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Sphalerons at finite mixing angle
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The classical sphaleron is constructed for the full SU(2) XU(1) electroweak theory. Unlike the sphale-
ron of the SU(2) Yang-Mills-Higgs theory, it is not spherically symmetric due to the coupling to the U(1)
field. It is symmetric only under rotations around the z axis and parity rejections. The mixing angle 8~
is varied over the full range 0(8~(m/2. When the mixing angle is increased the energy of the sphale-
ron decreases, and the energy density changes its shape from a sphere at 0~=0 to a very elongated
spheroid at large values of the mixing angle. At the physical value of the mixing angle, however, the
electroweak sphaleron differs only a little from the spherical sphaleron.

PACS number(s): 11.15.Kc

I. INTRODUCTION

It was observed by 't Hooft [1]that the standard model
does not conserve baryon and lepton number due to
Adler-Bell-Jackiw anomalies [2]. The process 't Hooft [1]
considered was fermion-number violation due to
instanton-induced transitions. Attracting much attention
[3] Ringwald [4] recently argued that such tunneling
transitions between topologically distinct vacua might
indeed be observable in future accelerators.

The possibility of baryon- and lepton-number violation
in the standard model was considered from another point
of view by Manton [5]. Investigating the topology in the
Weinberg-Salam theory, Manton showed that there are
noncontractible loops in configuration space, and predict-
ed the existence of a static, unstable solution of the field
equations, a sphaleron [6], which would represent the top
of the energy barrier between topologically distinct va-
cua.

Since at finite temperature this energy barrier between
topologically distinct vacua can be overcome due to
thermal fluctuations of the fields, baryon-number-
violating vacuum to vacuum transitions can occur. The
rate for such baryon-number-violating processes is large-
ly determined by a Boltzmann factor, containing the
height of the barrier at a given temperature and thus the
energy of the sphaleron [7—10]. Baryon-number viola-
tion in the standard model due to such transitions over
the barrier may be relevant for the physics of the early
Universe, necessitating new scenarios for the generation
of the baryon asymmetry [7—10].

In the limit of vanishing mixing angle 8~=0 the elec-
troweak sphaleron is well known [6,11]. In this limit the

U(1) field decouples, and the energy density of the SU(2)
sphaleron has spherical symmetry. At finite mixing angle
the coupling to the U(1) field destroys the spherical sym-
metry, and the sphaleron retains only axial symmetry
[6,12]. Here we consider the sphaleron of the full
Weinberg-Salam theory, treating the mixing angle 8~ as
a parameter, which is varied over the range 0(Hn (m/2.

The appropriate ansatz [12] for the axially symmetric
sphaleron is analogous to the one for multimonopoles
[13]. In both cases there is an Abelian gauge transforma-
tion, which preserves the structure of the ansatz [12,13].
Thus for the construction of the sphaleron a gauge-fixing
condition must be chosen. In the limit 8~=0 the sphale-
ron is symmetric under parity reflections. Therefore we
also require parity reflection symmetry for the sphaleron
at finite mixing angle [12). (We do not consider here the
"deformed" sphalerons, which appear for large Higgs-
boson masses and which break this symmetry [14,15].)

In Sec. II we present the ansatz and the energy func-
tional, and we discuss the residual Abelian gauge invari-
ance. Because of the axial symmetry of the sphaleron at
finite mixing angle, the unknown gauge and Higgs field
functions entering in the ansatz depend on two variables.
They represent the dynamical degrees of freedom of the
system. In Sec. III we expand these functions in terms of
Legendre polynomials [16,17] and solve the resulting sys-
tem of coupled ordinary differential equations numerical-
ly. We perform the expansion up to sixth-order terms
and consider the convergence of the series as a function
of the weak mixing angle. In Sec. IV we solve the full
system of coupled partial di8'erential equations numeri-
cally and compare with the results of the expansion. We
give our conclusions in Sec. V.
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II. ANSATZ AND ENERGY DENSITY

Let us consider the bosonic sector of the Weinberg-
Salam theory. It has the Lagrangian density
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4 p JMV

ror syminetry), and an SU(2) transformation by —1 {an
element of the center of the group). For the SU(2) gauge
fields and the Higgs field, invariance under these corn-

bined discrete transformations leads to the conditions

w', (p, z)=w2(p, z) =w, (p, z) =w2(p, z) =w', (p, z)=0,
2
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and

(2.6c)

with the usual definitions for the SU(2) field strength ten-
sor I'„'„, the U(1) field strength tensor f„„,and the covari-
ant derivative for the Higgs field D„4.

The gauge symmetry is spontaneously broken via the
Higgs potential, leading to a nonvanishing expectation
value for the Higgs field,

h3(p, z)=0 . (2.6b)

a, (p, z ) =a2(p, z ) =0 . (2.6c)

These conditions actually generate the Manton ansatz
[13]. For the U(1) gauge field, invariance under the com-
bined discrete transformations leads to

(~&= "
1

(2.2) B. Axially symmetric energy density

and the masses of gauge and Higgs bosons:

Mii = ,'gu, —Mz=—,'+(g +g' )u, MH =u&21 . (2.3)

The mixing angle 8+ is determined by the relation
tan833, =g'/g, and the electric charge is e =g sin8iv.

A. Ansatz for the axially symmetric syhaleron

(2.7a)

and has the contributions

1E = 8 w3+ —(w, +w3) —gw, w3
P

2

The resulting energy functional E is axially symmetric

E=—,
' J(E +E, +u E„)dgpdpdz

u1($) = (cosP, sing, 0),
u2(p) =(0,0, 1),
u3(p)=(sing, —cosp, O),

and expand the fields as follows:

W,'(r) =u '(P)uk (P)w,"(p,z ),
A, (r)=u)($)a (p, z),

(2.4)

(2.5a)

(2.5b)

Let us now consider the ansatz for the fields. Because
of the coupling to the U(1) field, for finite values of the
mixing angle 8 we can require only axial symmetry
around the z axis for the electroweak sphaleron. The ap-
propriate ansatz for the fields [12] is analogous to the one
discussed by Manton [13] and Rebbi and Rossi [16] for
axially symmetric multimonopoles.

