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The H dibaryon is a color-singlet flavor-singlet spinless six-quark configuration. We discuss aspects of
its Fock-space wave vector in the quark model and discuss construction of diquark state vectors as well.
We then address the general issue of computing higher-order contributions to mass. A formalism is
developed, and calculations are carried out in a truncated bag model. Mass contributions to both di-
quark systems and the H dibaryon are computed to O(a?).

PACS number(s): 14.20.Pt, 12.40.Aa

I. INTRODUCTION

The QCD Lagrangian gives little hint as to the physi-
cal spectrum of the real world. The zero-coupling limit
of free quarks and gluons bears no resemblence to the ob-
served collection of hadrons. Despite many years of
effort, direct attempts to unravel the mystery of QCD dy-
namics have met with limited success.

As a consequence, one often seeks alternative means to
better understand the inner workings of QCD. A poten-
tially fruitful approach is to combine theoretical analysis
with input from experiment. Such is the case regarding
theoretical and experimental searches for states lying
beyond the well-studied QQ and Q° configurations of the
quark model. In this paper we shall consider two such
configurations: the six-quark composites called “di-
baryons” and the two-quark composites called “di-
quarks.” We shall discuss each of these objects in some
detail presently. It suffices here to note that theoretical
insights regarding these structures have, for the most
part, been obtained as a result of calculations which are
of first order in the strong fine-structure constant ;. On
this basis it is believed that the lightest dibaryon is the
so-called H (see below) and that the most tightly bound
diquark configuration is the spin-zero color and flavor an-
titriplet.

It is our primary aim in this paper to report on an in-
vestigation of O(a?) mass contributions to Q° and Q°?
configurations. For definiteness, throughout, we employ
spatial wave functions of the bag model and work in the
“truncation” approximation, which considers only the
lowest-energy quark and gluon modes. We begin in Sec.
IT by considering aspects of six-quark state vectors and
then, in Sec. III, review the construction of diquark
states. A formalism for computing higher-order energy
contributions is discussed in Sec. IV A, specifics of the
truncation approximation to the bag model are addressed
in Sec. IV B, and the calculations themselves are de-
scribed in Sec. IVC. Finally, we summarize the
significance of our findings in Sec. V.

II. H DIBARYON

A. Six-quark representation

The only six-quark configuration known unambiguous-
ly to exist in nature is the deuteron. In this case color
correlations between the constituent quarks produce a
loosely bound moleculelike bound state of two distinct
baryons. It is an open question whether there can also
exist objects in which six quarks have highly similar spa-
tial wave functions. We follow convention in referring to
such hypothetical configurations as “dibaryons.”
Quark-model formulations of the problem have yielded
conflicting results, both positive [1] and negative [2]. Ad-
ditional dynamical contributions such as the effect of
instanton-induced effects [3] have also been studied. Al-
though there are reports consistent with detection of a di-
baryon [4], the present situation is quite confused.

Table I lists the spectroscopy of all possible color-
singlet six-quark configuration of ground-state (i.e., S-
wave) quarks [1]. Observe that the list of allowed states
is a remarkably restrictive one in that the spin-zero states
can occur only in the SU(3)-flavor representation 1, 27,
and 28. The 28 is of little phenomenological interest be-
cause it does not occur in the Clebsch-Gordan series of
two SU(3) octets, and so none of its states occur as reso-
nances or bound states in baryon-baryon channels. At
the other extreme the SU(3) singlet state, commonly re-
ferred to as the H dibaryon, has been the subject of the

TABLE I. Spectroscopy of six-quark configurations.

SU(6) of color spin SU(3) of flavor Spin
490 1 0

896 8 1,2

280 10 1

175 10* 1,3

189 27 0,2

35 35 1

1 28 0
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most theoretical and experimental attention of all di-
baryons because it is expected to be the lightest [1]. This
expectation follows from an O(ea;) analysis of gluon-
exchange diagrams.

How does one construct the state vector of the H di-
baryon in terms of quark creation operators? Since each
SU(3)-flavor representation appears just once in Table I,
any six-quark configuration having relevant quantum
numbers for a given dibaryon must be a valid state vec-
tor. It is useful to introduce a notation (abcdef’) for spin-
less, colorless six-quark composites [5],

(abedef)=ePre7Pemelies | bﬁ,,cysd;p oaf ,|0>, (1)

where Greek indices run from 1 to 3 and denote color
and Latin indices run from 1 to 2 and denote spin. The
symbols €*?” and €™ are the usual antisymmetric tensors
defined over the range of their indices. Under permuta-
tions of the labels, we have

(abcdef)= —(bacdef)= —(abcedf) . (2)

A given dibaryon state vector will in general contain a
linear combination of six-quark flavor components such
as (abcdef). The state vector of the H dibaryon can be
found by constructing a singlet of flavor SU(3). A linear
combination which has this property is

|H ) = L [(udsuds)+ (usdusd)+ (dsudsu)

—2(ussudd)—2(dssduu)—2(usudsd)] , (3)

and so must be the H. This construction can then be em-
ployed in calculations of the mass and weak decay prop-
erties of the H.

