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Intermediate scales of symmetry breaking in Calabi-Yan models
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We discuss the generation of large intermediate scales of symmetry breaking in grand unification mod-

els suggested by the heterotic string. We analyze on dimensional grounds a particular scenario where

one flat direction in the effective potential defines two different scales of gauge-symmetry breaking at

very high energies ( = 10"GeV). This mechanism implies the presence of one light (-1 TeV) nonchiral

neutrino. The size of the observable low-energy effects seems, however, quite model dependent.

PACS number(s}: 12.10.Gq, 11.30.gc

I. INTRODUCTION

The ten-dimensional EsX Es heterotic string [1] con-
tains, near the Planck scale, more dimensions, symmetry,
and matter than that observed at low energies. To obtain
realistic models, it is necessary to assume that the (un-
known) dynamics of the theory favors a vacuum that
compactifies the six extra dimensions, breaks the excess
of symmetry, and makes the extra fields heavy enough.

In the framework of compactification on a three-
generation Calabi-Yau manifold [2], one may distinguish
several processes that decouple from the model its exotic
ingredients. The identification of the spin connection of
the manifold in the gauge fields leaves in the observable
sector %=1 supersymmetry (SUSY) and E6 gauge sym-

metry, with chiral superfields in the 27, 27, and 1 repre-
sentations of this group. In the known cases, the three-
family manifold is constructed from a nonsimply con-
nected one, where nontrivial gauge configurations pro-
vide a breaking of the remaining E6 symmetry to a small-
er rank-6 group [3]. This process will introduce a con-
venient asyminetry (not present in the Es model) between
the quark and lepton sectors. The effective theory must
also break SUSY. In the most promising scenario [4],
SUSY is broken at large scales in a sector connected just
through gravitational interactions with quarks and lep-
tons and one obtains the usual (order 1 TeV and universal
at the Planck scale) soft-breaking terms. Finally, in order
to reduce the gauge symmetry to the rank-four group
SU(3)cX SU(2}LX U(1)r, the evolution of the model
down to low energies must define intermediate scales
(IS's} of symmetry breaking. Below these scales the exot-
ic fields in the three chiral 27's of E6 (two down-type
quarks, two neutrinos, and two Higgs doublets} will com-
bine into nonchiral representations of the standard-model
symmetry and will (possibly) become massive. The vec-
torlike 27+ 27 multiplets will also acquire masses
through effective nonrenormalizable interactions. The IS
must be very large (typically 10' GeV), since a slow pro-
ton decay and an acceptable value of the low-energy
gauge couplings require that we are left at these energies
with essentially a minimal supersymmetric extension of
the standard inodel [7].

Although the IS's represent another source of uncer-
tainty in the connection of the string with its observable

gauge symmetry, which is the first and most extensively
studied case. However, our arguments wi11 also be
relevant for the other three-generation models
(Schimmrigk and bicubic in P XP [15]}. In the Tian-
Yau model the nonsinglet-gauge matter consists of nine
families of leptons A, , six of A, , seven of quarks q and anti-
quarks Q, and four of q and Q, where

27—+A, =(1,3,3}+q=(3,3, 1}+Q=(3,1,3),
and the assignment of standard quantum numbers is

(1.2)

h h' e
X- I+

e' v4 v5

q — d X3 colors
d'

(1.3)

limit, it has been argued [8] that they have model-
independent implications that may be accessible to exper-
iment. In particular, the IS's would imply the existence
of fields in the TeV region producing neutrino masses and
lepton-number-violating processes. We would like here
briefly to review the mechanism that generates these IS's
and also introduce a particular structure in the superpo-
tential (P) with some interesting properties. This struc-
ture requires just one flat direction to produce the two
stages of symmetry breaking required in rank-six models.
It provides differences of several orders of magnitude be-
tween the IS's. In a realistic low-energy model, the Higgs
sector (whose lightness is not protected by chirality [7])
and the neutrino sector (where seesaw masses [5] would
reflect the physics in the desert ) are, in principle, sensi-
tive to the splitting of the scales. This particular struc-
ture is not contained in the analysis done by Arnowitt
and Nath [8], where two independent flat directions are
implicitly assumed. In contrast with them, we find only
one nonchiral neutrino which is necessarily light (-1
TeV) and other quite model-dependent observable eff'ects.