We define a set of orthonormal vectors

+ 8 3+ g
p

'

+ 8 w3+ w3+gw iw3
2 j 2

p

'2

'2

E„= Bh, ——wh + Bh, ——w h

+ 8 62+ wihig 3

2

2

+ B,h2+ —W2h,
2

+ —h, +—(wih2 —wih, )——a3h,
.p'

+(a, w23+gW23w31 )2+(apw23 —a, w31)2

'2

E, = 8 a, +—a3 +(B,a3)
1

2

'2

(2.7b)

(2.7c)

0
4(r)= r'uj(P)hj(p, z )

1
(2.5c)

I

+ g (w3h, +w3h2) ——a3h2

2

Fields with such a dependence on the angle P are axially
symmetric. For the SU(2) gauge field a rotation around
the z axis (generated by J =L +S ) can be compensated
by a suitable isospin transformation (generated by I ); for
the Higgs field the compensating transformation consists
of isospin (I ) and of the residual custodial spin (K ) [8].

To restrict the ansatz further, we consider a discrete
symmetry of the Lagrangian, charge conjugation invari-
ance. (We use the definition W„'= —W„, P'=P', and
A„'= —A„.) We require invariance of the fields under
the combined discrete symmetry transformations of
charge conjugation, reflection through the xz plane (mir-

A.
2

+ (h +h —1)
2 i 2

(2.7d)

iI (p, z}7'u3U=e (2 8)

again analogous to the energy density of multimonopoles

[13,16]. Under such a gauge transformation the two-

Q. Residual U(1) gauge invariance

The energy functional Eq. (2.7) is still invariant under

gauge transformations generated by
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dimensional (2D) Higgs doublets (h „h2) and
{w3 w3 1/gp) transform with angle I (p, z) and 21 {p,z),
respectively, while the 2D gauge field (w „w2) transforms
inhomogeneously.

In order to construct the sphaleron solution, we have
to fix a gauge.

While E remains form invariant under this transforma-
tion, EI, changes to

E„=(ag )'+(a,L )'

+L2 I [(w' ) +(w 3) +(N' ) ]

"Coulomb gauge"

We will present most of our results for the sphaleron in
the following gauge, which we will refer to as the
"Coulomb gauge. " We fix the gauge degree of freedom
by choosing the gauge condition

+L —w' ——a + (L —1) . (2 15)
2 3 2 3 2

D. Ansatz with parity reiiection symmetry

6 „=a, ', +a, ,'=o.
This gauge is implemented by adding the term

f (GoF) dPpdpdz

(2.9)

(2.10)

In addition to the axial and mirror symmetries im-

posed above, we now also require parity reflection sym-
metry. Changing to spherical coordinates, we define the
functions F,(r, 8):

w3(r, 8)= F(r,—8}cos8,2

to the energy functional with g= 1.

2. "Hedgehog gauge"

In the "hedgehog gauge, " the Higgs field assumes the
"hedgehog" form

w~(r, 8)= ——F2(r, 8)sin8,2
gP

w 3(r, 8)= — F3(r,—8}cos8,2

gP

(2.16a)

p'{r)=U&4(r)=ir'r'L(p, z) 1, (2.11)
1

where r denotes the unit vector. In this gauge the Higgs
field is described by only one unknown function L(p, z).
Starting from a regular sphaleron solution with the Higgs
field

2
a3(r, 8)=, F7(r, 8)sin8 .

g T
(2.16c)

m3(r, 8)= F~(r, 8—)sin8,2

gf

h, (r, 8) =F5(r, 8)sin8, h2(r, 8)=F6(r, 8)cos8, (2.16b)

and

U4(r) =i [r'u Ih, (p, z )+r'u zh2(p, z )] 1

Then parity invariance corresponds to

F;(r,8)=F;(r,m 8), i =1, .—. . , 7 . (2.16d)

the gauge transformation UI, to the "hedgehog gauge" in-
volves the function I z(p, z), determined via

With these functions F; (r, 8) the spherically symmetric
ansatz, valid in the limit g ~0, is recovered when

—zh, (p, z )+ph 2(p, z )
tanI „(p,z }=

ph &(p, z)+zhz(p, z)

3. "Physical gauge"

(2.12)

and

F, (r, 8)=F2(r, 8)=F3(r,8)=F4(r, 8)=f(r),
F5(r, 8)=F6(r, 8)=h(r)

It is obtained from the "hedgehog gauge" by the further
transformation

U ei(7y/2)r r' ~ yi
P

r =0: F, (r, 8)~„0=0, i =1, . .. . , 7,

{2.14)
I

We also consider the "physical gauge, " where the
Higgs field assumes its vacuum expectation value asymp-
totically. In this gauge the Higgs field assumes the form

v4'(r) =L(p, z) (2.13)
1

F7(r, 8)=0,
where the functions f (r) and h (r) correspond to those of
Ref. [6].

E. Boundary conditions

1. "Coulomb gauge"

To obtain regular, finite energy solutions with the im-
posed symmetries, we choose as boundary conditions for
the functions F, (r, 8) in the "Cou.lomb gauge" [12]:

rica: F, (r, 8)~„„=l, i =1, . . . , 6, F7(r, 8)~„„=0,
8=0: dsF;{r,8}~s 0=0, i =1, . . . , 7,

(2.17)

8= n: a~;(r, 8)I&= i = 1, . . . , 7 .
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In the "Coulomb gauge" we must then solve for all seven
functions F, (r, B). Inspection of the energy density Eq.
(2.7d) yields for the long-ranged functions F, ( r, 8 ),
F4(r, B), and F7(r, B) the asymptotic relations

F3(r, B)~1—2sin BF7(r,B),
F4(r, B)~1—(2sin 8—1)F7(r,B) .

