
from the generated set of k values. For example, one
could study the eigenvalue spectrum of the fermion ma-
trix and extrapolate the lowest eigenvalue, as a function
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of k, to zero. The nice feature of this method is that, in
principle, it allows one, for any given configuration, to
determine the critical valence «\"?" of that configuration
without having to introduce and actually tune a valence
quark hopping parameter. However, the computation of
the spectral distribution for Wilson fermions is very
memory consuming and thus so far only applicable for
small lattices.

Such a procedure to approach the chiral limit of full
QCD is hampered by a problem observed some time ago
by Fukugita, Ohta, and Ukawa [1]. On a 53X 3 lattice, it
turned out that, unlike in quenched QCD, it was not pos-
sible to successively increase k close towards its critical
value. At some values way before the chiral limit was
reached, a qualitatively new behavior sets in resembling
features of a deconfinement transition. This behavior was
confirmed in a further study [2] which suggested finite
size effects triggered by a deconfinement mechanism as an
explanation. As such, the occurrence of finite size effects
as the quark mass is lowered is not surprising. At in-
creasingly smaller quark masses, virtual pion loops be-
come more frequent and more extended so that the limit-
ed box size can have an impact on the dynamics of the
system, which is different from the quenched case. On
the other hand, the change of behavior was quite abrupt
and resembled similar observations made in the staggered
formulation of full QCD. Here, lowering the quark mass
while holding S and the (asymmetric) lattice size fixed re-
sults in a drop of the quark condensate as expected from
a chiral transition and also in a rise of the Polyakov loop
expectation value.

In this work we want to investigate the approach to the
chiral limit somewhat further. At fixed S=5.4 we simu-
late two flavors of Wilson fermions by means of a hybrid
Monte Carlo algorithm. On lattices of size 6%, 9% and
124, we search for the occurrence of finite size effects
when the quark mass is lowered. On the smaller lattices
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we can confirm the above-mentioned observations of
abrupt changes in observables like the average plaquette,
the fermion condensate, and the number of conjugate
gradient iterations necessary to achieve a certain accura-
cy in inverting the Dirac matrix. These phenomena
occur at larger k when the lattice size is increased and
seem to vanish at our largest lattice, indicating that the
chiral limit can be taken on large enough lattices. How-
ever, the features of the supposedly finite size effects seem
interesting enough to look somewhat deeper into their
origin. For that purpose, we compute quantities which
are sensitive to a chiral or a finite temperature transition.
In particular, we follow the evolution of the eigenvalue
spectrum which is within reach of our computational
capacities for the smallest lattice. We then confront the
results from symmetric lattices with those obtained on an
asymmetric 9°X 6 lattice where the interpretation of a
finite extent in the temporal direction as a finite tempera-
ture is theoretically cleaner.

Common numerical algorithms for the inclusion of
dynamical fermions need vast computer resources as they
require the repeated evaluation of the quark propagator
throughout the equilibration process. So far most of the
recent investigations of QCD with the hybrid Monte Car-
lo algorithm (HMCA) [3,4] have made use of the stag-
gered fermion [5] formalism. Simulations with Wilson
fermions (which have four times as many degrees of free-
dom) are becoming feasible only with the advent of
powerful parallel machines [6,7]. This situation provides
sufficient motivation to search for faster numerical
methods. Intuitively, the strategy of thinning out the fer-
mionic degrees of freedom could provide such a method.
This approach, in which the gauge matrices are on the
links of a fine lattice and the quark fields are on the sites
of an associated coarse lattice, was suggested some time
ago by Wilczek [8].

Within the framework of the quenched approximation,
a program in this direction had been launched in form of
a “renormalization-group improved” blocked Wilson fer-
mion action[9]. It was quite successfully applied to the
computation of the hadron spectrum [10] and of various
hadronic matrix elements [11]. These quenched calcula-
tions allowed the pushing of lattice computations some-
what deeper into the chiral regime of small quark masses
without exhausting the computational capacities avail-
able in those days.

Here, the blocking idea will be incorporated into the
HMCA machinery such that the evolution of the gauge
fields on the fine hypercubic lattice is driven by the usual
gluonic plaquette interaction on the fine lattice and the
blocked fermionic force. We apply a specific blocking
procedure, ‘““scale V'3 blocking” (SQ3), whose geometry
was explained in Ref. [12] and applied in detail to the fer-
mion action in Ref. [9]. One benefit from fermion block-
ing is a factor 4 gain in computer requirements over the
standard Wilson fermion case.

Of course, one may ask whether the use of a different
lattice fermion action causes differences in the proximity
to continuum physics. As a byproduct of our investiga-
tion of the chiral limit, the eigenvalue spectrum of the
blocked fermion matrix shows a very close similarity with
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the distribution obtained from the standard Wilson form.
We therefore do not expect striking differences in the ap-
proach to chiral limit between the two lattice formula-
tions. Moreover, we computed Wilson loops in order to
obtain an estimate for the string tension. The results in-
dicate that, concerning the physical value for the lattice
spacing and thus the physical lattice extent, blocked and
standard Wilson formulations are in the same regime.
This paper is organized as follows. In Sec. II, we de-
scribe how fermion blocking will be technically incor-
porated into the dynamics of the hybrid Monte Carlo
scheme. We propose to estimate the value of . from the
convergence rate of the standard conjugate gradient, as
will be explained in Sec. III. There we also discuss some
implications of the order parameters { WW¥) and {( ¥y°¥)
for Wilson-like fermions. In Sec. IV, we present our nu-
merical results, and in Sec. V we draw conclusions.

