
PHYSICAL REVIEW D VOLUME 46, NUMBER 8 15 OCTOBER 1992

g =2 as the natural value of the tree-level gyromagnetic ratio of elementary particles
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We implement at the Lagrangian level a "natural" electromagnetic coupling prescription, different

from the minimal one, and proposed a long time ago by Weinberg. This prescription yields, for elemen-

tary particles of arbitrary-spin, a gyromagnetic ratio g =2 at the tree level. This value is already known

to arise in renormalizable theories for spin 2
and spin 1, is suggested by the classical, relativistic equa-

tions of the spin polarization, and is also found for arbitrary-spin, charged excitations of the open string.

PACS number(s): 11.10.Ef, 11.15.Bt, 11.20.Dj

I. INTRODUCTION

Classically, the ratio between the total angular momen-
tum L and the magnetic moment p of a uniformly
charged rotating body is Q/2M, where Q is the total
charge and M the mass of the body. Indeed

p= — d x p, xXv(x)

fd'x pxXv(x)= L .
2M

Here p is the constant mass density, p, is the charge den-
sity, and v(x) is the velocity of the body at the point x.
Equivalently, setting ls —=g (Q/2M)L, one has g = 1

whenever the ratio of the charge to the mass density is a
constant. Thus, when spin —,

' was introduced, g =2 was
anomalous.

Quantum mechanics and field theory change this result
significantly. In the context of field theory indeed, the
most natural assumption about em interactions would be
that of minimal coupling according to which all deriva-
tives of charged fields are replaced by covariant ones:

B&P t}„P+ie A „P:D„P, — (1.2)

1g= (1.3}

where e is the charge of the field P. This procedure is
unambiguously defined only for fermionic fields, whose
Lagrangian is first order in the derivatives. To define the
substitution (1.2} on bosonic fields uniquely, one must
first rewrite their Lagrangian in a first-order formalism
[1]. This procedure gives a definite answer for the
gyromagnetic ratio g of elementary particles [1—5]:

where s denotes the spin of the particle.
This result, a triumph for s =

—,', is in confiict, for
higher spin, with a body of (scattered) evidence that
favors another answer, namely, that g =2 for any spin.
Let us review that evidence.

(a) Up to now, the only higher-spin, charged, elementa-

ry particle that has been found in nature is the 8'boson.
At the tree level it has g =2, instead of g =1, as predict-
ed by (1.3).

(b) The relativistic (classical} equation of motion of the
polarization four-vector S„ in a homogeneous external
em field is [6] (the classical equation of motion used here
had been anticipated by Frenkel and Thomas):

gF""S„+ (g 2)U"S,F""—U~,
dT 2m 2m

dx"U~=, v =proper time .
'r

(1.4)

This equation simplifies for g =2, irrespective of the spin
of the particle.

(c) The only known example of a completely consistent
theory of interacting particles with spin &2 is string
theory [7]. For open (bosonic and supersymmetric)
strings, it is possible to obtain the exact equations of
motion for (massive) charged particles of arbitrary spin,
moving in a constant, external em background. This has
been carried out explicitly for spin 2 in Ref. [8]. The
equations of motion give g =2 for a/l spins. (This point
will be dealt with in greater detail below, see Sec. H.)

The aim of this paper is to provide a simple physical
requirement implying g =2 for all "truly elementary"
(pointlike} particles of any spin. '
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It is curious to notice that in (unbroken) supersymmetric elec-
trodynamics the electron has g =2 even after radiative correc-
tions, so that g —2 is a measure of supersymmetry-breaking
efFects [9j.
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11„„(p)= g„„— (1.5)
M p —M

The term proportional to M is precisely the one re-
sponsible for the bad high-energy behavior of the graphs
in Fig. 1, when the coupling of the W+, W to photons is