(2.18)

2. "Hedgehog gauge"

In the "hedgehog gauge" there are only six indepen-
dent functions, since

F&(r, B)=F&(r,B)=L(r,B) . (2.19)

Taking Eq. (2.19) into account, the boundary conditions
are the same as in Eq. (2.17). The "hedgehog gauge" was
used by Rebbi and Rossi [16] for the construction of mul-
timonopoles.

3. "Physical gauge"

+2sin 8[F3(r,B)—F~(r, B)),
F~(r, B)~1 F~(r, B)—

—2 cos 8[F3(r,B) F4(r, B)]—

(2.20)

with respect to the "hedgehog gauge, " while the Higgs
field function L(r, B) remains unchanged. Here only the
functions F4(r, B) and F7(r, B) are long ranged with the
asymptotic relation

In the "physical gauge" the SU(2) gauge field functions
F;(r, 8),i = 1, , 4, change according to

F;(r,B)~1 F, (r, B)—, i =1,2,

F3(r,B)~1 F3(r, B)—

differential equations for the unknown coefficient func-
tions f; &(x), which is solved numerically.

Such an expansion in terms of Legendre polynomials
was applied by Rebbi and Rossi [16] for the construction
of multimonopoles. But instead of solving differential
equations for the functions f, &(x), they introduced an ad-
ditional expansion for the functions f, &(x) and then mini-

mized the energy functional with respect to the resulting
sets of constant coefficients.

Because of the parity reAection symmetry of the
sphaleron only even Legendre polynomials contribute in
the expansion [16], i.e., 1=0,2, 4, 6. . . . In the following
we will first discuss the zeroth-order expansion, and then
the higher-order expansions, presenting results up to the
sixth order.

A. Zeroth-order Legendre polynomial expansion

In the limit of vanishing mixing angle, the sphaleron is
spherical. Therefore an expansion in Legendre polynomi-
als would have only nonvanishing lowest-order terms

Fi(x, B)=f; o(x)Po(cosB) =f; o(x) . (3.1)

2 v—(to, +F3)= 2 [F,(x,B)—F3(x,B)] (3.2a)

which implies a singular behavior along the z axis unless

F, (x, 8=0)=F3(x,8=0) . (3.2b)

For small but finite mixing angles, one expects that the
zeroth-order expansion will do quite well, while for larger
mixing angles higher-order terms should become increas-
ingly important.

Requiring a finite energy density and a finite energy
leads to a restriction on the zeroth-order functions

f, o(x). The SU(2) gauge part of the energy density Eq.
(2.7b) contains in its first term the expression

F4(r, B)~Fq(r, B) . (2.21) Since the zeroth order the functions F, (x, B) do not de-

pend on 8, we must require

F. Parameters f i,o«)=f3,o«) (3.2c)

With the appropriate boundary conditions we solve nu-
merically for the functions F;(r, B), using dimensionless
coordinates x =gvr. We fix the parameters g =0.65 and
M~=80 GeV. We vary the Higgs-boson mass, though
most calculations are performed for MH =M~, and we
vary the mixing angle between 0~ Bii, n /2, with physi-
cal value 0~=0.5.

III. RESULTS: LEGENDRK
POLYNOMIAL EXPANSION

To construct the sphaleron at finite mixing angle 8 in
general we have to solve a system of coupled nonlinear
partial di6'erential equations. Since this is a demanding
numerical task, we will first discuss an approximate
method of solution: We expand the functions F;(x,B),
depending on two variables, in terms of Legendre polyno-
mials P&(cosB). By minimizing the energy functional we
then obtain a system of coupled nonlinear ordinary

to avoid the singular behavior. This leaves one indepen-
dent function f, o(x) less to be determined.

In the following we consider the zeroth-order expan-
sion in the "Coulomb gauge" and in the "physical
gauge, "and the further restricted expansion of Ref. [17].

I. "Coulomb gauge"

Because of the restriction (3.2c) in the "Coulomb
gauge" six independent functions f; o(x) ought be deter-
mined. Inspection of the asymptotic relations (2.18),
however, shows that this gauge is inadequate when only
zeroth-order terms are taken into account. These rela-
tions clearly require an asymptotic 0 dependence for the
functions F3(x,B) and F4(x, B), if F7(x, B) is long ranged,
even if F7(x, B) were independent of 8. Thus not allowing
for a 0 dependence of all three functions would imply
that none of these functions could be long ranged. This
would physically not be acceptable, since also the mass-
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less photon is described by a combination of these func-
tions. Thus the "Coulomb gauge" is inadequate in zeroth
order.

2. "Physical gauge"

2N

Fs{x 8) fs,o{x)+ X, fs, i(x)Pi(cosg),
1=2
2N

F7(x,g)=f70(x)+ g f, , (x)P, (cosg},
1=2

(3.5f)

(3.5g)

A better gauge for the zeroth-order approximation is
the "physical gauge. " Here the asymptotic condition
(2.21) allows both functions F~(x, g) and F7(x, g) to be
long ranged, thus yielding the proper asymptotic behav-
ior for the electromagnetic field. Since in this gauge we
have the condition 9.0

Energy: Order 0, 2

(a)

where I assumes only even values due to the parity
reflection symmetry. The higher-order terms in the ex-

fs,o(x) =f6,0(x) (3.3)

in addition to condition (3.2c), there remain only five in-
dependent functions f; 0(x ) to be determined.