When we need to be definite we will refer to the Tian-
Yau three-generation manifold [6-14] with

SU(3)c X SU(3)L X SU(3)/t CE6
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Q — d' X 3 colors

L

The E6-singlet sector of this model has been recently cal-
culated [15], resulting in a minimum of 60 fields (this
number jumps for especially symmetric choices of the
manifold). The masses that these fields receive through
nonperturbative effects may be consistently small, and
some of them could survive (protected by the discrete
symmetries) below the IS. In any case, their 27X27X1
couplings with the nonsinglet sector make them an essen-
tial part of the model at the compactification scale M, .

II. GENERATION OF INTERMEDIATE SCALES

Our starting point is the effective model at
M, ( &Mp„„,„). We suppose that the residual N =1
SUSY is broken in the effective potential by scalar masses
and by a term proportional to P. The SUSY-breaking
effects would also fix the vacuum expectation values
(VEV s) of the moduli fields (whose potential is, in princi-
ple, flat). These VEV's determine the complex structure
of the manifold and then the value of all the couplings in
P. We will assume that P incorporates a group of
discrete symmetries acting in a definite way over each
multiplet of chiral superfields. In Calabi-Yau models
these symmetries are necessary to achieve the hierarchies
Mz/M, or m„~/m„~ [9], and also to define a low-energy
matter parity [10].

Since the supersymmetric part of the effective potential
is positive semidefinite, the nontrivial minimum that
defines the IS's should be favored by the SUSY-breaking
terms. Although these effective terms are, in principle,
flavor independent (they are generated via gravitational
interactions), their universality is broken by Yukawa ra-
diative corrections. In Ref. [11]it is shown via the renor-
malization group that the mass coefficients evolve fast (in
1 or 2 orders of magnitude) to negative values when one
scales down the effective model, triggering nonzero
VEV's. Then if the potential contains a fiat direction (a
direction in the field space without self-interactions) the
VEV's will grow up to values as large as the scale where
these mass coefficients become negative. It is remarkable
that the Tian-Yau model mentioned above contains more
families and couplings of leptons k than of quarks q and

Q, a fact that favors VEV's for fields in lepton multiplets
and preserves the color symmetry. (A larger number of
A, 's above the IS's is also necessary for a correct
unification, since the gauge couplings verify ac & aI ii.}

The flatness of the potential is a necessary ingredient to
define large IS's. The supersymmetric scalar potential in-
cludes the D and F terms

Dcx —ggtTll!PJ F BP
I

I

(2.2)

D flatness is obtained by requiring that, for each VEV

along a gauge flavor, there is an identical VEV along a
field in the conjugate representation; since these fields
have opposite charges, their D contributions cancel. F
flatness is obtained if all the terms in P contain more than
one field with a zero VEV. When only v5 and v4 [see (1.3)]
develop VEV's, the gauge symmetry provides flatness
with respect to terms of type 27 and 27 in P. However,
including trilinears 27X27X1 and eff'ective (27X27)"
nonrenormalizable terms (which we assume are
suppressed by inverse powers of M, ), the nonfiat contri-
butions can be forbidden only with the help of the
discrete symmetries of the model.