The six-quark wave function is an object of. some
subtlety and can be subject to misinterpretation. For ex-
ample, in the (abcdef) construction, the pairs a, b, d, e,
and f have spin zero. It is possible to perform the spin
coupling in an alternative manner, such that ¢ and f still
have spin zero, but a, b and d, e each couple to spin 1.
The spin-1 pairs ab and de are then coupled to spin zero.
This latter construction is denoted as

= B T 7 T
[abcdef =€V €"7Pe™"a ap(atoz)quﬁq Ymd

X(azaz),seUSfJr 0) . 4)

Expressed in terms of the [abcdef ] structures, the H state
vector has a very different appearance from Eq. (2).
However, it can be shown [5] that the two H state vectors
are identical since the absolute value of their inner prod-
uct equals the product of their norms. It is also possible
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to modify the way color is treated. In the color-singlet
configurations corresponds to (abcdef) and [abcdef], the
triquarks abc and def are each color singlets. Alterna-
tively, one can also obtain an overall color singlet from
color-octet abc and def triquarks. Written this way, the
resulting H state vector has yet a different appearance
from the two mentioned above. However, as before, it
can be shown to be identical to them. Such considera-
tions imply that it is impossible to ascibe physical content
to the spin and/or color coupling of the six quarks. All
that counts is the overall singlet nature of the H as re-
gards its spin, color, and flavor.

Recently, we have determined that additional con-
clusions can be reached. Observe that the quark repre-
sentation of Eq. (3) contains six terms. It turns out that
these do not form a linearly independent set because they
exist in a vector space of dimension 4. To obtain this re-
sult requires performing calculations with six-quark state
vectors. This is an exceedingly difficult process, and
some matrix-element determinations would appear to be
practically intractable. We have found that explicit cal-
culations for the six-quark systems can be carried out
successfully by combining analytic and numerical ap-
proaches. The latter method employs a pattern-
recognition method which has become invaluable in
probing properties of six-quark systems as well as
higher-order contributions to arbitrary quark and gluon
systems [6]. In an orthonormal basis obtained by di-
agonalizing the matrix displayed in Table II, the indivi-
dual terms in Eq. (3) can be expressed as

(udsuds)=12{—1,—V'1/3,1,V'5/3} ,
(usdusd)= 12{1,—\/—1/—3,1,\/5_/3} R
{
{

(dsudsu)=12 O,le,VS_ﬁ} ,
(ussudd)=12{0,—v'4/3,1,—V'5/3} , (5)
(dssduu)=12{—1,V1/3,1,—V5/3} ,
(usudsd)=12{1,\/T/_3,l,—\/5_/3} ,

(sdusud)=12{1,v'1/3,1/2,V'5/12} ,

with H having the decomposition

H={0,0,—1/4,V15/4} . 6)
An alternative statement of the linear dependence is to

note the relations obeyed by terms which appear in Eq.
(3),

TABLE II. Six-quark overlap contributions.

(udsuds) (usdusd) (dsudsu) (ussudd) (dssduu) (usudsd) (sdusud)
(udsuds) 576 288 288 0 0 —288 0
(usdusd) 288 576 288 0 —288 0 288
(dsudsu) 288 288 576 —288 0 0 288
(ussudd) 0 0 —288 576 288 288 —144
(dssduu) 0 —288 0 288 576 288 —144
(usudsd) —288 0 0 288 288 576 144
(sdusud) 0 288 288 — 144 —144 144 288
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(usdusd)— (udsuds)+ (dssduu) — (usudsd)=0 ,
(dsudsu)—(udsuds)+ (ussudd)— (usudsd)=0 .

(7)

These relations can be used to eliminate two of the terms
in Eq. (3) and thus express H in terms of the nonorthogo-
nal basis provided by just four of the six-quark compos-
ites.