W+ W W+ W

A very important condition that one imposes on physi-
cal theories is that their scattering amplitudes possess a
good high-energy behavior. This requirement was advo-
cated a long time ago by Weinberg [10].He showed by
using general properties of the S matrix that this require-
ment implies the existence of unsubtracted dispersion re-
lations leading to g=2 for arbitrary-spin, weakly in-
teracting particles. In this paper we determine in detail
the Lagrangians of higher-spin massive particles interact-
ing with the electromagnetic field, and giving rise to
well-behaved high-energy scattering amplitudes; these
Lagrangians are not given by minimal coupling. The La-
grangian approach presents some advantages over the S-
matrix one: in addition to being more explicit, it also al-
lows for the determination of all the bare electric and
magnetic multipole terms.

In order to constrain Lagrangians, we ought to find an
appropriate formulation of the above-mentioned condi-
tions on scattering amplitudes. For theories of spin 1

this formulation is known: one imposes the requirement
that all tree-level amplitudes satisfy unitarity up to a
center-of-mass energy E much larger than the masses of
all the particles involved. For particles of spin 0, —,', and

1, this requirement has been shown to be equivalent to
the statement that the most general theory is a spontane-
ously broken gauge theory plus an (optional) massive U(l)
field [11].

Among the tree-level graphs having a (potentially) bad
high-energy behavior, there are those involving only W+,
W, and photons, and describing the coupling of a
W W pair to a high-energy photon pair (Fig. 1). No-
tice that these graphs depend only on the form of the em
current of the W's, plus a "seagull" term (y in Fig. 1),
which does not affect the leading high-energy behavior of
the scattering amplitude. The W propagator is, in the
unitary gauge,

the rninirnal one. In fact, it is to cancel the divergences
produced by the p "p /M term that one must modify the
minimal em coupling of the 8"s by introducing the term

(1.6)

yielding g~=2. This term, naturally, is present in the
standard model (Yang-Mills) Lagrangian, which indeed
gives the following electromagnetic coupling of the W's:

L =ieF" W+ W +2D W+D "W ' +M W+ W
p v Ip &] P s

(1.7)

D W =—aW+~ —~W ——aW —i—~W1 + . e + 1 + . e
[P v] 2 P v 2 P v 2 v P 2 v P

The presence of a nonrninimal term in gauge theories had
already been noticed in Ref. [12].

The above discussion, in addition to clarifying why the
standard-model value of gz is not the minimal one, sug-
gests the general requirement that one should impose on
any theory describing the interaction of arbitrary-spin
massive particles with photons: its tree-level scattering
amplitudes should not violate unitarity up to c.m. ener-
gies E )&M/e. In particular, the amplitudes correspond-
ing to the graphs of Fig. 2 must have a good high-energy
behavior.

In the main body of this paper we shall show that this
requirement will indeed imply that the coupling of
higher-spin massive particles to the em field cannot be
minimal in the usual sense, and that the nonminimal
terms that must be introduced lead to g =2 for any spin s.
The higher-multipole terms are thereby also constrained.

It is useful to note that our requirement can be cast in
the following equivalent form: "Any theory of massive
particles interacting with photons must possess a smooth
M ~0 fixed-charge limit. "

We remark that requiring a smooth zero-mass fixed-
charge limit, and thereby that tree-level amplitudes satu-
rate the unitarity bounds only at energies E »M/e, is a
necessary condition for having a sensible perturbation ex-
pansion in e (in other words, a sensible electrodynamics).
A theory not satisfying our requirement would indeed be-
come strongly interacting at E =M/e.

Three supplementary remarks are in order.
(a) Supergravity allows for a spin- —', particle, the gravi-

tino, interacting with Abelian gauge fields, for example,
in N =2 models [13] or in N =8 models [14] broken in
the manner of Scherk and Schwarz [15]. In these cases,
the charge of the gravitino is proportional to the gravi-

FIG. 1. Wiggly lines represent photons, straight lines 8'+
and W

FIG. 2. g denotes a spin-s charged, massive field, represented

by an oriented solid line. Contact terms are ignored because

subleading at high c.m. energies.
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tino mass; therefore, the M —+0 limit implies e~0.
Thus, the gravitino charge cannot be identified with the
electric charge: it rather describes the coupling to the
"graviphoton" [13,14,15], and a good high-energy behav-
ior of the tree-level amplitudes in Fig. 2 is compatible
with a g' (proportionality constant between the total spin
and the dipole magnetic moment of the graviphoton}
different from 2.