II. HYBRID MONTE CARLO
AND BLOCKED FERMIONS

The usual way to discretize QCD is to put the quarks
on the sites of a hypercubic lattice and the gauge fields on
the respective links. The effect of the fermionic degrees of
freedom on the gluonic fields is borne out off the fermion
determinant detM that appears in the partition function
Z of the problem. The impact of the determinant is then
estimated by means of pseudofermions:

4 -5
Z=fHHdUﬂ(x(m)detMe g
L0p=1
h —(5,+5.,)
:fHHdU,,(X(O))Hdd)x(o,dCD;(o)e LI (1)
xOp=1 %0
Spr= X q’:rm(M);«é),y(o@ym),

x(0) (@

where S ¢ contains the inverse of the fermion matrix.

Now the main reasoning behind our way of thinning
fermionic degrees of freedom goes like this: in the
molecular-dynamics evolution of the gauge links, the fer-
mionic force is dominated by the fluctuations (from
configuration to configuration) among the small eigenval-
ues of the Dirac operator M, i.e., long-range contribu-
tions. These are expected to be preserved under the SQ3
blocking scheme, which therefore should be able to bring
out the physics of the fermionic force, as it acts on the
gauge fields on a fine hypercubic lattice (FHL). We em-
phasize that no blocking is applied to the latter.

We are thus dealing with the partition function'

4
z=[TI 14U, (x)

<Op=1

Xqu)xmdq);me_(Sg+sbl°c“d) ’ (2)

xD

1We have followed the usual procedure to replace M by M "5
in order to assure positive definiteness of the fermion matrix.
Therefore, we deal with two flavors of fermions.
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where

S blocked = 2

)(“),y(l)

(II(M M) (1) (1¢y(1) .

The sites of the fine hypercubic lattice are denoted by
x'%, u enumerates the four Euclidean links (in a positive
direction), with the corresponding link vectors e|)’. The
gauge field U, (x'9) is located on the link connecting the
sites x© and x‘o’-l-e/f”, as usual. For shortness we
suppress both color and Dirac indices. The pseudofer-

mion fields (Dx'“ relate to the sites of the once blocked

lattice (OBL), which we denote throughout this paper
with the upper index (1) (1 stands for “one blocking
step™).

The blocked fermion matrix M that appears in Eq. (2)
has a similar, though slightly more complicated, struc-
ture as the standard Wilson action:

M: 1 _K(Ddiagonal+Dstraight) . (3)

Both contributions are Wilson-like hopping terms:
D*traight connects a given block site to those neighbors on
the OBL which are displaced by three links in the
straight lattice directions of the FHL, while D diagonal
refers to an additional interaction on the OBL with cer-
tain three-link displacements on the FHL (in three di-
mensions, i.e., “diagonal”) to be specified. They have the
form [cf., Eq. (A3)]

4
%onal_z[(A —4 ,}/‘”)U( (1))8)((]),})(1)*2_(1)

i=1 i

+(A,+ A7 T (x D —e{V)

XSxm’yuue(ll] g
4)
8
DStrla)li}(m—.zs[(A 4751)) ( 1))8x(”7ym“ei'1)
i=
+( A3+ A7) )U( —ei')

szmyymﬂim] .

Our geometric nomenclature? closely follows Ref. [9]:
e!! is the direction vector in the ith direction; note that i
now ranges from 1 to 8, as the blocking of the fermion
matrix M creates the additional nearest-neighbor interac-
tions in four diagonal directions. The 4;’s are blocking
constants. The ¥!!”s are constructed from the usual
Dirac matrices. The effective links U,(x ") are related to
the OBL links and appear exclusively in the blocked fer-
mionic action and the fermionic force.?

To carry through molecular dynamics, we follow Refs.
[3,4] and add momenta P 0 conjugate to the gauge

fields, i.e., located on the FHL. The resulting Hamiltoni-

2To make the paper self-contained, we give a review of the
geometry of SQ3 and of the blocking procedure in the Appen-
dix.

3Note that, for periodic closure, one is restricted to lattice sizes
which are integer multiples of 3.
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an reads

=% 2 trP o,+t8 3 3 [1—+t(U,,+H.c.)]
(0) v>p
+ 2 Xm(M M);(

Do)
XD,

}),ym(bym . (5)

In order to construct the equation of motion for P o

with respect to 7, one still can apply the idea of Ref. [4].
Start from the conservation of H, i.e., H=0. For the fer-
mionic part of the problem, this now involves the compu-
tation of the time derivative of the effective links U,;(x‘").
Since U;(x") is a sum of products of three links on the

FHL [cf, Eq. (A4)], lL/,-(x(”-) can again be expressed in
terms of U, (x?)). Isolating P 0, on the left-hand side,

iPX(O)’quU’u(x(O)) { l B V o +Fx(0),#[ Uy(x‘o’)]

—H.c. J , (6)

we find the starting point for the molecular-dynamics
procedure with a blocked fermion force. The curly
brackets contain the standard sum over staples V o, at-

tached to the gauge link U, (x©), and the fermlomc con-
tribution Fx“” w0 the exp11c1t form of which can be found

in Eq. (A8) and Table III. Now HMC blocking (HMCB)
proceeds: Calculate the evolution of the gauge links on
the FHL in phase space with blocked fermionic force;
carry out the Metropolis decision, taking into account
the gauge action and conjugate momenta on the FHL
and the fermionic action on the OBL.