B. Possibility of a baryon-baryon represention

A final question regarding the H state vector remains:
Is it meaningful to express H explicitly in terms of
baryon-baryon states? Equation (3) describes the H in
terms of quark degrees of freedom—the hadronic con-
tent is far from evident. One is motivated to attempt the
following construction. Imagine two baryons confined
within a bag. In order to be constituents of the H, they
would be required to have a total spin equal to zero. We
shall denote such a hypothetical configuration with quo-
tations, viz., | “B,B,”).

We shall use several arguments to show that it is not
meaningful to express the six-quark state vector of the H
into such |“B1B2”) components. In fact, the very name
“H dibaryon” is unfortunate because it misleadingly sug-
gests that the six quarks (i.e., two each of u,d,s) can be
associated with two baryons in some distinct manner. In-
sofar as the six quarks have similar spatial wave func-
tions, there can be no such identification.

To begin, let us study the bag-enclosed six-quark
configuration |“AA”) whose state vector is that of two
A(1116) baryons in a state of total spin S =0. Recall that
the quark-model state vector for a single A(1116) of spin
component X is

|Ak >=€aﬁy ‘/11_2 [uleZN _ulleﬂ ]Sl.,k |0>

EaBAyemn
V12
The normalization factor (12)~!/? simply counts the pos-
sible color-spin configurations which the three quarks can
occupy —there are six color configurations in which the
u quark has spin up and six in which the u quark has spin
down.
It is possible to express the state vector | “AA”) in the
notation of Eq. (1),

lmdbstil0) . (8)

[“AA”) = Nl (udsuds) , 9)

AA
where N,, is a normalization factor. The above con-
struction suggests that each of the terms in Eq. (3) might
have an analogous interpretation as a spinless baryon-
baryon pair. However, this is not the case. For example,
a naive argument for determining the normalization N,
would suggest that

N{paive) =123, (10)

with the 12 arising from multiplying the individual V12
factors in the two A state vectors and the extra V'2 factor
being the SU(2) Clebsch-Gordon coefficients for combin-
ing two spin-1 entities to form a system of spin zero.

However, such reasoning cannot replace a real calcula-
tion and indeed gives the wrong answer. Calculation of
N 44 reveals the correct value to be

Nyp=24. (11)

Thus the normalization factor which appears in Eq. (9) is
not the result of simply squaring the normalization in Eq.
(4) and including the effect of spin coupling. A physical
explanation for this resides in Fig. 1, which depicts typi-
cal diagrams which contribute to the normalization con-
dition ( “AA”[“AA”)=1. Observe that a quark of a
given flavor can be contracted in more than one way, as
in Fig. 1. The presence of such interfering amplitudes
means that the unit-normalized |*“AA”) state is not a
pair of A(1116) baryons occuping some baglike region of
space. Instead, it is just a six-quark configuration in
which the colors, spins, and flavors are coupled to give a
set of prescribed quantum numbers, in this case B =2,
Y =0, and S=1=0. This simple example reveals the im-
possibility of associating the six bound quarks in a unique
manner with particular hadrons. Only if the quarks were
physically separated into two three-quark clusters (as in
the case of the deuteron) would it make sense to imply
such an identification, since the interference between the
different clusters would then be greatly suppressed.

For another example leading to the same conclusion,
let us return to the issue of interpreting the terms in Eq.
(3) as baryon-baryon states. Writing the 20 state vector
corresponding to spin component k as

EaB}/ emn
6

it is easy to construct the spinless two-20 state, and one
finds

[39)= (slmd;rg,,u;k-l-s;mu};nd;k)m) ,

50500y = — ?6—1‘7_5[(sdusdu)+(sudsud) (12)

+2(sdusud)] . (13)

However, in view of the linear dependence exhibited by
the six-quark states, one can express this combination in
terms of other of the | “B,B,”) states,

{“2020”)2[_I“AAU>+|“nEOn>+'“pE~”)
—olests Y. (14)

Thus any construction based on the |“B,B,”) construc-
tion would not be unique.

Accepting that the H state vector cannot support a
simple baryon-baryon representation, one is still left with
the following question. Since H transforms as a singlet
under flavor SU(3), we know that it must couple to physi-

U ——— u u u
d —»—o 4 d d d
§ ——— s s s
U ———p——— u u u
d —»—d d —»—d
S —— S —— s

(a) (b)

FIG. 1. Two examples of six-quark contractions.
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cal two-baryon flavor channels with probabilities PBl B,
given by

Pooo=Pyos0=%, P__=P o=P_, =21, (15

A0A0 ~ £5050= = =

or equivalently in terms of isospin states,

(16)

oofw
o4&

—1 — —
PAA_'g' ’ PEE—— ’ PNE—

Physically, these relations mean that if the H could decay
to all the two-baryon channels, then a detector in a given
hemisphere would have four ways to infer the presence of
the NE mode (p,n,E°% =), three for the =3 mode
(27,39=7), and just one for the AA mode.