(b) Interacting higher-spin Lagrangians may give rise
to noncausal propagation in an external field [16,17], as
in the case of a massive spin- —,

' field minimally coupled to
electromagnetism [16]. We shall not deal with this prob-
lem in general, since it manifests itself only at O(e ) and
therefore can be solved only with a detailed knowledge of
all (subleading) contact terms and gravitational interac-
tions. This knowledge is beyond the scope (and against
the spirit) of the present paper, whose aim is rather to get
results that depend as little as possible on the exact form
of the higher-spin Lagrangian. We shall anyhow show in
the Appendix that, at least for the case of spin —,', ap-
propriate nonminimal interactions (in particular those
giving g =2) eliminate noncausal propagation.

(c) In general relativity it is known that a charged, ro-
tating black hole has g =2 [18]. Our argument, tailored
for elementary particles, cannot explain, to our
knowledge, whether this resuIt is a mere accident or is
due to some deeper reason.

The present paper is organized as follows. Section II
sketches the derivation of the gyromagnetic ratio in
open-string theory; it is self-contained and can be skipped
in a first reading, or by the reader not interested in the
details of the construction. Section III deals with the
consequence of imposing a smooth fixed-charge M~O
limit on massive boson fields coupled to electromagne-
tism, and it is shown there that g must equal 2. Section
IV treats the same problem for fermion fields; conclusions
are given in Sec. V. The Appendix shows how non-
minimal interaction terms ensure causal propagation of
spin- —,

' fields in an external em background.

II. CONSISTENT EM INTERACTIONS OF
HIGHER-SPIN PARTICLES:

THE OPEN-STRING EXAMPLE

The open bosonic string propagating in a constant em
background has been considered in Ref. [8], where it was
proposed to use it as a means of constructing consistent

I

interacting higher-spin equations of motion. The case of
spin 2 was worked out in detail.

For our purposes, we need only to work to linear order
in the external em field F„. To this order the bosonic
string is almost identical to the free string. In particular,
the Virasoro operator Lo [7] reads, as for the free string

oo 1Lo= g a" a „+—a" ao„. (2.1)

Here p=1, . . . , D, with D equal to the dimensionality of
the space which the string moves in. In open strings,
charges are attached to the two end points of the string

[7,8]. Let us call these charges eo and e . The charged
states have a total charge e equal to eo+e„. This charge

appears in the commutation relations of the string oscil-
lators, which read [8]3

[a",a"„]=5 +„o( mg""—+ieF"')+O(F ) . (2.2)

This equation tells us, in particular, that the zero modes
aio obey [up to terms O(F }] the commutation relations
of the covariant derivatives D" defined in Eq. (1.2), and
can therefore be identified with them.

The physical states of the open string are built in terms
of a ground state ~0) obeying

a~ ~0) =a~~o) =0, Vm &0,
and a variable x", conjugate to 8„. They read

(2.3)

0'=pa ' e""" lo), m &0. (2.4)
i=1

These states are constrained by a set of auxiliary condi-
tions

L„4=0, n &0, (Lo —l)4=0, (2.5)

The operator X satisfies the commutation relation

[N, a" ]=a i( mg "+ieF "—) . (2.7)

Applying this equation to (2.6), and recalling the form of
the state 4 given in (2.4), one finds

where L„are the Virasoro operators (see, e.g., [7]). Here
we need only the equation involving Lo. Recalling that
a~&=D", this equation turns out to be

( ,'D~D„+N+—1)4=0, N= g a~ a „. (2.6)

—D&D —~m+1 e"' ""+.e~F "e"' "'-' "+' " =0.&e

i=1 i=1
(2.8)

This equation, where we have written out explicitly the
vector indices of the state 4, implies that the mass of the
state ql is (2+N, m; —2)'~, and that the gyromagnetic
ratio g is equal to 2, as claimed.