The energy of the sphaleron in the zeroth order in the
"physical gauge" is shown as a function of the mixing an-
gle in Fig. 1(a) for MH =Mn . In the zeroth order the en-

ergy density is finite in this gauge. In the limit 8 =n/2,
the variational principle yields the relation

f70(x)=f40(x) .

8.5-
07I—

~ 8.0-
S 0

C
7.5-

7.0
0 20 40 60

e. [deg]
80

fi,o{x)=f2,0{x)=f3,0{x) . (3.4)

3. Restricted calculation ofRef. I'1 7J

The results of Klinkhamer and Laterveer [17] are ob-
tained, when in the "physical gauge" the functions f; 0(x)
are further restricted according to

Energy: Order 0, 2, 4

(b)8.0
7.8

~ 7.6
L

7.4-
LIJ

7.2-
This leaves only four functions to be determined. For
comparison, we also show these results in Fig. 1(a) for
MH =M~.

7.0
70 75

I

80
e. [deg]

85 90

B. Higher-order Legendre polynomial expansion

We turn now to the general expansion in terms of
Legendre polynomials. Following Rebbi and Rossi [16]
we expand the functions F,(x,g) as follows:

cos2g —1 dPi{cosg)
Ft(x 8)=ft,o(x)+ g fl, l{x

I cosg d cosg

Energy: Order 2, 4, 6
7.50 ':

(

7 40

~ 7.30

w 720

cosg dPi(cosg)
F2(X,8) f2,0(x)+ g f2, l(x)

I d gI d cosg

(3.5a) 7.10:
86 88

8„[deg]
90

cos 8—1 GPi(cosg)
F3(x 8)=ft,o(x)+ g f3,I(x)

l cosL9 d cosO

2N cosg dPi(cosg)
F4(x 8}=f4,o(x)+ g f4, i(x)

1=2 I d cosO

2N

Fs(x, g)=fs, o(x)+ g fs, i(x)Pi(cosg),
1=2

(3.5b)

(3.5c}

(3.5d)

(3.5e}

FIG. 1. The energy of the sphaleron (in units of TeV) is
shown as a function of the mixing angle 8~ for MH =M~. (a)
The solid curve represents the zeroth-order calculation ("physi-
cal gauge"), the dashed curve represents the second-order calcu-
lation ("Coulomb gauge"), and the dotted curve represents the
approximation of Ref. [17]. (b} The solid curve represents the
zeroth-order calculation ("physical gauge"), the dashed curve
represents the second-order calculation ("Coulomb gauge"), and
the dot-dashed curve represents the fourth-order calculation
("Coulomb gauge"). (c) The dashed curve represents the
second-order calculation ("Coulomb gauge"), the dot-dashed
curve represents the fourth-order calculation ("Coulomb
gauge"), and the solid curve represents the sixth-order calcula-
tion ("physical gauge").
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~ 0.2-
0.0 . . .

0 1 2 3

Energy Density: 8 = 1.0
{b) .

1.0.
0.8—

~ 0.6-
Mc 0 4o
~ 0.2-

0.0
0 1 2

Energy Density: 8 = 1.5
(c) .

I 1.5

1.0-

o 05-

0.0
0 1 2 3 4 5

Energy Density: 8 = 1.55
4 ~

3 c

Energy Density: 8 = 0.5
a 1 0

&, 0.6-
Mc 0 4o

pansion of F, (x, 0) and F3(x,0) are proportional to sin 0,
while for Fi(x, 0) and F4(x, 0) they are proportional to
cos 0. The constraint (3.2b) requires the condition (3.2c)
for the zeroth-order functions in the expansion of
F, (x, 0) and F3(x,0), but the sin 0 dependence of the
higher-order terms in the expansion makes these contri-
butions regular without the need for further constraining
conditions.

We will put our main emphasis on the calculations in
the "Coulomb gauge, " since these results will be directly
compared with the corresponding results from the in-
tegration of the partial differential equations in Sec. IV.

"Coulomb gauge"

In contrast with the zeroth-order expansion, for the
higher-order expansions the "Coulomb gauge" is an ade-
quate choice of gauge, since the asymptotic relations
(2.18) can now be satisfied with long-ranged fields. We
have performed calculations in the "Coulomb gauge" for
expansions of second, fourth, and sixth order. This in-
volves solving systems of (6+71/2) coupled ordinary
differential equations. Obviously, the computational
effort increases significantly with each order.

Let us first discuss the gauge-invariant quantities, the
energy, the energy density and the magnetic moment, as
functions of the mixing angle 0„. Figure 1 shows the en-

ergy of the electroweak sphaleron obtained in zero order
in the "physical gauge,

" and in second, fourth, and sixth
order in the "Coulomb gauge" for MH =M~. The ener-

gy decreases as a function of the mixing angle, for small
0 only slightly, for larger 0 stronger. The higher-order
terms affect the energy only at larger values of the mixing
angle. Each higher order lowers the energy only beyond
increasingly larger values of 0 . But in each order the
energy reaches a finite lower limiting value for 0 =m /2.

Let us now consider the convergence of the expansion
as illustrated in Fig. 1. In Fig. 1(a) we compare the ener-
gies from the second-order calculation in the "Coulomb
gauge" with the corresponding energies from the zeroth-
order calculations in the "physical gauge. " We observe
that up to quite large values of the mixing angle the

M 2
C
Q)o

c 0
0 2 3

1.00 .—

Central Energy Density

FIG. 2. The energy density of the sphaleron (in units of
M~/a ) obtained in the sixth-order calculation ("Coulomb
gauge") is shown as a function of the dimensionless coordinate x
at 0 =0.5 for MH =M~. (a) The solid and the dashed curves
represent the angles 0=0 and O=m. /2, respectively. For com-
parison, the dotted curve represents the energy density of the
spherical sphaleron at 0 =0. (b) For 0„=1.0; solid curve: an-
gle 0=0, dotted curve: angle 0=m /4, dashed curve: angle
O=~/2. (c) For 0 =1.5; solid curve: angle 0=0, dotted curve:
angle O=m/4, dashed curve: angle O=m. /2. (d) For O =1.55;
solid curve: angle 0=0, dotted curve: angle 0=m. /4.