We have found that interference effects among the
quarks in a six-particle compositie precludes any inter-
pretation of the H state vector in terms of baryon pairs.
However, should not one be able, at least in principle, to
extract the hadronic couplings of the H from Eq. (3)?
Here is a simple procedure for doing this: (i) Write the
various (unconfined) final-state spin-zero two-baryon
states (denoted as |B;B,)) in quark notation but use a
normalization appropriate for noninterfering baryons,
and then (ii) actually perform the overlaps of such state
vectors with that of the H. The physical picture of the
state |B;B,) is that of two physically distinct baryons
which propagate with opposite momenta in the H rest
frame. In principle, such overlaps will each be propor-
tional to a factor which depends on the individual spatial
wave functions and which determines the overall scale of
the coupling. A simple calculation recovers the SU(3)-
flavor dependence given in Egs. (15) and (16).

II1. DIQUARKS

Only color-singlet configurations have been found in
nature. On the other hand, diquarks must be assigned to
either of the color representations 6 or 3*. Since such
color-bearing configurations cannot propagate in the
physical vacuum, it would appear that diquarks are of lit-
tle interest. However, it has proved profitable to study
the properties of such objects, and there already exists a
substantial literature relating to them. It is impossible to
list all the references here, but a few examples might
suffice. For instance, there has been recent work [7] on
the possible existence of a “diquark phase” in quark
matter which is in a state of thermodynamic equilibrium.
Diquarks have also been used to model a possible dynam-
ical pairing between quarks as they move within baryons
[8]. Such clustering would affect the values of physical
observables and thus modify quark-model predictions
[8.9]. Also, the diquark picture has been invoked to de-
scribe possible effects in scattering reactions [10]. How-
ever, the opinion on diquarks is not uniformly positive
[11]. As with most topics in QCD, there is clearly much
work left to be done.

Let us enumerate the possible diquark configurations.
The diquark state vector has flavor, spin, and color de-
grees of freedom. The key constraint is that of Fermi

(—i)*

U0, —w)=S
2 R

TABLE III. Allowable diquark configurations.

Flavor Spin Color
3* 0 3*
3* 1 6

6 0 6
6 1 3*

statistics—such state vectors must be antisymmetric un-
der interchange of the two quarks. We shall be working
with the SU(3) of flavor and so shall consider the diquark
configurations displayed in Table III. Observe that there
are four allowed configurations. We shall employ the no-
tation IF,S,C):S for the associated state vectors, where
F, S, C, and mg represent flavor, total spin, color, and
spin component, respectively, and o denotes a particular
member of the multiplet. In terms of quark creation
operators, the corresponding Fock-space representions
are given for members of the diquark multiplets by

13*,0,3* >?‘d=%€aﬁ}’€mnu L‘md;n o),
13*,1,6)L,=ul1dls10) ,
'6,0,6)?“4 =uITuIl 0},

(17)
|6’1’3* >11m :%eaﬁyul‘zf“;T |0) ’

State vectors such as these will form the foundation for
our analysis, as described in the following section.

1IV. CALCULATING
HIGHER-ORDER PERTURBATIONS

A. Formalism

While the bag model itself can be cast in a relativisti-
cally covariant manner, the static-cavity approximation
cannot. Thus we do not employ covariant perturbation
theory, but refer instead to the noncovariant approach
developed first in nonrelativistic many-body theory. The
key theorem is that of Gell-Mann and Low, which is used
to find eigenstates of the Hamiltonian H=H,+ H, in the
basis of eigenstates {|®,)} of the unperturbed Hamil-
tonian H,,

Hyl®,)=E,|®,) . (18)

In particular, the ground state |®,) is allowed to evolve
adiabatically from t=— o to O under the influence of
Hamiltonian H,

H.=H,+eH, . (19)

The evolution of |®,) under the adiabatic switching on
of H, is described by the time-evolution operator
U.(0,— ) [12],

SOt [ ane T YT H () - H 1)) 20)
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The theorem of Gell-Mann and Low addresses the fact
that the phase of the state U (0, — e )|®,) diverges in
the €—0 limit. For our purpose the result of most
significance is the energy-shift formula

(@lH,[¥y) N

—————=Ilim— , 21
(W) ™D 21)

AE=E—E,=
where we define both the numerator function N,
N=(Dy|H,U_0,— )|],) , (22)
and the denominator function D,
D=(®,|U(0,— x)|D,) . (23)
A compact expression due to Goldstone [13] for com-

puting AE is given by

AE=<<I>O <b0>c .