The open superstring too can be solved in the presence
of a constant background em field. This string is interest-
ing because its spectrum does not contain tachyons (un-
like the bosonic string) and it contains fermions as well.

The world-sheet action of the open superstring in a
constant em field reads [7]

We recall that the gravitational background is O(e ) owing to
Einstein's equations R„-„——,

' g„„=T„„. Here we put the string tension a'=
—,'.
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S= — Ido d ~[a~~a.X„—imp. e.y„
1

+ [e05(cr )+e 5(a —
m ) ]

X [ —'F„—„X"X" '—F—P'pop") ]

Here g~„are the two chiral components of g„. In Eq.
(2.14} the plus or minus signs depend on whether one
chooses periodic (Ramond) or antiperiodic (Neveu-
Schwarz) boundary conditions for the variation of f:
5$+ =5/ (R), 5$+ = 5$— (NS), o =m. . (2.15)

(2.9) The expansion in oscillators of the field Q reads
Here o. and ~ are the world-sheet coordinates and 0.
ranges from 0 to n", the overdot denotes derivation with
respect to the time coordinate ~. The p, a=1,2, are
two-dimensional y matrices:

0 0 i 0 i
1—i 0 ' ~ i 0

(2.10)—1 0
0 1 ~ [p ~ p]+= 2' ~

The fields Q are two-dimensional Majorana fermions,
and action (2.9) is invariant under the standard two-
dimensional supersymmetry transformation

Q =g(g""+neoF"")d„„, o.=0,

++ =g(g"" meo—F"")d„, o =0 .
(2.16)

{d„",d" ] =5„+ Og""+O(F ) . (2.17)

Physical states are defined in terms of a vacuum state lo &

(NS} or l
A & (R), of the operators X" and a" (identical

with those of the bosonic string), and of the d„" (n, m (0).
The NS and R vacua obey

Here n EZ for Ramond boundary conditions and
n FZ + I /2 for the Neveu-Schwarz ones, while

5X~=eg, 5~=ip.a~~e . (2.11)

The equations of motion following from Eq. (2.11)are

a~ lo& =d&», lo& =a"lo& =o, m & o,
a"

l
3 & =d"

l 2 & =8"
l
A & =0, m &0 .

(2.18)

8 BX"=0, p 8 +=0,
supplemented by the boundary conditions

i(g „g+„)= —neoF„„(—i''. +P+), o =0,
i (f „W g+„)= me F„„(f—" kg"+ ), cr =m .

(2.12)

(2.13)

(2.14)

The R vacuum is degenerate, and forms a spinor of the
D-dimensional target space, of index A. Therefore, all
NS states are D-dimensional bosons, and all R states are
fermions.

The equivalent of Eq. (2.6) assumes now a difFerent
form in the NS and R sectors:

DD&+ g a—a i+ —+ g ( mg„„+—ieF„„)d" d" 4 ' "=0 (NS),
m =1 m =1/2

D"Di+ g a —a i+ ieF„„d~zdo+—g ( mg„, +ieF„„d—" d 4„' "=0 (R) .
(2.19)

The states 4 ' "and%'z' "have the form

'=e ~ go ' lA&, m&0.
(2.20}

Here a" denotes a" or d" oscillators. Substituting ex-
pressions (2.20) into Eqs. (2.19), and using the commuta-
tion relations (2.17) and (2.2), we find again that, for all
spins, g =2.

we found that all charged particles have g =2. In this
section we shall show that this result holds for all integer
spins, and in any theory satisfying the general require-
ment stated in the Introduction, namely, that its tree-
level scattering amplitudes possess a smooth zero-mass
fixed-charge limit.