In general, it will be difficult to find models with com-
plete1y flat directions. Suppose that the VEV's along v&

involve n families; there are n +1 equations (D =0 and
F; =0, with i = l, . . , n) b. ut just n VEV's, and then a fiat
direction would require two dependent equations. The
case with only one dependent equation (such as in Ref.
[12]) correspond to a discrete set of zeros, with cancella-
tions between terms of different dimension that would im-

ply VEV's of order M, . Actually, completely flat direc-
tions have been found only in models that incorporate an
R symmetry [13,14]. Experience shows, however, that
when flatness is protected by an unbroken symmetry, one
also gets a large amount of extra massless fields, which
tend to move the electroweak angle and the proton life-
time to nonacceptable values (this is the case, for in-

stance, in Ref. [13]}.
Another possibility, easier to realize in models without

8 symmetries, is the generation of IS's along noncom-
pletely flat directions. If flatness is broken just by terms
of high dimension (very suppressed by powers of M, '),
the scales may be large enough. Suppose that the
effective potential receives contributions from terms
(27X27)" in P. On dimensional grounds, the minimum
will result from the balance between order m, =1 TeV
(negative) bilinears and order M, "+ (positive) Fcontri-
butions of dimension 4n —2. The VEV's, order
(m, /M, )'~I " 'M„will be 1 or 2 orders of magnitude
below M, (as required by perturbative unification of the

gauge couplings) for n =4—6. (The soft contribution pro-
portional to P, of order m, M,",is unnecessary in this
argument, because it is not dominant for any value of the
fields).

We note that, in breaking along an almost flat direc-
tion, the nonzero value of the F terms introduces a new
source of SUSY breaking that will involve the scalars in-

teracting with the fields developing VEV's. In contrast
with the ones coming from gravitational interactions,
these soft-breaking terms are not universal and do not
affect the three chiral families (massless after the IS's), al-

though they could affect the Higgs fields. We also ob-
serve that the fermionic partners of the scalars develop-
ing a VEV (nonweakly interacting neutrinos) receive only

order m, mass contributions from the terms (27 X 27)" in

P. However, the Yukawa couplings of these neutrinos
with the low-energy fields are necessarily very small (or-
der m, /IS = 10' ); sizable trilinears [of type
v~(h h+)(h h' )] in P would give large masses to the
low-energy fields.
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Finallypwe would like to mention the cosmological
scenario that may accommodate this type of phase transi-
tions [12,19]. The finite-temperature effective potential
would contain a quadratic term proportional to T,
where T is the temperature of the thermal bath in contact
with the scalar field. For the field with the flat potential
that we are considering, this term prevents the transition
(from zero to large VEV's) until the temperature of the
Universe is O(m, = 1 TeV). Then, the entropy generated
would dilute to nonacceptable values any existing baryon
asymmetry. There are several ways to avoid this prob-
lem: to suppose a period of inflation (where the Universe
is extremely cool before reheating and baryogenesis), to
recreate the baryon number at T-1TeV (transferring
energy to heavy fields via anharmonic couplings), or sim-

ply to assume that the initial values of the field [at
T=O(M, )] are likely to be large (and the field would be
trapped when T drops below the IS).

To discuss the orders of magnitude, we will consider
the model with a superpotential,

p (
i i—)n+. i (2 2—)m

~2n —3 5 5 M 2m —3 4 4
C C

+ . . ('v5 'v5)'( v4 v4) (3.2)
C

and effective scalar masses destabilizing the potential
along 'vs (i.e., m i +m i

=——m, (0). The actual value
V5 V5

of the exponents in Eq. (3.2) would be fixed by the
discrete symmetries of the particular manifold, while the
parameters a, P, and y are arbitrary complex coefficients
that we assume to be of order 1. As shown in the previ-
ous section, if the v5 self-interactions (first term in P)
define an almost flat direction [n =4-6 in Eq. (3.2)] these
fields will develop large VEV's, ('v5)=(~V, )=xM„
with Fcontributions in the effective potential given by

III. A MODEL
WITH TWO INTERMEDIATE SCALES

5 5
(3.3a)