H, 2 [(EO_HO)_lHl]k
k=0

where the subscript ¢ stands for “connected.” This for-
mula holds only when the state |®,) is a zero-particle
state. It has application to many-body theory when the
ground state can be written as a filled Fermi sea, as is the
case for some nuclei. In this circumstance the interac-
tions create particle-hole pairs.

We shall be studying systems for which the initial and
final states, |®,) and (®,| generally have nonzero-
particle number. As before, it is important to work with
quantities which remain finite as the interaction is turned
on and then off. It can be shown [6] that the decomposi-
tion of Eq. (21) still holds, but now with the numerator
function

N=N/D (25)
and energy shift
AE=1imN/ . (26)
e—0

To express the energy shift in a Goldstone-like form such
as that of Eq. (24), we display the time dependence of the
interaction H in the interaction picture,

—iHyt,

H,(t)=e H e , 27)

to obtain

AE=lim 3 (®y|H(Eq—Hy+kie)™!
e~Y%k =0

XH,[Eq—Hy+(k —1ie]™!

X [Eg—Hy+ie] 'H,|dy)/ .

The final result may be expressed as

AE= <<1>0

c

o s
H' 3 [(EO—HO)IHIJ"‘%) : (29)
k=0

Some thought must be given to connected diagrams for
which |®,) appears as an intermediate state in Eq. (28)

and thus may formally diverge in the €é—0 limit. The su-
perscript f denotes the “finite” part of such naively diver-
gent contribution. The derivation of this result is long
and involved [6]. We shall present only a prescription for
evaluating the finite part of a naively divergent quantity.
To evaluate Eq. (28), one inserts complete sets of the
unperturbed  eigenstates  between the  various
(E,—H,) 'H, factors and obtains, in the e=0 limit,

S (@olHIn Y n [(Eq—Hy) 'H,lny)

X{nyl - I X (Eg—Ho) 7 H, | d,), .
(30)

The adjacent intermediate state is used to evaluate each
of the H, operators. However, if |®,) is the intermedi-
ate state in question, then Ey—H;=0. Thus
(E,—H,) "' leads to a divergence, and so an appropriate-
ly defined finite part must be used instead. The pro-
cedure indicated by the finite part may be summarized as
follows: In a diagram having the intermediate states
ny,...,n [with indices ordered as in Eq. (30)], any fac-
tor {n;(Eq—H,+ie)” " which diverges as e —0 should be
replaced by the quantity —3:_{(n;|(Eq—H,+ie)™".
This procedure has been checked with a number of solu-
ble examples, one of which is considered in the Appendix
for the purpose of illustration.

B. Truncated bag model

For definiteness, the bag model is used to supply quark
and gluon spatial wave functions throughout the calcua-
tion. Specifically, we work in the “truncation approxima-
tion” in which only the lowest bag mode is taken into ac-
count. This has proved to be the most important contri-
bution in previous applications of the bag model and
should supply a reasonable estimate of the effects we
study in this paper. The chief motivation for employing
such an approximation is that it enables one to perform a
systematic investigation of higher-order perturbative
terms [6]. For complicated calculations, such as those
which occur in computing radiative corrections for six-
quark states, a truncationlike approximation is clearly
warranted. Interestingly,, it is the analytic counterpart of
the so-called “quenched” approximation used in lattice
gauge theory—in both approaches, quark-antiquark
loops are absent.

To complete this section, we list the types of interac-
tions which are included in the perturbative Hamiltonian
H,. First, there are the interactions of dynamic gluons.
These are described in the truncation approximation by
the quark-gluon vertex

Via,
R

M(mR)o}, Az &30)

and the three-gluon vertex

‘/

a ..
o (32)
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A, iE A
by Ll \CAkf\ér\}-\J,
@ ®)

© [G)

FIG. 2. Non-Coulombic QCD vertices.

In the above the bag radius is denoted as R, and we em-
ploy the quark mass value m, ; =0, but study the effect
of varying the strange-quark mass m,. The four-gluon
vertex of Fig. 2(c) will not be needed in our O(a?)
analysis since we would require the gluon legs to hook
onto quark lines, thus implying an O(a?) contribution
[14]. The forms of these vertices correspond to the nota-
tion appearing in Fig. 2. The quantities M and P are
quark and/or gluon overlap integrals and are given by

172
= N. N2 P
M(mR) NGNQ(mR)aH—mR
1L . . .
Xf du u®jo(pu)j(pu)j(ku) ,
0 (33)
3 172
—. |3 53 ! .3 ~
P=3|> | NG [ duuji(ku)~0.680,

where M(0)=0.246 and reduced quark and gluon nor-
malization factors are denoted as N;=RN; and
No=R 32N - Tespectively.