A method to derive free Lagrangians for massive parti-
cles of any spin was proposed by Fierz and Pauli [19].
For integer spin, explicit Lagrangians implementing that
proposal were given in Ref. [1]. Those Lagrangians are
written in terms of a set of fields that, for spin s, are
symmetric-traceless tensors of rank s,s —2,s —3, . . . , 0:

III. g =2 FOR ALL SFINS:
THE INTEGER-SPIN CASE

String theory provided us with an example of a con-
sistent theory describing higher-spin, charged, massive
particles interacting with an em field, and in that theory

&'u, ", ,
P =0P'' 'Pp

The Lagrangian reads [1]

(3.1)
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r

2

I =(t)"{a„a" —M )(t)'+ a.$*'a.Q'+ p" a.a.Q' p—" a„a"— M

s —1+y**a.ay -'+' ', a y"-'a y'-'+ . (3.2)

p &s; (a„a"—M')(()'=0, a y'=0 . (3.3)

In what follows, we shall not need the explicit depen-
dence of the Lagrangian (3.2) on 4', etc. Notice that
the minimal coupling defined by Eq. (1.2) is ambiguous.
For instance, integrating by parts the second term in Eq.
(3.2) and then making the substitution (1.2), one finds a
Lagrangian which di8'ers from the one obtained by mak-
ing substitution (1.2) directly in (3.2) by

(3.4)

Here a.p:a„p—' ~ etc. The complete system of
equations of motion derived from (3.2) is

ways g ~1.
If we carry out the minimal substitution on the La-

grangian (3.2), we find that the scattering amplitudes in

Fig. 2 do not have a smooth zero-mass fixed-charge limit.
This result comes about because the propagator of the
spin-s field becomes singular in the M~O limit. This
singularity stems from the existence of null vectors of the
kinetic operator of (3.2). In other words, the propagator
is singular due to the existence of gauge inUariances at
M=0. To derive a result on the gyromagnetic ratio it
suffices to find one of these null vectors; for instance,

s —1

(From now on we suppress the index s whenever no ambi-
guity arises. } The on-shell em current generated by the
minimal substitution (1.2) into (3.2) reads

2s —1
Q=O, p &s —2,

(3.5)
a)"a e„i„,. . .„=0. (3.11)

whereas by integration by part of (3.2}one finds The parentheses mean total symmetrization.
Let us couple now the spin-s field to an external source

J',J', . . . , by adding to the Lagrangian (3.2) the term

iep a'—((t)(„"' *p,)„.. „), . (3.6)
y&(

' ' '
&s +J y&(

' ' ' )'s —z+. . .
&i

''
&s &i '''~s —2

(3.12}

J(J2'''J i ~J(J~' J, i i(i2
M M

(3.8)

J)Jp Jswhere m
' ' ' is the canonical momentum conjugate to

J(Jg ' ' '
J~', one discovers that the Hamiltonian contains

the term

J'"~&+ '~ SS,
2Ms

(3.9)

with 8'= —,'e'J I'-k the magnetic field, and S' the spin
operator. Equation (3.9) says that g =p/s. The value
g = I /s is recovered when Lagrangian {3.2) is rewritten in
a first-order formalism, introducing the field strengths
[1]:

pv pY v v Y'p

where the integer p can assume all values between 0 and
s. In the nonrelativistic limit all fields (t) with timelike in-
dices can be neglected, and the current (3.6} gives rise to
the following term in the Hamiltonian of the system:

J„''A" iepP ' —'P ' 'F~k, j,=l 2 3 . (37)

By noticing that, in the nonrelativistic limit,

the existence of the null vector (3.11), together with the
requirement of a smooth zero-mass limit, leads to the fol-
lowing constraint on the source:

2$ 1
a Ji„.. .„+ 2 a(q Jq . . q)sT=.MXq . .

s

{3.13)