The rank-six models under study here require two IS's
of gauge-symmetry breaking, defined by VEV's of two in-
dependent combinations of v4 and vs (with identical v4

and v~ VEV's) in two diff'erent A, +X vectorlike multiplets.
It will be possible to make a gauge transformation and
leave the multiplet containing bigger VEV's with
('v4) =0 (the superscripts label the two A, and A, ). The
smaller VEV s in the second family will, in principle, in-
volve both gauge flavors. However, the fields v5 and vz

are not neutral with respect to the possible matter pari-
ties one can define in the Tian-Yau manifold (see Table
II). Since a low-energy matter parity is a necessary in-
gredient of any realistic SUSY model, these fields should
not develop VEV's. We will consider models where this
possibility is favored by the discrete symmetries, and the
VEV's in ' k and ' A, satisfy

(3.1a)

(3.1b)

We

define

=P, /M, andy =$2/M, (1&x &y).
In the Tian-Yau model with SU(3)c X SU(3)L

X SU(3)n gauge symmetry, the first VEV's [in Eq. (3.1a)]
break the symmetry to SU(3)c X SU(2)L X SU(2)„
X U(1)ii L, nine gauginos combine with the fermions 'e,
'e, 'e', 'e', 'v, 'v, 'v4, 'v4, and 1/i/2('v~ —'vs) in the first
supermultiplets, defining Dirac fields. At the second
scale [Pz in Eq. (3.1b)], three other gauginos combine
with e', e', and 1/v'2( vs —'vs) leaving unbroken just
the standard-model symmetry, SU(3)c X SU(2)t
X U(1)F.

In principle, the v5 and v4 VEV's in Eq. (3.1) should
grow along two independent flat directions of the scalar
potential. We are going to discuss a different and more
economic scenario where just one, almost flat, direction is
sufficient to generate the two IS's. This is achieved for a
specific form of the 'v5 —v4 interactions that will fix a
small ( v4 ) component when ( 'v~ ) grows along the flat
direction and will define a hierarchy of type y =O(x').

F2 =F2 =0
V4 V4

(3.3b)

Now we study the possibility of VEV's along the nonflat
[m =2—3 in (3.2)] v~ direction. If ( v~) = ( v~) =yM„
the F contributions become

F& F& n &~2& 2n —1+k ref 2x
V V5 5

C C

F&
—

F&
—m PM 2y 2~ 1 +JyM2x 2iy 2J i'

4 4

(3.4a)

(3.4b)

The dimensionally less suppressed contribution is the first
term in F2 . We find, however, that if the discrete sym-

V4

metrics of the model fix the exponents in (3.2) such that

n .i+—j=n,
m

(3.5)

there will be a value of $2 (small respect to Pi) that exact-
ly cancels the nonflat contributions in F2 while just add-

V4

ing to F, almost flat contributions (of the same order as
V5

the one introduced by Pi). This value of $2( =yM, ) is
1/2( m —j)—jr

mP
& n/m (3.6)

and the Fl term fixing the minimum becomes
V5

j/(m —j)
Fl = a+i r

V5
~2 2n —1

C (3.7)

Depending on the specific values of a, P, and y, but
without need of fine-tuning, this combination of two
terms in Fl may be more flat than the direction with

V5

$2=0, and then may correspond to a deeper minimum.
Although both minima will be of the same order
[O(~Fi ~ )], they are separated (when P2 varies from

V5

zero to the value that cancels F, ) by the barrier ~F2
V4 V4

in Eq. (3.4b).
We should emphasize that the ingredients to generate
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TABLE I. Order of magnitude of the IS and the masses of
the neutrinos in the multiplet defining P2

$, /M,

10
—1.3 10-4-'

10
10
1p

—2.0

(3,1)

(2,2)

(4, 1)

(3,2)

m2 (GeV)

10'
10
10
10'

10 1P
—5.4 (2, 1) 10'

such a minimum [a fiat direction favored by the efFective
masses and interacting with another direction as specified
in Eq. (3.5)] are not rare in Calabi-Yau models, where
typically one is left at M, with many different families
and large groups of discrete symmetries. In Ref. [9], for
example, a model that satisfies certain phenomenological
requirements (unique within its class} is singled out. We
find that in this case the IS's have to be generated
through the discussed mechanism, with n=6, m=2,
i =3, and j=1; for m, =1TeV and M, =10' GeV we
obtain