C. Calculations

1. Diquarks

Using the formalism described above, we have con-
sidered the effect of O(a?) corrections upon the diquark
systems identified in Sec. III. Of course, since diquarks
are nonphysical entities, there is a question of how to
proceed. In principle, diquarks can exist in a variety of
distinct environments, such as a quark-gluon plasma or
as a component of a single baryon. Here we do not wish
to consider any specific environment, and so we do not
perform a computation of ‘“‘absolute” diquark masses.
Rather, we explore the question of relative binding, ex-
tending in the most natural possible manner previous
analyses of the O(a;) exchange diagrams. Thus we have
chosen to compute the diquark diagrams shown in Fig. 3,
ignoring both quark self-energy and Coulomb effects.
Since diquarks are not physical color-singlet objects, their
environment must be considered for a proper determina-
tion of Coulomb effects. Quark self-energies are omitted
because they do not affect binding.

Our findings are naturally expressed as the following
expansion in a;:

a

a
* *) — s
=—0. —0.21 ,
AE(3%,0,3%) 0.35 R R
a, a;
AE(3‘,1,6)=—0.06—R —0.06——R ,
(34)

2
s

AE(6,0,6)=0.18— +0. 14—
» Yy — VY. R . R ’
AE(6,1,3)=0.125% +0.10%
)1, 12— 10—
The numerical values which appear as coefficients in the
above expansions are composed of quark and gluon nor-
malization and wave-function-overlap factors, as de-
scribed earlier [15]. Let us defer further comment on
these results to the summary in Sec. V and instead move
on to a discussion of higher-order contributions to the
H-dibaryon mass.

2. H dibaryon

The diagrams on which our calculation of the H mass
is based are shown in Figs.3—5. These incorporate pro-
cesses involving both dynamic-gluon degrees of freedom
and color-Coulombic effects. For completeness, we
display in Fig. 6 higher-order diagrams which one might
have expected to contribute, but which in fact can be
shown to vanish. In order to obtain the H mass in abso-
lute terms, specific values for the phenomenological pa-
rameters which appear in the bag model are required.
We have performed a careful O(a?) analysis of the ob-
served baryon and meson ground-state spectrum to fix
these quantities, resulting in

B'/4=0.167 GeV ,
Z,=-0.97,
a,=0.84 ,
m;=0.244 GeV .

The above value for a; is noteworthy because it is so
small compared to the usual value (a; =2.2) typically cit-
ed in the literature. Our reduced value is a direct conse-
quence of the higher-order nature of our calculation. Re-
call that the main determining factor of a, is the A-N

% b &

(a) (b) (©)

FIG. 3. Two-quark O(a?) non-Coulombic QCD interactions.
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N

(a) (b)

N 77N

TN
S~
©) (d)

A N N

(e) H
FIG. 4. Quark O(a?) non-Coulombic QCD self energies.

mass difference. At the level of a first-order analysis, the
burden of reproducing the experimental mass splitting re-
sides in a; itself. However, higher-order gluon effects
tend to reinforce the effect of the lowest-order gluon-
exchange contribution. Indeed, some (but not all) of the
O(a?) gluon-exchange graphs have the same ‘“color-
color” X ““spin-spin” structure as single-gluon exchange.
The end result of having a number of diagrams which
produce the same overall effect is to lessen the need for a;
to be so large.

Using the (truncated) bag-model parameters of Eq.
(35), we have computed the mass M. Various classes of
contributions are given in Table IV. An instructive
manner of displaying the results is to list the mass for cal-
culations (with fixed input parameters) performed sequen-
tially at O(a?) next at O(a!), and then at O(a?).
Remembering that the bag-model equations provide a
value for the bag radius R as well as the mass, we have

M,;=2.84 GeV, R=5.88 GeV ! [0(a))],
M, =2.39 GeV, R=5.52GeV ' [O(a})], (36)
My =2.19 GeV, R=5.35GeV ' [O(al)].

Finally, the effect of separately varying m, and «; is
shown, respectively, in Figs. 7 and 8. Each figure con-
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FIG. 5. O(a?) QCD Coulombic interactions.
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FIG. 6. Diagrams contributing zero to the H-dibaryon mass.
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FIG. 7. Dependence of H mass on strange-quark mass
(m;=0.244 GeV represents the actual prediction).