The label ST means that only the symmetric traceless
part of the tensor has to be kept; X„.. .„denotes any~s —i

operator with a smooth zero-mass limit.
In order to satisfy Eq. (3.13), we shall introduce addi-

tional terms in the Lagrangian, some of which propor-
tional to Eq. (3.4). For this reason, we may choose any
one of the s +1 possible definitions of minimal coupling:
all of them will yield the same Lagrangian, when com-
bined with the terms implied by Eq. (3.13). For sake of
concreteness, we choose the definition giving rise to J„' ';

this generates, up to terms vanishing on shell,

J„.. .„=ie ai( A P„.. .„)+ie A a)P„.. .„
iesa(„(A P—„.. .„)i)
. s —1+ie g(„„a A "P„.. .„)i

—p~v, etc. (3.10) s(s —1) I
(3.14)

Notice that any definition of minimal coupling gives al-
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Working for convenience in the gauge B„A"=0,and re-
calling that the fields P„.. .„,A„are on shell (see Fig. 2),1"I'

we find that the left-hand side (LHS} of Eq. (3.13) equals

aiF.(„,4 „,. . .„, „.
(3.17)

2ieF "B„gi„.. .„—ieM A (3.15)

The first term of Eq. (3.15) does not have the prescribed
behavior for I~0. In order to cancel it, one must add a
nonminimal term to the interacting Lagrangian":

Notice that the term proportional to F„cancels for

a=2se . (3.18)

(3.16)

This term gives the following contribution to the LHS of
Eq. (3.13):

This value gives g =2!
The additional term in (3.17), which vanishes for spin 1

(the W+—case), and in a constant em field, can be canceled
by adding the following term to the Lagrangian:

+ jP P
"' ' '(j F "B),P~ . . . +H. c. , (3.19)

P cT A, Pl '''}tt

where P=2s (s —1)e/M, 5=2s (s —1)e/M .
The term (3.19} introduces contributions proportional

to (s —2) in the LHS of Eq. (3.13). These contributions
can themselves be canceled by adding higher-multipole
and off-diagonal terms, and so on. We do not carry
through the procedure, which yields all the nonminimal
multipole terms of the interacting Lagrangian, since it be-
comes rapidly burdensome and is not illuminating. Rath-
er, we conclude this section by observing that the require-
ment of a smooth M ~0 fixed-charge limit, i.e., of a good
high-energy behavior, not only fixes uniquely the
gyromagnetic ratio g to be equal to 2 for all integer spins,
but also requires the presence of ad hoc nonminimal mul-
tipole terms, which are non power coun-ting r-enormaliz
able operators. In particular Eq. (3.19) implies that the ad
hoc electric quadrupole moment vanishes, whereas
non zero magnetic octupole-moment terms must be
present in the interacting theory of charged particles of
spin larger than 1.

Next, we shall examine the extension of the general re-
sults obtained in this section to the case of fermionic
fields.

IV. g =2 FGR ALL SPINS:
THE HALF-INTEGER-SPIN CASE

Notice that the vector-spinors of rank lower than n —1

appear with multiplicity 2 [1,4].
Here we switch to the Pauli metric g"'=5"", and

define the y-matrices as

I r",r'1 =fi"' 7'"'=r" X'=X'}"r'&' (4»

The Lagrangian reads

271L =P(8 M)f" — P—df"
2n +1

2/i

2Pl 8+ Mg" + . (4.3)

We shall not need the explicit dependence of (4.3) on the
lower-rank vector spinors.

The minimal coupling to electromagnetism of the La-
grangian (4.3) is well defined. Substituting (1.2) into Eq.
(4.3} determines the em current, which, up to terms van-

ishing on-shell, is
The free Lagrangian for particles of half-integer spin

s =n +—,
' can be written in terms of symmetric y-

traceless vector spinors of rank n, n —1, . . . , 0 [1]:
J"=ieg ' "y"Q„.. .„ (4.4)

(4.1)
Again, we shall drop the label n whenever unambiguous.
The equations of motion derived from (4.3}are [1]

4The analogous term where I'„ is replaced by I'„ is not al-

lowed, because it breaks parity.