1/10 '

'e e
(4.1)

(where s is a singlet field), giving a mass of order xM, to
N„would also introduce nonflat contributions in F„and
then it should be forbidden by the discrete symmetries of
the model. For this reason N, is necessarily light (if the
flatness were exact, it would be massless) and N2 has a
mass m 2. On the contrary, the two neutrinos N3 and N4
may mix with the E6 singlets (terms & 'v5 & vss and
& 'v5 & vss) and acquire heavy masses of order xM, .

Although the presence of X1 below 1 TeV is a model-
independent feature, we find that definite predictions over
its observable effects would require a specific model. This
neutrino does not couple in P with the rest of the low-
energy fields (see Sec. II}. However, relevant couplings
may appear in the gauge sector. After the first stage of
breaking the gauginos (iL A, )L mix with the three chiral
lepton doublets (ev); (i = 1, . . . , 3), through mass terms of
type

'e
&'vs& i ~o

M, = 10"' OeV,

Pz=O(x )M, =10' GeV .

Other possibilities are tabulated in Table I.

IV. LOW-ENERGY IMPLICATIONS

(3.8)

Then, the gauge interactions of these gau;gtnos with N,
generate Yukawa couplings of type ('e 'v) N, (ev); The.
sleptons ('e 'v} will have an order &t)z/P, = sin8 com-
ponent along ( h' h' ), which may have sizable com-
ponents along the space of the three low-energy sleptons.
It results in

As pointed out by Arnowitt and Nath [8], the fiatness
arguments have implications over the low-energy matter
content. In particular, they found that in the Tian-Yau
model the symmetry breaking along two almost flat direc-
tions leaves a minimum of two (and possibly four) non-
chiral neutrinos with light masses (order m, ). We are go-
ing to show that our way of generating the IS has
different phenomenological implications.

The right-handed neutrinos in the two vectorlike A. +A,
multiplets will receive mass contributions from gauge and
chiral interactions. The first type of interaction will com-
bine them with gauginos associated with lost symmetries,
as stated in the previous section. Chiral interactions will
affect in a different way the fields involved in each of the
IS's. While 'v5, 'v5, 'v4 and 'v4 will receive masses of or-
der 1 TeV from terms ('A, 'X)" in P, the neutrinos in the
second family will receive from ( A, A, ) and
('A. 'A. )'( A. A. )~ heavy mass contributions [in the case cor-
responding to (3.8), the masses come from terms (2A.2A. )

and are of order y M, =10 GeV]. Considering all these
mass contributions we obtain (a) one neutrino with mass
m, —TeV, (1/t/2)('vs+ 'vs) =N&, (b) three ne—utrinos
with intermediate mass m2 [m~ —10 GeV for the case in
(3.8)], (1/v'2)( v4+ v~)=N2, [ v, +O(y/x)'v4]= N3, —
and [ v5+ O(y /x ) 'v4] =N4. —

The neutrinos whose sealer superpartner develops a
VEV cannot get further masses through mixing with E6
singlets or other vectorlike fields without spoiling the flat-
ness arguments. Note that a trilinear of type 'v5 'V5s in P

e e
Lz=A, ; sin9 N1 + H. c.