My (GeV)

2.84

Qs

FIG. 8. Dependence of H mass on a, (a,=0.84 represents
the actual prediction). The horizontal curve at the top corre-
sponds to the O(a?) calculation.
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TABLE IV. Contributions to the mass of the H.

myR 0 1 2

L. 12.26 13.36 14.73

Kinetic energy R R R
. 1.06a;,  0.56a? 0.96a, 0.51a? _ 0.85a; 0.45a?
Dynamic gluon "R R R R R R ]
2.12a, 1.03a? 1.93a, 0.93a? _ 1.78a,  0.86a;
Quark self-energy “T" R R R R R R i
0.04a? 0.0l + 0.05a? 0.03a; + 0.06a;
Coulomb R R R R R

tains three curves, which correspond from top to bottom
to the respective cases 0(a?), O(a!), and O(a?) [16]. As
one would expect, My increases with m, since strange
quarks represent two of the six constituents and decreases
with a, since the overall effect of gluon dynamics is to
bind the H. In these figures we also display the AA, NZE,
and 23 thresholds as an aid in determining the condi-
tions under which the H is either stable or unstable.

V. CONCLUDING REMARKS

As mentioned in the Introduction, previous insights re-
garding the dynamical behavior of diquarks and di-
baryons have largely been inferred from calculations
which are of first order in the strong interactions. While
useful enough to serve as the basis for inferences regard-
ing these systems, such studies are subject to the criticism
that they may be unstable with respect to the inclusion of
higher orders. Unfortunately, work on higher-order
effects has been hindered by the extraordinary calcula-
tional difficulty of dealing with six-quark state vectors.
Our ability to overcome this has allowed the studies de-
scribed in earlier pages.

An instructive analogy involving second-order correc-
tions occurs with attempts to compute the spectrum of
0% glueballs. In the bag model, the lowest-order mass
estimate consists mainly of the energy of a pair of consi-
tuent gluons and yields a value above 1 GeV. Further
calculation reveals that the O(a;) corrections are large
and negative, driving the total mass to zero or even to
negative values (depending on the precise values of the
bag parameters). However, the O(a?) contributions turn
out to upset the O(a,) effects and to restore the mass esti-
mate to a value in excess of 1 GeV [6]. Interestingly, this
is in accord with results of quenched lattice gauge com-
putations [17] (which the truncation approach indeed
mimics).

In the case of the H dibaryon, we have carried out our
studies under a variety of conditions, such as differing in-
put parameters and differing treatments of center-of-mass
effects. For example, we find that (i) allowing the non-
strange quarks to have nonzero mass has negligible effect
on the H mass, (ii) omitting the center-of-mass motion
correction (and thereby modifying the value of Z,) some-
what lowers the H mass, (iii) omitting the Coulomb in-
teraction and redoing the overall fit lowers the H mass
even more, etc. We have found the values for the H mass

thus obtained to fall in the range 2.12 <My (GeV) <2.19.
The central value My=2.15 GeV would imply an H
which is stable against strong decay, lying roughly 80
MeV below the AA threshold. Although one could cite a
lattice study [18] which yields similar results, it would be
premature to claim that a stable H must exist. Neither
model nor existing lattice calculations can claim to be
rigorous reflections of the dynamics of color. However, a
calculation such as ours supports the experimental search
for the H [19], and we would urge such efforts to contin-
ue.

Although the enterprise described here has entailed
considerable effort, further work comes to mind. It
seems to us that the following topics deserve special at-
tention.

(i) The most obvious extension of our calculation re-
gards relaxation of the truncation approximation. Ex-
perience with studies of mesons and baryons suggests
that the influence of the lowest-energy negative-parity
bag contribution is the next most important mode to con-
sider. It should be understood, however, that this will
greatly increase the number of diagrams, as quark-
antiquark loops must then be taken into account.

(ii) The somewhat more formal question of gauge in-
variance also deserves attention. The point is whether
the dynamical assumption of “truncation,” carried out to
an arbitrary order of perturbation theory, is or is not
gauge invariant. Our own calculation, albeit done care-
fully, is carried out within a given gauge and does not ad-
dress this more general issue. Although it is reassuring
that an O(«,) calculation of meson and baryon properties
which also incorporates the use of truncation is evidently
gauge invariant [20], this by itself is also not sufficient to
settle the matter to higher orders.

(iii) Another subject of potential importance is that of
determining the modification to the H state vector in-
duced by mixing with baryon-baryon continuum states.
The analysis carried out here clearly does not take this
possibility into account. It is not easy for us to quantita-
tively estimate whether this effect is more important than
others, say, point (i) above. However, it is one which
properly belongs on the list of future efforts.