5The total electric quadrupole moment is already nonzero in
the spin-1 case.

(g —M)1("=0, 8 P"=0, f" '=g'~=0, Vi,P .

(4.5)

These equations allow us to rewrite the current J"as (see

also [5])
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With these values of the sources, the LHS of Eq. {4.9) be-

comes, up to lower-spin terms,

(4.6)

{4.11)

In order to cancel the first term in the above equations,
we must add to the Lagrangian a nonminimal term

~ ~

In the nonrelativistic limit all f ' " containing at least
one timelike index vanish. The nonrelativistic Hamil-
tonian thus contains a term

~~i'z
. I.F+ ~v

2 N

where we made use of the definitions

(4.12}

e ii -i„;j+ i, j„e 1

4M '1 2M n+ —'
2

(4.7) 1
F&~

=—Fpv+ 'Y5 pvpnF, E)g34 + 1
2

(4.13)

which implies g =1/s.
The reasoning used in the previous section about the

M~O limit repeats here identically. The kinetic term of
the Lagrangian (4.3) possesses zero modes (gauge invari-
ances at M =0}. One of these zero modes is

Term (4.12) gives rise to the following contribution to the
LHS of Eq. (4.9}:

2n (n +1)
2m+I

n

2n+I ~'~ "
(4.8}

In deriving Eq. (4.14) we have used the identities

Fu. d"&". ' ™&.F""&"

(4.14)

(4.15)

O Comparing Eq. (4.14) with Eq. (4.11) we find the cancella-
tion condition

By coupling f", P" ', etc., to an external source J",
J" ', etc., one finds this time that the existence of a
smooth zero-mass fixed-charge limit implies the equation

1aM——e=O .
n

(4.16)

This results in a =en /M, which, thanks to the identity

(4.9)

with X„.. .„
limit.

Minimal coupling gives

any operator having a smooth M~O

i n pcrF y q
2 nF —

yv
1"n

(4.17)

n
J& . . .„=ieAQ& . . .„ie —y(„A f& . . . z ii,

1 n n n+ 2 ll

2n
J& . . .„= ie —A gati&„. . .

&

(4.10)

gives, as expected, g =2 for all n.
Notice that the additional term present in Eq. (4.14)

vanishes for n = 1, that is for spin- —', particles, or for con-

stant F„„.This term can be canceled by adding the fol-

lowing contributions to the action:

(4.18)

with

n(1 n) e —2n(1 n) e-
2n+1 M

' (2n+1)(n+2) M

2n (1 n) e-
n +2 M3

(4.19)

adding higher multipole terms. We remark that, as for
the integer-spin case, no ad hoc quadrupole moments are
introduced, while, for generic spin, a non minima1
magnetic-octupole moment arises.

V. CONCLUSIONS

The term (4.18}also gives additional contributions to the
LHS of Eq. (4.9), proportional to (n —2) (vanishing for
spin- —,

' particles). Again, these terms can be canceled by

Our excursion into higher-spin fields has been success-
ful: we found that a very simple and natural requirement
imposed on tree-level scattering amplitudes, viz. that of a
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smooth fixed-charge M~O limit, is powerful enough to
fix the gyromagnetic ratio g to its most natural value, in
the Bargmann-Michel-Telegdi sense [6]. Our arguments
are strictly related to those of Ref. [10],and it is reassur-
ing to see that an explicit Lagrangian calculation such as
ours, and an S-matrix argument, as given in [10], lead to
the same conclusion about the value of g. We also
discovered that our same requirement uniquely fixes
higher-multipole terms [Eqs. (3.19), (4.18), and (4.19)],
and implies the existence of quasiconserued (tensor)
currents. This seems to suggest, in analogy with the
spin-1 case, that a consistent theory of massive charged
particles of arbitrary spin would require a large spontane-
ously broken local symmetry. Indeed, in the string case,
there have been speculations that the infinite-slope limit
would restore an infinite-dimensional symmetry [20], pos-
sibly related to a vanishing expectation value of the
metric tensor (g„„)=0 [21]. We finally note that g =2 is
the only value that allows for a reliable perturbative ex-
pansion, if a completely consistent theory of interacting
higher-spin particles is ever to be found. A di8'erent
value indeed implies that the radiative corrections, neces-
sary in order to restore unitarity, are large; thus, which-
ever the value of g at the tree level, it would receive huge
corrections due to loops (see also Ref. [10]).
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APPENDIX: CAUSAL PROPAGATION OF
SPIN-