In the numerical implementation of HMCB, we ap-
plied the well-established standard conjugate gradient al-
gorithm to the inversion of the blocked fermionic matrix
in view of its advantageous limitation in the number of
control parameters. As residue (norm of the residual vec-
tor) we used R =10"% All calculations presented here
were performed at B=5.4. We performed 20 molecular-
dynamics steps between each Metropolis decision and
gained acceptance rates of about 75% with a time step
size € of 0.04 on a 6* lattice for all k values used. On the
12* lattice, we had to reduce € to the value 0.015 in order
to assure the same acceptance rate.

TABLE 1. Direc_tion vectors of a FHL and a OBL in units of
the FHL spacing. 1 stands for —1.

FHL OBL
e®=(1,0,0,0) ei""=(1,1,1,0) e$'=(3,0,0,0)
e=(0,1,0,0) ey =(1,1,0,1) et=(0,3,0,0)
¢$=(0,0,1,0) el =(1,0,1,1) e$"=(0,0,3,0)
e =(0,0,0,1) e’ =(0,1,1,1) ey =(0,0,0,3)
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III. TOOLS TO STUDY DECONFINEMENT
AND CHIRAL TRANSITIONS

We monitored the approach to the chiral limit by
measuring observables which promise to give insight into
the nature of a transition phenomenon which, in the fol-
lowing, we would like to call “shielding” before another
interpretation can be given. In the pure gauge theory,
the Polyakov loop P is the order parameter which signals
the deconfinement phase transition at finite temperature.
In that theory the behavior of the Polyakov loop on a
finite lattice reflects the spontaneous breaking of the Z,
symmetry of its action. When quark loops are included
in the action, the interpretation of the Polyakov loop be-
comes subtle. Because of fermionic contribution, the Z,
symmetry of the action is explicitly broken; yet numerical
calculations based on the staggered quark formalism still
show a sharp transition [5] which manifests itself through
a sharp rise in the vacuum expectation value of the Po-
lyakov loop P.

At this transition, normally referred to as the finite
temperature deconfinement transition, (¥W¥) for the
staggered fermions is observed to drop to zero in the limit
of vanishing quark mass, indicating the restoration of
chiral symmetry [5]. This is not at all obvious with Wil-
son fermions due to the Wilson term. Nevertheless, we
also measure the unrenormalized chiral condensate. This
observable is strongly dependent on the small eigenvalues
of the hopping term D in the fermion matrix M,
M =1—«kD. Since these eigenvalues are controlled by
closed quark loops it is reasonable to expect that, at light
quark mass, the behavior of this observable is strongly
correlated to that of the expectation value of the Po-
lyakov loop. Hence, it should be strongly affected if the
shielding has the signature of a finite temperature transi-
tion.

The chiral condensate can be cast into the form of a
spectral representation

(Fo)=1s_1_ @)

V< 1—kA; '’

where A; are the eigenvalues of D and V is the lattice

volume. The “y° symmetry” of D, y°Dy’=D", requires

that the complex eigenvalues of D appear in complex

conjugate pairs A and A*. Hence, the condensate is real
on each configuration.

From the above representation, Eq. (7), it is obvious
that a real eigenvalue of D, A,, would give rise to a pole
in the condensate (¥W) at the appropriate value of the
hopping parameter, k=1/A,; vice versa, if a sudden drop
in (WW) signals a chiral phase trasnition, one would ex-
pect a corresponding abrupt change in the eigenvalue dis-
tribution of D. In particular, one would expect any previ-
ously real eigenvalues to move into the complex plane.

A third observable is {¥y°¥) which can be regarded
as the order parameter for parity violation [13]. This or-
der parameter also depends strongly on the distribution
of the eigenvalues of D, but, in addition, it has a strong
dependence on the behavior of their associated eigenvec-
tors. If R; denotes an eigenvector of D with eigenvalue
A;,i.e., DR;=\,R;, and R; is the corresponding eigenvec-
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tor for A} normalized such that ﬁ,-T‘ySR ;j=06,;, then
(Wy*¥) can be written as

pt
= 1 R;R,;
Vy)=—3 —r.
(Py ¥) VEI_KM (8)

1]

Again, we see that the distribution of eigenvalues close to
1/k will strongly influence the behavior of this observable
which is real on each configuration as well.