0.90 .-
O
L

0.80.:—

0 20 40 60
8„[deg]

80

FIG. 3. The energy density of the sphaleron at the origin (»
units of M~/a ) is shown as a function of the mixing angle 0
for MH=M~. The dashed curve represents the zeroth-order
calculation ("physical gauge"), and the solid curve represents
the sixth-order calculation ("Coulomb gauge").
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h/lagnetic tvloment
~ ~ ~

2.0—

1.8-

1.6
0 20

~ I

40 60
e [deg]

zeroth-order approximation is remarkably good. At
8 =0.5, the physical value of the mixing angle, the
zeroth-order approximation yields an energy value only
0.001% higher than the second-order approximation, and

FIG. 4. The magnetic dipole moment of the sphaleron (in
units of e/a M~) is shown as a function of the mixing angle 8
for MB=M~. The dashed curve represents the zeroth-order
calculation ("physical gauge"), the dot-dashed curve represents
the second-order calculation ("Coulomb gauge"), the dotted
curve represents the fourth-order calculation ("Coulomb
gauge"), and the solid curve represents the sixth-order calcula-
tion ("Coulomb gauge").

the discrepancy increases only slowly. It is 0.01%%uo at
8 =0.8, 0.1% at 8 = l. 1, and reaches 3.7% in the limit
8~=m. /2. The fourth-order results are shown in Fig.
1(b). The energies of the fourth-order expansion begin to
deviate from those of the second-order expansion only at
8 =1.2, where the difFerence is 0.001%%uo. The sixth-order
results Snally deviate from the fourth-order results only
beyond 8 =1.5, reaching 0.001%%uo at 8 =1.52. They are
illustrated in Fig. 1(c) for large 8„.

Let us now consider the energy density. In Figs.
2(a) —2(d) we illustrate the energy density as a function of
the spatial coordinates x and 6i, for the mixing angles
0 =0.5, 1.0, 1.5, and 1.55, and for MB=M~. At the
physical mixing angle 8 =0.5 the energy density is hard-

ly deformed and differs only little from the spherical en-

ergy density. Then with increasing mixing angle 8 the
sphaleron becomes more and more deformed. The ener-

gy density is larger along the z axis (for angle 8=0) and
smaller along the p axis (for angle 8=m/2) E.qua. l densi-

ty contours form ellipsoids, which become increasingly
elongated in the z direction for increasingly large values
of the mixing angle.

The energy density at the origin, the central density, is
shown as a function of the mixing angle in Fig. 3 for
M~ =M~ for the zeroth-order calculation in the "physi-
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FIG. 5. The SU(2) gauge Seld functions F,(x,8) and F2(x, 8) obtained in the sixth-order calculation ("Coulomb gauge") are shown

as a function of the dimensionless coordinate x at 8 =0.5 for MH =M~. (a) The solid and the dashed curves represent the angles
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p, Xr
AEM(r)

4m.r
(3.6a)

where u=(0, 0,p) represents the magnetic dipole mo-
ment. It can be extracted from the long-range behavior
of the functions F3(x,8), Fz(x, 8), and F7(x, 8). To ex-
tract this magnetic dipole moment we perform an
(asymptotic) gauge transformation, which changes the
asymptotically twisted Higgs field in the "Coulomb
gauge" to the "physical gauge. " Applying this transfor-
mation to the SU(2) gauge field yields the "physical"
asymptotic isospin-3 component of the gauge field, need-
ed to construct the asymptotic. behavior of the elec-

cal gauge" and for the sixth-order calculation in the
"Coulomb gauge. " With increasing mixing angle the
central density decreases first slightly. Then it reaches a
minimum at 0 = 1.2. When the mixing angle ap-
proaches the value 8 =~/2, the central density (in the
"Coulomb gauge") diverges rapidly. The higher the or-
der of the calculation the earlier the dramatic increase of
the central density sets in.

Another interesting physical quantity characterizing
the electroweak sphaleron is its magnetic dipole moment
p. The electromagnetic field of the electroweak sphale-
ron has the asymptotic behavior

tromagnetic field and of the massive Z field. The mag-
netic dipole moment is then obtained as

(3.6b)

The magnetic dipole moment as a function of the mixing
angle is shown in Fig. 4 for M&=M~ for the zeroth-
order calculation in the "physical gauge" and for the
second- fourth-, and sixth-order calculations in the
"Coulomb gauge. " The convergence properties of the ex-
pansion as a function of the mixing angle 8 are for the
magnetic dipole moment similar to those for the energy
discussed above. At the physical value of the mixing an-

gle we find a magnetic dipole moment which is only
slightly di8'erent from the value obtained by Klinkhamer
and Manton [6] applying perturbation theory. Thus we
confirm their remarkable result that the electroweak
sphaleron has a very big magnetic dipole moment.

We finally turn to the functions F;(x,8) themselves,
which are gauge dependent except for the U(l) field func-
tion F7(x,8) and the length function of the Higgs field

L(x, 8):

L(x, 8)=QF~(x, 8) sin 8+F6(x,8) cos 8 .