V
g

(4.2)

All the mixings are allowed by the Zz and Z3 matter par-
ities [10] defined from discrete symmetries of the Tian-
Yau manifold (see Table II). The Yukawas couplings in
Eq. (4.2) would induce at the one-loop level effective
operators of anomalous magnetic moment type (1;, with
i = 1, 2, and 3, stands for the charged leptons e, p, and r),

L,fr= F""/,cr„„(apPL+agPR )IJ+ H. c. ,
4m,

(4.3)

producing lepton-number violation. For instance, in the
process @~ye one obtains an amplitude proportion-
al to m„/m, where m =O(m, ~, „„+m,), with

aL =(m, /m„)az and then an emitted electron almost

Field Z2 Z3 Field Z2 Z3

(e,v);
e';

(ud);
u
d'

(h h'.
)

(h' h' )

—1
—1
—1
—1
—1

+1
+1
+1

1

CX

1

CX

CK

a2

&'v, &, &'v, &

&'v, &, &'v, &

1
V4

1—
V4

2V
5

2—
V5

( le 1
) (1e lv)

( h' h' )( h' h' )

+1
+1
—1
—1
—1
—1
—1
—1

A

Q 2

CK

TABLE II. Z2 and Z3 matter parities defined from the
discrete symmetries of the Tian-Yau manifold [10].
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100% left-handed polarized. Although this is an interest-
ing effect, very constrained experimentally
( ~ai ~+ ~az ( ( 10 ' ) [16,17], its size here depends on ra-
tios of nonrenormalizable terms and appears to be model
dependent.

The fields in the intermediate region m2 could be
relevant for the masses of the three chiral neutrinos (v,. ).
Since the scalars v5 and v5 do not develop VEV's, their
fermionic partners can couple to the low-energy fields
without making them super heavy. (Note, however, that
trilinears of N3 4 with the two Higgs doublets are forbid-
den by the matter parities in Table II.) Then, terms of
type h v, Ni ~ would mix these heavy fields (Ni and N~)
with the chira1 neutrinos and would make two of them
massive via the seesaw mechanism. In addition, one ex-
pects the couplings of N4 (mainly in a 27 of E6) to be
smaller than those of N3, which suggests one chiral neu-
trino (vt, ) heavier than the other two. In this scenario,
cosmological constraints [18] imply m, ~ 100eV. As-

h

suming typical leptonic couplings [O(mt/(h )), with

mt —1GeV], this translates into a condition for the
heavy neutrinos, m2) O(mt /100 eV) —10 GeV, which
is satisfied in just some of the models in Table I.

We should emphasize that although the neutrinos N3
and N4 may have a relevant phenomenological impact,
they appear in a model-dependent way. From the flatness
arguments required to generate the IS's one can only
infer that their mass may consistently vary from zero (the
case with two exact fiat directions) to —10 —10 GeV
(the case discussed here), and that in any case their mix-
ing with E6 singlets could give them a mass —10' GeV.
Even if the discrete symmetries protect these two neutri-
nos and they are present at low energies, their couplings
with the rest of fields are also model dependent. Actual-
ly, the Z3 matter parity forbids the simplified scheme of
seesaw masses discussed above. In that case, after di-

agonalizing the 5X5 mass matrix corresponding to v;,
N&, and N4, we find two heavy neutrinos [N4 and
N&+O(mt/m 2)v;] defining a Dirac field plus three mass-
less neutrinos [v;+O(tntlmz)N3]. For these reasons, al-

though the scenario suggests masses for the standard-
model neutrinos, even the estimate of orders of magni-
tude requires a more specific model.

V. CONCLUSIONS

We have analyzed a mechanism that requires just one
almost flat direction in the scalar potential to generate
the two stages of gauge-symmetry breaking needed in
rank-six Calabi-Yau models. This mechanism is not con-

. tained in the general analysis done by Arnowitt and Nath
(where two fiat directions are assumed), and consequently
its implications are different from those. We find the
second scale of breaking several orders of magnitude
smaller than the first. We also find only one nonchiral
neutrino (the one along the fiat direction) necessarily
light, with mass contributions in the intermediate region
for the neutrinos in the multiplet defining the second
scale. This scenario has nonstandard low-energy implica-
tions, such as seesaw masses for the chiral neutrinos and
lepton-number-violating processes. However, their size
appears to be quite model dependent. An analysis of an
explicit model where this mechanism is realized will be
done elsewhere.
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