We use the Lanczos algorithm to tridiagonalize the
hopping term [14] and then the quenched lattice (QL) al-
gorithm with implicit shifts to obtain the eigenvalues.
However, the structure of the Wilson matrix arising from
the fermionic action is such that, at present, it is not pos-
sible to compute all its eigenvalues unless orthogonality is
maintained between the Lanczos vectors developed in the
algorithm. Since this requires all these vectors to be
stored, the available computer memory limits the max-
imum lattice size to 4* upon which the spectral properi-
ties of Wilson fermions can be studied. However, because
of the SQ3 blocking and the ensuing reduction of the fer-
mionic degrees of freedom on the once blocked lattice, we
can study the eigenvalue distributions on a 6* lattice.
Since we have to know, and store, all the Lanczos vec-
tors, it is straightforward to extend the QL algorithm to
obtain the above eigenvectors. Note that the measure-
ment of (W¥y°¥) could also be obtained directly from the
eigenvalues of ysM without the requirement of reorthog-
onalization since it is Hermitian.

We have two ways of computing {WW¥W): we can use
the spectral representation, Eq. (7), or we can apply (and
in this way check) the stochastic estimator (SE) method
[15] which is based on the computation of the quark
propagator from a stochastic extended source (instead of
a point source). We also perform a stochastic estimate of
((Py>¥)?), as monitor; here { ), stands for the joint
average over gauge fields and stochastic estimator
sources.*

Strictly speaking, a precise determination of k. on
small lattices is excluded because of the prior appearance
of the shielding: normal methods, such as those described
above, fail in the region k > «,. Thus, we have to provide
ourselves with some suitable control parameter from
which we can estimate, by extrapolation through «;, the
chiral limit. We show below that the convergence rate of
the conjugate gradient algorithm might act as such a pa-
rameter.

In order to do this, we start from the definition of «_ as
the value of the hopping parameter « at which the pion
mass vanishes [resulting from renormalized Ward identi-

4The observable ((¥y°W)?), is closely related to the “pion
norm” introduced in Ref. [2]. There the pion norm is used to
monitor the region of “criticality.” As one moves the hopping
parameter « closer to k., one expects the system to become criti-
cal more frequently; i.e., one can observe an increasing number
of sharp peaks in the time evolution of the pion norm. Howev-
er, we could merely get a rough idea of the location of k., by us-
ing this method.
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ty and PCAC (partial conservation of axial-vector
current) relations [16-18]],
1|1 1
2 lod = — | —-— —
myemg=o . 9

In addition, there is a theorem concerning the conver-
gence rate of the conjugate gradient algorithm: for a
number of N iteration steps, the norm of the residual
vector R is bound by [19]

Neg

‘/}‘max - ‘/}"_rm:x
Vlmax + ‘/1—!1:1

<

(10)

This result is certainly valid for a uniform distribution of
eigenvalues. There will be some dependence of R on the
detailed distribution of eigenvalues, in particular around
Amin Where the dependence on the spectral density could
be critical in controlling the conjugate gradient conver-
gence. However, it does provide a first-order approxima-
tion to the convergence behavior of M M. We shall show
below that, prior to the shielding, it is completely con-
sistent with the observed convergence of the algorithm.

Close to k., the minimal real eigenvalue of M ™ is
small and is approximately that of M2, i.e., (1—k/k, )%
1t follows from the above that, for the inversion of M fM s
the number of iterations required for convergence of the
algorithm to some small but fixed residual R will behave
as

K. —K

(11)

« 2Kmq =
CcG K¢

We shall subsequently verify the validity of this equation
prior to the shielding and use it to perform a linear extra-
polation to the true chiral limit.

IV. RESULTS

In order to study the approach to the chiral limit with
Wilson fermions, we performed simulations on symmetric
lattices of increasing size 6% 9% and 12*. The coupling
was fixed to $=5.4. In the first round of exploration we
measured the gauge field action and the (unsubtracted)
chiral condensate {WW) working at equal values of the
valence and the dynamic hopping parameters, "2 =x.
As discussed in Sec. III, we attempted to use the number
of conjugate gradient iterations necessary to achieve a
certain accuracy for the inverse Dirac matrix as a cheap
means to extrapolate to the chiral limit. These inversions
are needed for the calculation of the fermionic force in
the molecular-dynamics steps anyway and no further in-
versions for, e.g., computing the pion propagator are re-
quired. We found that, at an accuracy of 10™* for the
conjugate gradient residue, Nog varies only very little
over the simulated trajectories. In Fig. 1, we show our
results for these three quantities on the 6* lattice. We ob-
serve a sudden decrease in the gauge field action and the
chiral condensate when « is increased. This is accom-
panied by an apparently correlated rise in 1/Nqg (let us
call this point «,, where s stands for shielding). As de-