1.5
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Fg+. 6. The SU(2) gauge field functions F,(x, 8) and F4(x, 8) obtained in the sixth-order calculation ("Coulomb gauge") are shown

as a function of the dimensionless coordinate x at 0 =0.5 for MH =M~. (a) The solid, the dotted, and the dashed curves represent

the angles 8=0, O=m/4, and 8=m. /2, respectively. (See the larger mixing angles. ) (b) For 8 =1.0; solid curves: angle 8=0, dotted

curves: angle O=m/4, dashed curves: angle O=m/2. (c) For 0„=1.5; solid curves: angle 0=0, dotted curves: angle 0=~/4, dashed

curves: angle O=m/2. (d) For 8 =1.55, solid curves: angle 8=0, dotted curves: angle O=m/4, dashed curves: angle O=n. /2.
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dFs(x, 8)
=0.

dx x~0
(3.7b)

It is this behavior (3.7a) of the Higgs field which leads to
the divergence of the energy density at the origin in the
limit 8 ~n/2.

For very large values of the mixing angle the most
dramatic changes appear in the functions F5(x,8,
F6(x, 8), and F7(x,8). In particular, for small angles 8
the functions F5 (x, 8) and F7 (x, 8) develop pronounced
peaks. This is demonstrated in Figs. 9 and 10, where for
comparison we present the fourth- and the sixth-order re-
sults for the mixing angles 8 =1.55, 1.56, and 1.57.

Comparing all the results obtained in the various or-
ders we conclude that the zeroth-order approximation in
the "physical gauge" is excellent up to the physical value
of the mixing angle 8 =0.5. In the "Coulomb gauge"
the second-order approximation is as goo

~ ~ ~

and full
sufBcient up to 8 =1.2 and the fourth-order approxima-
tion up to 8 =1.52. Up to which value of the mixing
angle the sixth-order calculation does well, we will see in
Sec. IV, where we compare with the results obtained by
directly integrating the partial differential equations. For
very large values of the mixing angle the expansion obvi-
ously has not yet converged.

dF, (x, 8)
dx

(3.7a)OO

x~o

Figures 5 —8 show the functions F, (x,8) and F2(x, 8,
F3(x,8) and F4(x, 8), F~(x, 8) and F6(x,8), F7(x,8) and
L(x, 8), obtained with calculations of the sixth order, for
the mixing angles 8 =0.5, 1.0, 1.5, and 1.55 and for
M =M . The figures clearly demonstrate the effectH
which an increase of the mixing angle has on the func-
tions.

At 8 =0.5 there is hardly any angular 0 dependence
noticeable in the functions F;(x,8), except for the trivial
asymptotic 8 dependence of F3(x,8) and F4(x, 8), implied
by the asymptotic relations (2.18). At 8 =1.0 a notice-
able nontrivial 8 dependence of the functions F, (x, 8) in.
the inner region of the sphaleron has developed and keeps
increasing with increasing mixing angle.

%'e observe that at the origin with increasing mixing
angle the functions F,(x,8) and F2(x, 8) tend more and
more apart from each other, and likewise the functions
F5(x, 8) and F6(x, 8). For the latter we further observe
that for 8 ~n /2 the slope of F5 (x, 8) at the origin tends
to infinity, while the slope of F6(x, 8) tends to zero:
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FIG. 8. The U(1) gauge field function F7(x,8) and the length function of the Higgs field L(x, 8) obtained in the sixth-order calcula-
tion ("Coulomb gauge") are shown as a function of the dimensionless coordinate x at 8 =0.5 for MH =M&. (a) The solid and the
dashed curves represent the angles 8=0 and 8=+/'2, respectively. (b) For 8 =1.0; solid curves: angle 8=0, dashed curves: angle
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f i, t«)=fi, I(x)+f2,l(x»

f2, I (x ) =fi, I ("} f2, I (x }

(3.8a)

(3.8b)

we see that the energy functional does not contain the
derivatives of the functions f»(x). Therefore they lead
only to constraint equations. Having isolated the con-
straints, we fix the gauge by demanding

f, I(x)=0 . (3.9)

This choice simplifies the set of ordinary differential equa-
tions considerably.

For gauge-independent quantities the results obtained
in this gauge are in excellent agreement with those ob-

2. Gauge fixing by elimination of constraints

To discuss the second gauge used for the higher-order
expansion, let us return to Eqs. (3.5). Inserting this ex-
pansion of the functions F, (x,8) into the energy function-
al (2.7), where no gauge-fixing condition has as yet been
chosen, we find that for the lth-order expansion there are
only (6+61/2) independent propagating functions, ac-
cotnpanied by (l/2) constraints which arise for combina-
tions of the functions f& t(x) and f2 I(x). Rewriting
these functions for l & 0 as the combinations

tained in the "Coulomb gauge. " Also the gauge-
dependent functions F;(x,8) show in this gauge many
features similar to the "Coulomb gauge, " For instance,
the functions F, (x,8) and Fz(x, 8) and also F5(x, 8) and

F6(x, 8) split increasingly strongly at the origin with in-

creasing mixing angle I9 . But the angular 8 dependence
of the functions F, (x, 8) and F2(x, 8), and F5(x, 8) and

F6(x,8) themselves remains smaller than in the
"Coulomb gauge. " In particular, F5(x, 8} does not devel-

op the peak along the z axis for very large values of the
mixing angle. As an example we present the functions
F, (x, 8}for 8 = 1.5 and for MH =Mn in Fig. 11.