2 PARTICLES IN AN EXTERNAL KM FIELD

In this appendix we show that the propagation of
spin- —, particles in an external em field is causal, if an ex-

plicit magnetic dipole moment (Pauli term) is added to
the minimal Lagrangian. Noncausal propagation [16]
seems therefore to be a pathology of minimal coupling,
rather than of higher-spin equations themselves.

The spin- —,
' equations of motion, in the presence of the

dipole term

i a+F „+„P',

[see Eq. (4.12)] read

(A 1)

D"g MQ ——y"Di P—+ y—"8—$—2

3 2 6

+aF+" gi =0, (A2)

gf+2MQ —Dig =0. (A3)

In order to study the causality of propagation of waves,
we ~ust first bring the highest derivative term in a non-
singular form [16). To this end, let us define the fields P",
P, and @by

Q=P"+ D"~ y"g~—,
—g=—P+g~, D P"=0 .4 1

3 3

(A4)

The system of equations (A2) and (A3) now reads

g P" —D—"P —M—D"e+ M—y"g+ y—"8P
2 4 1 1

3 3 3 6

+aF+" Dz, ——aF+" y&ge=O,+~ (A5)

4Q+2MQ+2Mge=O. (A6)

Propagation of signals in (A5) and (A6) is now studied
with the method of Refs. [16,17,22]: one substitutes in
(A5) and (A6) the characteristic four-vector n„ to the co-
variant derivatives, and keeps only the leading term in

n„. If the resulting algebraic system admits a zero eigen-
value for some n„, then the maximum speed of signal
propagation is given by n /in' [16,17,22]. Notice that
this procedure corresponds to solving Eqs. (A5) and (A6)
in the eikonal approximation

~e""'", ((=((le""'",
(A7)

itn&x
6' =E'8 t —+ (X)

for some constant vectors P~, P, and E Equat. ion (A6) be-
comes

i((/+2M') =0 . (A8)
This equation says that, for n %0, P= —2M@. Notice
that n =0 is the standard light cone.

Carrying on the substitution D„~in„ in Eq. (A5), and
because of Eq. (A8), one finds

i(P~+ aF+""ni—e aF+" —y—&r(a=0 .

By contracting this equation with n„one arrives at

(A9)

aF+" n„@~@=0. (A10)
If we multiply this equation by F+" n„y&, and project
over the left- and right-handed components ez, ez of e,
we find

2an„n„[( ,'g"'Fi F +—F—"Fi )

+yi F" F' )eL =0, (Al 1)

and a similar term for eR. The term proportional to the
identity matrix in Eq. (Al 1) is

2anpn ~ T

~here T" is the stress-energy tensor of the em field.
Non-causal propagation would arise if a solution to Eq.

(A10) would exist for some timelike n„By going t. o the
Lorentz frame where n„=(1,0,0,0), this is easily seen to
be impossible, thanks to Eq. (A12). In fact, T vanishes
only for F„=O, when spin- —', propagation is trivially
causal; therefore, a timelike n„ implies e=O, and Eq.
(A9) reduces to

iip~=O . (A13)
This equation, for n WO, admits only the trivial solution
QP=0

This establishes causality of the propagation of spin- —,

waves for all a&0. Notice that the minimal-coupling
case a =0 represents a pathological limit.
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