I. BARBOUR, E. LAERMANN, TH. LIPPERT, AND K. SCHILLING 46
050 |- ¢ o &
Boas - :
046 [ "o o
! [ ]
0.44 - 1 1 ]
og | ° * o
5 .
080 |
L]
0.70
0.60 ! L 1 I
x107 '
140
.
- [ ]
'g 120
z .
| .
1.00 | ~ +
0.80 ) L 1 1
0.062 0.064 0.066 0.068
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picted in Fig. 2, the k value where 1/Nyg develops a
minimum depends on the lattice size and shifts to larger
values of k when the lattice is enlarged. On the 12* lat-
tice, 1/Ng deviates only weakly from a linear behavior.
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FIG. 2. Extrapolation to k. for the symmetric 6* 9%, and 12*
lattices.
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We take this as evidence that these effects are due to the
finite size of the lattice and disappear at our value of 8 on
a 12* lattice. Thus, on sufficiently large lattices it seems
to be possible to obtain the chiral limit in the standard
way. Prior to the sudden change in behavior, 1/N¢g
shows quite a linear dependence on « lending support to
the applicability of Eq. (11). When we extrapolate to the
value of k where NG becomes infinite, we obtain a value
of k,=0.069 almost independent of the lattice size. On
an infinite lattice this point supposedly corresponds to a
zero mode in the fermion matrix and would be the loca-
tion where the chiral limit has to be taken.

It is obviously of interest to study the nature of these
finite size effects in somewhat more detail. We have
therefore followed two lines which have been within our
computational capabilities: on a 6* lattice we have per-
formed a more detailed study including a computation of
the eigenvalue spectrum of the fermion matrix. Second,
we carried out an investigation on an asymmetric lattice
of size 9°X 6 where finite size effects may be mainly due
to the small temporal extent and thus be finite tempera-
ture physics.

For the 6* lattice, in Fig. 3 we present our results for
the gauge action (¥W), ((¥y>¥)?),, and also {(Vy>¥).
There is an abrupt change in all four quantities at the
same k value denoted ;. In Fig. 4 we display the behav-
ior of the Polyakov loop distribution as k moves through
this shielding point k,. We observe a sudden change in

i
° 1
o 950 - o &
) t
3 I
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0.46 - '+ ° o
1 [ ]
044 1 L 1 I
1
1
° ]
A 090 A %
S .
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X107
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FIG. 3. S, (W), ((Fy°¥)?),, and (Fy°¥) vs « at
B=5.4 on a 6* lattice. {WW¥) has been calculated by the sto-
chastic estimator method and also via the eigenvalues. The
respective contributions of real and complex eigenvalues to
(¥y*¥) cancel largely on both sides of the phase transition.
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the scatterplot from a spherical to a Mercedes-star shape.
Note that there is some tunneling into all three vacua
even beyond the shielding point. In contrast with the re-
sults of Bitar et al., who found Im(P) to be negligibly
small in both phases, we do observe genuine complex be-
havior with a definite three-vacua structure in the
“deconfined” phase.

The 6* lattice is small enough to allow the determina-
tion of the full eigenvalue spectrum (and the associated
eigenvectors) using the Lanczos method outlined above
as applied to the once blocked hopping matrix D. Typi-
cal spectra for a configuration at a given k are shown in
Fig. 5. They are very similar in shape and structure to
those obtained in a quenched standard Wilson simulation
in SU(2) on a 4* lattice [20], where there is an elliptical
“hamburger” shape with cavities developing as the finite
temperature transition is approached.

We have used the eigenvalues to calculate (¥W¥) via
Eq. (7) and, in conjunction with their eigenvectors, to cal-
culate (Wy°W¥) via Eq. (8). In Fig. 3, we compare {( VW)
calculated from the spectrum with {¥W¥) as obtained by
means of the SE method and find good agreement. The
respective contributions to (Wy°W¥) of the purely real ei-
genvalues and of the eigenvalues with a nonvanishing
imaginary part are shown in the fourth window of Fig. 3.
Both contributions cancel each other largely. We thus
have no evidence for parity violation on either side of the
shielding point.

Im P

x
[

0.06415 k = 0.0642

Re P

FIG. 4. The Polyakov loop distribution on a 6* lattice. The
spherical distribution converts to a Mercedes-star-like shape,
reflecting the tunneling into the three possible vacua.
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Each of the eigenvalue distributions shown in Fig. 5 is
actually a snapshot at a given moment in molecular-
dynamics time. Generally speaking, they change from a
fairly uniform and nearly spherical structure at low «
through elliptical “hamburgerlike” shapes into a distribu-
tion where real eigenvalues are increasingly thinned out.
This sequence of shapes is characteristic as a function of
k. Following the time history of the system at a given «,
just above k; one actually observes a flip-flop behavior of
a series of distributions with real eigenvalues followed (in
molecular-dynamics time) by a series with no real eigen-
values as demonstrated in Fig. 6. Corresponding to the
density of real eigenvalues, (WW) decreases. At
k=0.0645 the surviving real eigenvalues cluster around
the corresponding locations of the free theory. At larger
k values, the distribution develops a gap along the real
axis. In these respects this behavior prior to, at, and
beyond the shielding point is similar to that observed in
quenched simulations around the finite temperature
phase transition [20].