IV. RESULTS: PARTIAL
DIFFERENTIAI. EQUATIGNS

We now present the results for the electroweak sphale-
ron obtained by integrating directly the set of coupled
nonlinear partial differential equations numerically. The
calculations cover the range of the mixing angle
0 8 & m /2, and are performed in the "Coulomb

gauge. "
The numerical calculations are based on the Newton-

Raphson method [18]. The equations are discretized on a
nonequidistant grid in x and an equidistant grid in t9. For
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FIG. 9. The Higgs field function F5(x, 8) obtained in the
fourth-order calculation ("Coulomb gauge") is shown as a func-
tion of the dimensionless coordinate x at angle 8=0 for
MH=M~. (a) The dashed, dotted, and solid curves represent
the mixing angles 8 =1.55, 8„=1.56, and 8 =1.57, respec-
tively. (b) For the sixth-order calculation ("Coulomb gauge");
dashed curve: mixing angle 8 = 1.55, dotted curve: mixing an-
gle 8 =1.56, solid curve: mixing angle 8 =1.57.

FIG. 10. The U(1) gauge field function F7(x,8) obtained in

the fourth-order calculation ("Coulomb gauge") is shown as a
function of the dimensionless coordinate x at angle 8=0 for
MH=M~. (a) The dashed, dotted, and solid curves represent
the mixing angles 8 =1.55, 8 =1.56, and 8 =1.57, respec-
tively. (b) For the sixth-order calculation ("Coulomb gauge");
dashed curve: mixing angle 8 =1.55, dotted curve: mixing an-

gle 8 =1.56, solid curve: mixing angle 8 =1.57.

small mixing angles 8 grids of sizes 50X20 and 100X20
are used, covering integrating regions 0&x (40 and
0&x &120, with 0&8&m/2. For large values of 8 the
number of grid points in 8 is doubled to obtain the func-
tions F;(x,8) with high accuracy, i.e., a relative numeri-
cal error estimated to be smaller than 10 . However,
for mixing angles very close to the limiting value
8 =m. /2, even the larger grid size does not lead to a high
numerical accuracy, and thus reliable results. In fact, for
mixing angles 8 & 1.567 the numerical results have a rel-
ative error on the order of 10 or even bigger for some
of the functions F,(x, 8). In particular, the error for the
functions F~(x, 8) and F7(x, 8) along the z axis increases
considerably. Our calculations are therefore much less
reliable for 8 very close to n. /2. Consequently we can-
not determine the limiting sphaleron configuration and
its properties for 0 =~/2.

The numerical results for the sphaleron at finite mixing
angle obtained by solving the partial differential equa-
tions in the "Coulomb gauge" agree (within our numeri-
cal accuracy) with the corresponding results from the
highest-order Legendre polynomial expansion up to very
large values of the mixing angle. This is demonstrated

for the energies for MH=M~ in Fig. 12, where devia-
tions between the sixth-order calculation and the nurneri-
cal integration of the partial differential equations be-
come visible only beyond 8 =1.54. Since for 8 & 1.567
the numerical accuracy of the calculations becomes in-
creasingly worse, these results are indicated by a dotted
curve only. Because of the lack of accuracy we unfor-
tunately cannot definitely decide whether the energy of
the sphaleron remains finite in the limit 8~~m/2, al-
though concluding from the polynomial expansion this
appears to be the case. The limiting value of the energy
for 8 =m /2 remains thus unknown.

Also the energy densities agree with those from the po-
lynomial expansion up to 0 =1.54. Beyond this value of
the mixing angle, the energy density obtained by solving
the partial differential equations increases stronger at the
origin and thus diverges faster. The value of the energy
density at the origin is shown in Fig. 13 for 8 close to
~/2 for MH =M~. Again, the less accurate results are
indicated only by a dotted curve. For comparison the en-
ergy densities obtained with the zeroth-order ("physical
gauge") and with the sixth-order ("Coulomb gauge") cal-
culations are also shown. (Note the logarithmic scale. }
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FIG. 11. The SU(2) gauge field functions F&(x,8) and F2(x, 8) obtained in the fourth-order calculation with gauge fixing by elim-
inating the constraint functions (3.9) are shown as a function of the dimensionless coordinate x at 8 = .8 =1.5 for M =M . (a) TheH W'

l'd and the dashed curves represent the angles 8=0 and 8=@/2, respectively. (b) For the SU(2) gauge field functions F3(x,8) and
F (x,8); solid curves: angle 8=0, dotted curves: angle 8=m/4, dashed curves: angle 8=m. /2. (c) For the Higgs field functions4 x,
F5(x,8) and F6(x,8); solid curves: angle 8=0, dotted curves: angle 8=~/4, dashed curves: angle 8=m/2. For the U(1) gauge field
function F&(x,8) and the length function of the Higgs field L(x,8); solid curves: angle 8=0, dotted curves: angle 8=x./4, dash d
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For the functions F;(x,9) deviations between the
sixth-order calculation ("Coulomb gauge" ) and the nu-
merica1 integration of the partial differential equations
begin to appear beyond 8 =1.54 as well. Again, the de-
viations are most apparent for the functions Fs(x, 8) and
F7(x,e) along the z axis. The peaks in these functions de-
velop earlier and more rapidly at large values of the mix-
ing angle, as compared to the sixth-order polynomial cal-
culations. This is demonstrated with the help of Fig. 14,
where these functions obtained by solving the partial
differential equations are shown. The functions of Fig. 14
should be compared with those of Figs. 9 and 10.

Thus we conclude that for 8 & 1.54 higher than
sixth-order terms in the polynomial expansion are neces-
sary for an accurate description of the sphaleron. The
construction of the sphaleron in the limit 0 =m/2
remains a numerically challenging task.

7.50:
Energy: PDEs, Order 6

7.40.:-

7.30:-

7.20.:-

7.10--

7.00 .'. . . .

85 86
~ I

87 88
8„ [deg1

89 90

partial differential equations by means of a Legendre po-
lynomial expansion into a system of ordinary differential
equations and solved this system with zeroth-order up to
sixth-order polynomials included.

V. CONCLUSIONS

We have constructed the classical sphaleron solution of
the Weinberg-Salam theory for Gnite values of the mixing
angle, 0~ 8 ~ ~/2. For the numerical calculations we
have applied two alternative methods.