Finally, our main result for diquark systems appears in
Eq. (34), which displays the O(a?) energy contribution
for each of the four allowed diquarks. Our conclusion is
that the binding of the (3*,0,3*) is indeed the deepest of
the diquarks and that the only other configuration which
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shows any tendency to bind is the (3*,1,6). Thus our
work reinforces the first-order analysis and should be re-
garded as support for serious attempts (e.g., Ref. [21]) to
infer physical consequences of dynamically bound (or at
least highly correlated) diquarks.
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APPENDIX:
EXAMPLE OF A FINITE CONTRIBUTION

In the appendix we shall demonstrate the calculational
procedure introduced in Sec. IV A by means of a simple
example containing a fermion field and a boson field. The
fermionic quanta are allowed to occupy either of two de-
generate states of energy o and have destruction opera-
tors b;(i =1,2). The bosonic quanta can occupy any of
three degenerate states of energy k and have destruction
operators a,,(m =1,2,3). The interaction of these quanta
is governed by

v=gblomb(a) +a,) , (A1)

where o™ is a Pauli matrix, g is a coupling constant, and
there are implicit sums over index m as well as
suppressed fermion indices. In the following we shall
determine the energy of a one-fermion state through
fourth order in the interaction. For purposes of compar-
ison, we shall perform the calculation in two ways: first
with the ordinary Rayleigh-Schrodinger approach and
then with our equivalent technique (cf. Sec. IV A).

We begin by recalling the standard formulas of
Rayleigh-Schrodinger perturbation theory. The Hamil-
tonian is written H=H,+ AV, where the eigensolutions
of the unperturbed Hamiltonian H are

H01¢a):E510)|¢a> .

We denote the ground state of the full Hamiltonain by
|#) having energy E,

(A2)

(Hy+AV)|Y)=E|Y) . (A3)
The perturbative relations of interest to us here are
E=EQ+AE\" +MEP + - - (A4)
and
[9)=ldo) +Ale)) +A% Y + -+, (AS5)
where
(A6)

)= c16a) s [ = Fed19a) -

The (well-known) expressions for the first four energy
perturbations are just

Eé)l):<¢o| V|¢o) ,
(ol Vi) (dolVidy)

E})Z):“ 2

a#0 E,—E, ’ A7
(3) <¢0‘Vi¢a> )
Ejy'=23 —(/——F—X,,
a#0 Ea—EO
az0 Ea—Eg B#0 Eg—E, g
+E(1)X +E(2| <¢a|V1¢0>
“ 0 E(x_EO ’
where
v o= 5 (9alVIdp) (SglVIde)  (alVigo)E""
R = Ep—Eo E,~E,
(A8)

Since it is straightforward to calculate these energies, we
shall omit all details and proceed directly to the results:

Ey'=0
3g2
E(Z):_ ,
0 k
(A9)
Ey' =0,
6g4
(4) —
E= PRk

Alternatively, we can do the calculation using our di-
agrammatic approach. It is easy to see that the first- and
third-order contributions must vanish. The diagrams for
the second- and fourth-order energy shifts are precisely
the same as in Figs. 4(a)-4(d). The second-order energy
contribution, which has no potentially divergent parts, is
given by

AP =(¢y|V(E,—H,) 'V]d,)

i m__m 2
3
:g2<¢015l_‘1_ﬂ ¢0>:__i~. (A10)

—(w+k)
Of more interest are the three fourth-order diagrams,
[Figs. 4(b)—4(d)]. The last of these is the only one from
which we must extract a “finite part.” The associated en-
ergy contributions are, respectively,

- —1 1
(4)b — 4 m_ Y n__1 _n m
AE, g <¢0!0 PR TaC A i¢o>
9g*
2k
(A11)
AE(4)C_g4<¢ ‘o_m_lo,n_lo_m lgn‘¢>
ok 2k ko0
_3g*
2k3
AE(4)d:g4 é Um_ O_m_l_o.nwlo_n ¢>
0 ro kK~ ko k70
9g*
__—k3
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We have obtained the formula for AE§"? by using the
rule established in Sec. IV A; i.e., the divergent energy
denominator corresponding to the single-fermion inter-
mediate state has been replaced (in this case) by the nega-
tive of the energy denominator for the preceding

fermion-gluon intermediate state. The sum of these
fourth-order effects is seen to agree with the value ob-
tained earlier in this appendix and demonstrates how our
approach amounts to a rewording (or, more properly, a
reshuffling) of the usual language.
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