We now discuss our results on an asymmetric 93X 6
lattice. In Fig. 7, we show the gauge field action (WW¥)
and ((¥y¥)?), as a function of the hopping parameter.
Again, with increasing «, the values of S,,,,. and the
quark condensate decrease in an apparently correlated
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FIG. 5. Change in the eigenvalue distribution across the
phase transition. Each picture is a typical representant bor-
rowed from a series of configurations at equal k. The bold point
denotes the location of k. as obtained by extrapolation of
1/Ncg (Fig. 2). The scale drawn in is valid for both the abscissa
and the ordinate.
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FIG. 6. Flip-flop behavior for k> k, on a 6* lattice. 1/AL,, is
plotted as function of the molecular-dynamics time 7 for two
values of k. The shadows denote the regions where purely real
eigenvalues of the fermion matrix occur.
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manner. Both observables drop suddenly at the same
value of K=k, ~0.0662. On the other hand, {(¥y°¥)*),
rises as « approaches k, from below, but it also exhibits a
jump at the same «. Likewise, Fig. 8 shows the inverse of
the number of conjugate gradient iteration steps, 1/N¢cg
(necessary to achieve the conjugate gradient residue
R =10"%), as a function of the hopping parameter k. As
on the symmetric lattices, there is a definite linear behav-
ior of 1/N¢g in k prior to k,. A straight-line extrapola-
tion to the limit Nog=o gives k,=0.067610.0003,
significantly above k; =0.0662. The error quoted for «,
is estimated from an alternative quadratic fit. This point
agrees precisely with the location where the Polyakov
loop undergoes a sudden change in behavior as well, as
shown in Fig. 9: the scatterplot of P looses isotropy and
chooses a preferred orientation along one of the Z; va-
cua. All these phenomena resemble very closely the
features observed in the vicinity of the deconfinement
transition in quenched calculations [22].

Beyond the shielding point, the behavior of 1/N g and
((¥y°¥)?), hints at an increase of the pion mass and can
be compared with the features first found by DeTar and
Kogut [21] in the staggered fermion formalism. There a
rise in the pion mass between the confined phase and the
quark-gluon plasma could be attributed to the restoration
of chiral symmetry.

Since we have used fermionic degrees of freedom
thinned out by applying a SQ3 blocking to the standard
Wilson action, one might ask whether a simulation with
the blocked action is similarly close to continuum physics
(on the same lattice) as the conventional approach with
standard Wilson fermions. A precise answer would re-
quire a mapping of the parameters x and 8 on unblocked
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FIG. 8. Extrapolation to k. for the 9°X6 lattice (the solid
line is a linear fit). The error follows from the polynomial fit
(dashed line).
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FIG. 9. The Polyakov loop distribution for various k values
at B=35.4 for the 9°X 6 lattice.

x and B values. Within the context of this exploratory
work, we have restricted ourselves to measure Creutz ra-
tios on the 9* lattice at k=0.064 in order to estimate the
length scale in our simulation. We find that the lattice
spacing (deduced from the string tension) with blocked
dynamical fermions appears to be about the same size as
that of standard dynamical Wilson [23] fermions at equal
B. This is good news since we apparently do not step
away from continuum physics by blocking fermionic de-
grees of freedom.

V. SUMMARY AND CONCLUSIONS

By blocking fermionic degrees of freedom, we extended
previous full QCD studies on the approach to the chiral
limit. This blocking procedure enabled us to study the
evolution of the eigenvalue spectrum {A} of the fermionic
matrix through the shielding point on a 6* lattice. The
behavior of these distribution, considered as a function of
K, is very similar to that observed in the 8 dependence of
the quenched theory around its deconfinement transition;
i.e., the passing through the shielding point is accom-
panied by the appearance of a gap in the eigenvalue dis-
tribution along the real axis in the complex A plane. In
many respects the qualitative behavior of the spectral dis-
tribution appears to be consistent with that through a
chiral transition. It would be very interesting to extend
such studies on topological features of the action [24].

The performance of the conjugate gradient iteration
scheme is strongly dependent upon the lower spectral
bound. The convergence rate allowed us to study the
limiting behavior on lattices up to 12* in detail and,
moreover, to estimate how close we are to the chiral lim-
it. The location of the chiral limit determined in this way
is approached by the shielding point with growing lattice
size, the latter being reasonably close to x, at §=5.4 on
the 124 lattice. This indicates that, on symmetric lattices,
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shielding disappears when the lattice is large enough and
thus is a finite size effect.

On the asymmetric lattice, the same effects occur and
are even more pronounced. We certainly cannot claim to
observe genuine finite temperature physics, given the spa-
tial size of 9° compared to N, =6. Nevertheless, taken as
a whole, our results seem to suggest a deconfinement
and/or chiral transition mechanism as the origin of the
observed finite size effects. If so, then the abrupt changes
in the observables P, {¥W), and {(¥Py°¥)?),, together
with the observed flipflop behavior of the spectral distri-
bution at the transition point x;, would hint at a first-
rather than a second-order phase transition.

Clearly, in order to reach conclusive answers as to the
nature of the transition, much more computational effort
would be needed.
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APPENDIX

In the following we explicate the geometry of the OBL
and the blocking scheme which leads to the blocked fer-
mion matrix. Subsequently, we present in detail the
blocked fermionic force in terms of the gauge fields of a
FHL. Our notation differs slightly from Ref. [9].

1. Geometry of OBL

A four-dimensional fine hypercubic lattice, the sites of
which are integer multiples of 3, can be subdivided into
nonoverlapping blocks. Each block contains nine sites,
the central site x'! belonging to the resulting once

TABLE II. 4X6 topologically equivalent diagonal and four
straight paths on a FHL connecting nearest neighbors in posi-
tive diagonal directions.