(1) We have converted the system of coupled nonlinear

FIG. 12. The energy of the sphaleron (in units of TeV) is
shown as a function of the mixing angle 8 for MH =M~. The
solid curve represents the results with high accuracy and the
dotted curve those with less accuracy, obtained by integrating
the partial differential equations ("Coulomb gauge"}. The 1ong-
dashed curve represents the sixth-order calculation ("Coulomb
gauge").



SPHALERONS AT FINITE MIXING ANGLE 3599

100.0:.

10.0-

Central Energy Density

C

Cl

0
C
0)

1.0 .-.

4

0 1 . a a . a. . . a

89.0 89.2 89.4 89.6 89.8 90.0
e„[deg]

FIG. 13. The energy density of the sphaleron at the origin (in
units of M~/a ) is shown as a function of the mixing angle 8
for MH =M~. The solid curve represents the results with high
accuracy and the dotted curve those with less accuracy, ob-
tained by integrating the partial differential equations
("Coulomb gauge"). The long-dashed curve represents the
sixth-order calculation ("Coulomb gauge"), and the short-
dashed curve the zeroth-order calculation ("physical gauge").
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FIG. 14. The Higgs field function I'&(x, 8) obtained by in-
tegrating the partial differential equations ("Coulomb gauge") is
shown as a function of the dimensionless coordinate x at angle
8=0 for MH =M~. (a) The dashed, dotted, and solid curves
represent the mixing angles 8 =1.55, 8 =1.56, and
8 =1.565, respectively. (b) For the U(1) gauge field function
F7(x, 8); dashed curve: mixing angle 8 =1.55, dotted curve:
mixing angle 8 =1.56, solid curve: mixing angle 8 =1.565.

(2) We have solved the system of coupled nonlinear
partial differential equations directly.

Comparing the results obtained by the two methods we
have found that the zeroth-order expansion in the "physi-

cal gauge" is very good for small mixing angles, even up
to the physical value of the mixing angle, 8 =0.5.
Choosing the "Coulomb gauge" beyond the second-order
expansion is sufBcient up to 8 1.2, beyond the fourth
order up to 8 ~1.52, and beyond the sixth order for
8 ~ 1.54. Then eighth- and higher-order terms must be
included.

For the polynomial expansion we have been able to
achieve a high numerical accuracy over the whole range
of values of the mixing angle 0~ 8 ~n. /2, but we had to
limit ourselves to expansions of order l ~6. For the
direct integration of the partial di8'erential equations we
have been able to achieve a high numerical accuracy only
for values of the mixing angle up to 8 ~ 1.567, and not
all the way to the limiting value 8 =m/2. Thus the in-

teresting questions of what the limiting sphaleron solu-
tion looks like and whether it has a finite energy remain
open.

While at vanishing mixing angle 8 =0 the energy den-

sity of the sphaleron is spherical, it becomes spheroidal
for finite values of the mixing angle. Equal density con-
tours, represented by ellipsoids, become elongated in the
z direction, and the ratio of major and minor half-axes in-
creases with increasing mixing angle.

As the energy density deforms more and more strong-
ly, the total energy of the sphaleron decreases with in-
creasing mixing angle. The larger the mixing angle the
faster this decrease becomes. At the physical value of the
mixing angle, 8 =0.5, the energy has decreased only by
about l%%uo compared to the spherical case. At 8 =1.0
and 8„=1.5 it has decreased by about 4% and 14%, re-
spectively, and even at 8 =1.567, our largest reliable
value, the energy has only decreased by about 17%. This
relative weak dependence of the energy on the mixing an-

gle is seen throughout the considered range of values of
the Higgs-boson mass, —,'M~ ~MB ~ 10M~.

Solutions of nonlinear equations, when considered as
functions of an external parameter, often exist only up to
a critical value of this parameter, where a bifurcation is
encountered. Because of this phenomenon extrapolations
for such solutions must be regarded with caution. In the
case of the sphaleron with as external parameter the mix-
ing angle we have not encountered a critical point beyond
which the solution ceases to exist. On the contrary, the
sphaleron has continuously deformed throughout the full
range of this parameter, 0&8 &n./2. In fact, the esti-
mate of Klinkhamer and Manton [6] of the effect the
finite physical value of the mixing angle would have on
the sphaleron has turned out to be remarkably good.

All previous calculations on baryon-number violation
in the early Universe [7—10] have applied the spherical
approximation of the electroweak sphaleron, neglecting
the effects of the finite physical value of the mixing angle.
Our analysis has shown that this approximation is very
good, as far as the classical solution is concerned. We ex-
pect that also the analysis of the normal modes of oscilla-
tion around the true electroweak sphaleron solution will
difFer little from the analysis around the spherical, ap-
proximate solution [9,15,19,20]. We therefore expect
that the previous calculations and conclusions on
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baryon-number violation in the early Universe [7—10]
will remain valid, at least with respect to the spherical
approximation of the electroweak sphaleron employed
there.

Since nonlinear systems often hold surprises, however,
a definite conclusion on this very important aspect clearly
requires performing the mode analysis around the axially
symmetric sphaleron. After all, new instabilities of the
sphaleron and associated new classical solutions might
arise as the mixing angle increases from the spherical lim-
it to the physical value and beyond.

Note added. Our numerical calculations indicate that
the hedgehog gauge and the physical gauge are not ap-
propriate for solving the equations of motion for the

sphaleron at nonzero mixing angle (except for the
zeroth-order polynomial expansion). In these gauges
several of the functions F, are not well defined at the ori-

gin, implying a diverging energy density at the origin.
This phenomenon (absent in the case 8 =0) will be dis-

cussed in a subsequent publication [21].
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