1)

e(l €2 €3 €y
No. p o 0o No. p pu 0 No. p u o No. p u o
1 123 7 12 4 13 13 4 19 2 3 4
2 132 8 142 14 143 202433
3213 9 271 4 15 31 4 21 3 2 4
4 231 10 2471 16 3 41 22 3 42
5 31 2 11 4712 17 413 23 423
6 3 2 1 12 4 2 1 18 4 3 1 24 4 3 2

ell) e((,l' 8(11 e(sl)
No. p o 0 No. p o 0 No. p u o No. p pu o
25 1 1 1 26 2 2 2 27 3 3 3 28 4 4 4

I. BARBOUR, E. LAERMANN, TH. LIPPERT, AND K. SCHILLING 46
° @Imﬂﬁln . . .
e o . ‘)
. . . 6130)
* L ] L L ] (0)
@O0 —0—@® c
() 204D o)

FIG. 10. Hyperplane of a FHL. A circle around a disk
denotes a site of a OBL.

blocked lattice and its eight nearest neighbors. One block
contains the sites

(1)

X s
x(”-t‘-eLO), LE(L, ..., 4}, (A1)
xM—e pefl,...,4].

The blocking procedure of Sec. 2 will end in diagonal and
straight interactions. Table I shows the direction vectors
(in positive direction only) of the FHL and the OBL in
lattice units of the FHL which are set equal 1. We
denote the nearest neighbors by y‘!’. They are associated
to x ! according to

(D= (D (= (1) ,0) 4 ,0) 3 ,(0)
yo=xte '=xte, te, te,

i€f1,...,8} . (A2

Table I immediately shows that the nearest-neighbor sites
into the four positive diagonal directions (i €1, ...,4)
can each be connected via 6 topologically equivalent
shortest paths represented in Table II. There is only one
possible shortest path in each of the straight directions
(i€5,...,8). Therefore, together with the 24 diagonal
paths, we get 28 shortest paths on a FHL connecting x "’
on a OBL with its nearest neighbors on a OBL in a posi-
tive direction. Each path has been given a definite num-
ber. Figure 10 shows two paths, one going in a straight
direction, denoted by the direction vector e‘s” and the
other going in diagonal direction, which is given by the
direction vector e{!’ of Table I. Only one of the six topo-
logically equivalent paths is drawn.

2. Blocking procedure

The SQ3 blocking can be described schematically in
three steps.

(1) Express the Wilson action on a FHL in terms of the
coordinates x ! and 9 internal degrees of freedom u of a
OBL,u€{—4,...,0,...,4}.

(2) Diagonalize the mass terms of the reformulated
Wilson action with respect to the space of the internal de-
grees of freedom and separate the fermionic determinant
according to light and heavy modes; the latter can be in-
tegrated out taking away the 8 heavy modes (8 degrees of
freedom).

(3) Truncate the higher-order terms in an expansion of
the remaining effective fermionic matrix. The infrared
behavior of the theory should be unaffected.

These blocking steps are explained in detail in Ref. [9].
They result in the following blocked fermion matrix:
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4
_ _ = () (D _
qu)’y(l)—Zmaxm,ym_121/11[U,~(x )ax(l)’y(l)_e'§1)+U—j(x )8,‘(1)'},(1)4_8’_(1) 28,‘(1)'},(:)]

8
77 (1 Fi 1
— 2 4[Uix ))Sxm,ym_e;n'*‘U—i(x( ))5x(1>’ym+ei(1)_28x(1)’y(1)]

i=35

4
D[ T (1 77 1
-2 Ay T (x! ))Bx(l)’y(l)_ei(l)_U—i(x( ))Sx(l),y(l)+e'§1)]

i=1

8 —~ —~
-3 4,7 U;(x(l))ax(l)’y(l)_egl)" U—i(x(1))8x(”,y“’+e.‘”] . (A3)
i=5 ! !

The blocking introduces effective links U which are sums of products of fine links U on a FHL:

L3 U,c"U, U, forie(l,... 4,
6 topol.

7 (1)y— equiv.
Ui(x™) paths

U,(x"U,(x U, (p'?) fori€(s,...,8}. (ad)

One can show (cf. Ref. [9]) that an iteration of the blocking will result in the same structure in every blocking step. The
blocking parameters A; that are actually used are 4, =4.242, 4,=2.598, 4;=0.0976, and 4,=0.0481.
The direction vectors must satisfy the conditions

0)—, (1 0 0)—,. (0 0), 1)—,,(0 0
x( )_x( )+e;)’ y( )_x( )+eL) y( )_y( )+e£7) ,

yM=x g o) e}"=e;,°)+eL°’+e§§” , (AS)
with p,u,0 € {—4,...,4}. The y{!”s are constructed from the FHL v "s:
=%l . (A6)

3. Fermionic force

The time derivative of the fermionic part of the Hamiltonian [Eq. (5)] contains a diagonal, i={1,...,4}, and a
straight contribution, i ={5, . . ., 8} (trace over color and Dirac indices assumed); it can be cast into the form

ds ds, ds 8 . Lt
= - =k3 (OGP0, + 0 V=P (A7)
LDi=1
where

me’,-=Yxm+ei(1)XIm( A,+ Azyf-”)-i-Xxmﬂ;”YIm( A —A,y),

i={1,...,4},
Px(”,—i=Xx“’—e‘.“)ylm(Al+A2Y§‘1))+YX(IJ_€;1)X:(1)(Al—Azygl)),
P, =Y a, X 045+ 4 yiM+x Yi(4,—4 yi)
xd x +ei x 3 47 x“)+ei(l) x(l) 3 4t y
1 (1 1 Dy i={5...,8},
Px(”,-—i=Xx“)—e‘.(”Yx(”(A3+A47i )+Yx“)—ei(”Xx(”(A3_A47/i )
—
with momenta P W requires one to relate the time derivative

of the effectivé links l7,~, which are each composed of a
sum of products of three fine links U Ve [according to Eq.

The next step, the construction of the FHL conjugate  (A4)], to the time derivative of single links on the FHL.

X=M'm"'o, y=msm'M) o .
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Concerning the straight part, we profit from the fact that
the second term in Eq. (A7) is the Hermitian conjugate of
the first; we can therefore restrict our calculation to the
effective links U; and later reconstruct the Hermitian
conjugate part. For the diagonal paths, the situation is
technically more complicated because of the occurrence
of negative direction vectors; cf., Table II. In order to
obtain the convenient form of Eq. (6), we take the
effective link U,(x‘"), pointing in a positive direction, for
the very case when the picked U v is pointing in a posi-
tive direction of the FHL. In the case where U, would

. . . . =1
go into a negative direction, we use U/(x'V—e/!) be-
cause U, then also points in a positive direction on the

FHL. U/(x'V—e!") is equivalent to U_,(x"), which
corresponds to a path in a negative direction. In both
cases we can reconstruct the missing Hermitian conju-
gate part as for the straight links.

_ We organize the U’s in three classes (see Fig. 10): (1)
U’s “outgoing” from site x'!, (2) “Intermediate” U’s
which are not at all connected with a blocked site; (3) “in-
going” U’s, the tip of which is in contact with a blocked
site. The function Fx(o,’# of Eq. (6) can now be written

down explicitly. We distinguish the three classes:

7

out K (1) (0) (1) (0) (0)
FX(O)»P_IEIO'U“(-X +ep )UU(X +€p +e/‘ )Px(“,i’
xO=x
i oK (H__ (1)
Flo, =2 —P.a_,0,U,x"—¢")
=19 0
XU“(x“)-—ei‘”—Fe}f” ), x(O):x(l)___eiy()) ,
(A8)

- K
inter — (1) (0) (0) (1)
Fx“”,u_ o U,(x'"+e,’ +e, )Px‘“,iUP(x ),

x(0)=x(1)+e;)0) .

o =6 in the case of a diagonal path and 1 in the case of a
straight path. The contributing paths for outgoing and
ingoing U’s are destinated by fixing p (o). The contribu-
tions to a specified Fx“”,v can be read off Table III; there
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TABLE III. List of indices which specify F o, according to
Eq. (A3).

Outgoing
1 2 3 4
Il No. o o iNo. u oiNo. u oiNo u oi
1 1 231 3 131 5 12111 1 22
2 2 321 4 311 6 21112 212
3 10 422 9 1 4210 4 1317 133
4 12 2 4210 41217 1T 4318 3 13
5 13 3 4322 4 3421 2 4423 2 34
6 14 4 3324 3 4422 42424 324
7 25 1 152 22627 33728 4 438
Ingoing
o 1 2 3 4
Il No. p piNo. p piNo p piNo p pi
1 4 231 2 131 1 121 7 122
2 6 321 5 311 3 211 9 212
307 322 8 T4215 %2 1313 133
4 8 2421 41216 1 4315 313
5 16 34319 43420 2 4419 234
6 18 43320 34423 4 2421 324
7 25 11526 22627 3 3728 4438
Intermediate
m 1 2 3 4
p No.oi p No.oi p No.oi p No.oi
12515 1 131 1 221 114 33
1 742 11843 1 822 2 331
22626 2 411 21012 211 42
21944 22 34 2 521 3 611
327 37 32232 31543 323 414
316 13 417 33 412 12 424 24
4 28 48 4 922 421 34 413 13

they are labeled by the index /. Concerning intermediate
links, there are two directions to be specified. Each
choice of p and o corresponds to one definite Fx'o,,#. A
bar again has the meaning of a minus sign; i denotes a
negative path.
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FIG. 5. Change in the eigenvalue distribution across the
phase transition. Each picture is a typical representant bor-
rowed from a series of configurations at equal k. The bold point
denotes the location of k. as obtained by extrapolation of
1/N¢g (Fig. 2). The scale drawn in is valid for both the abscissa
and the ordinate.
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FIG. 6. Flip-flop behavior for k> k; on a 6* lattice. 1/AL,, is
plotted as function of the molecular-dynamics time 7 for two
values of k. The shadows denote the regions where purely real
eigenvalues of the fermion matrix occur.



