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A fully solvable quantum theory in which the spectrum of scattering states shifts with the strength of
the interaction is presented. Inelastic processes in which two particles go into three are obtained in this
cascade model. By using the formalism of analytic continuation of the state spaces, resonances and
redundant poles are identified. The completeness of the states is explicitly demonstrated and the eigen-
channels when two- and three-particle channels are open are determined. This is one of the few models

of scattering of an unstable particle.

PACS number(s): 11.10.Ef, 11.80.Cr, 11.80.Gw, 11.80.La

I. INTRODUCTION: SPECTRA, SCATTERING
AND SURVIVAL AMPLITUDES

The study of analytic properties of two-particle scatter-
ing amplitudes and their resonance structure has been an
essential part of quantum theory. Two-particle scattering
has been studied using (local) potentials from the early
days of quantum mechanics [1]: many relationships be-
tween bound states and scattering resonances on the one
hand and poles of the scattering amplitude on the other
are known, not only in their correspondence but also of
the relationships of the scattering phase shifts to the
asymptotic bound-state functions [2]. As a natural
follow-up, the time evolution of unstable particles can be
related to the scattering amplitude structure.

However, the scattering amplitude does not contain all
the information contained in the spectrum and (ideal)
eigenfunctions. The existence of ‘“‘redundant poles” in
the scattering amplitude was discovered first for local po-
tentials [3] and then in nonlocal (separable) potentials [4];
and the related situation of discrete (normalizable) solu-
tions degenerate in energy with the scattering continuum
[5].

These illustrate the desirability of explicit solutions to
the Schrodinger equation going beyond the determination
of the scattering amplitude. In addition to the limited
number of solvable (and solved) analytic potentials [6], in-
cluding those which are specifically constructed to be
phase equivalent, use of models involving separable non-
local potentials [7] and the Lee model [8] of a mutilated
solvable quantum field theory have been most instructive.

One of the lessons learned from the explicit study of
models is that the “survival amplitude” of an unstable
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particle depends on the details of the wave function going
beyond the analytic structure of the scattering [9] ampli-
tude. In a similar manner the wave function of a scatter-
ing state contains more information than is contained in
the S-matrix elements.

On the other hand, the wave functions of genuine
three-particle scattering states and even the detailed ana-
lytic properties of the three-particle scattering amplitudes
are less familiar despite the impressive Faddeev theory of
three-particle scattering amplitudes [10]. For the Lee
model in the three-particle sector, the scattering ampli-
tude was computed by Amado [11], and the wave func-
tions have been obtained by Bolsterli [12] and by Nelson
[13]. Perhaps because of the complicated expressions,
there has not been much study of this system. In particu-
lar, the possibility of using this model to study the
“scattering of an unstable particle” by a fixed target has
not been utilized.

Once the wave functions are explicitly determined it
becomes possible to consider the analytic continuation of
the vector space of states rather than merely of the
scattering amplitude. These studies have been instrumen-
tal in clarifying several puzzling and often conflicting
statements in the literature.

We have constructed a model of three-particle scatter-
ing which is simpler than the Lee model but which shares
with it a sector in which the essential features of a two-
particle system coupled to a three-particle system can be
studied. The primary couplings are 4==B6 and B=C¢
in such a manner than the BO and C0¢ states are cou-
pled. We call this the “Cascade model.” It would be use-
ful in the study of the cascade decay of a metastable state
of a three-level atom. For the present our aim is to illus-
trate the principles and the structure of the wave func-
tions and the scattering amplitudes, to study the eigen-
states and eigenphases of the S matrix, and to study the
analytic continuation of the Hilbert space of states.

The plan of the paper is as follows. In Sec. II, we in-
troduce the Cascade model Hamiltonian and show how
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its two-particle and three-particle states can be deter-
mined from the (ideal) eigenfunction for the Hamiltonian.
The mass renormalization for the B particle and its
wave-function renormalization enter in an essential way
in the spectrum of the Hamiltonian and the structure of
the scattering solutions. This is shown in Sec. III. The
generalized Moller matrix and the comparison Hamil-
tonian are determined in Sec. IV, while Sec. V studies the
“in” and “out” states and the S matrix. Section VI deals
with the unitarity of the S matrix. Section VII deals with
the eigenchannels and eigenphase shifts in the degenerate
spectrum. Section VIII deals with the analytic continua-
tion from the Hilbert space H to more general spaces §.
The spectra in spaces § are determined. The
modifications introduced by the instability of the B parti-
cle are also treated in Sec. VIII. Cases where 4 is stable
and unstable are also discussed. In the concluding sec-
tion (Sec. IX), the essential results are recapitulated and
as yet unsolved problems are enumerated.

II. THE CASCADE MODEL FIELD THEORY

We consider a quantum field theory with five distinct
fields 4, B, C, 6, ¢ and the corresponding particles (with
no antiparticles). The commutation relations are

[4,471=1, [4,B]=[4,BT1=[4,C]1=[4,c']=0,
(B,B"]=1, [B,C]=[B,Cc'1=0,

[c.ch=1,

[6(0),6T(0")]=8(w—0'), [6(w),6(a')]=0,
[6(0),@(v)]=[6(w),@(v)]=0,
[p(n), @' () ]=8(v—+"), [@(v),@(v')]=0,
[4,0()]=[4,6 (0)]=[4,p(v)]=[4,p'(+)]=0,
[B,6(w)]=[B,6%w)]=[B,p(»)]=[B,p'(+)]=0,
[C,0()]=[C,6%(w)]=[C,p(v)]=[C,p'(+)]=0.

(2.1

Note that while 6, ¢ are labeled by continuum parameters
0<w, v< o, the objects A4,B,C are treated as single
modes (“infinitely heavy”). We choose a total Hamiltoni-
an for this system which allows the transition

A<B0,
2.2)

B=Co,
and write
H=H,+V , (2.3)
Ho=M,4"4 +u03*3+f0”dww9*(w)9<w)

*© T

+fo dvve'(v)gv) , (2.4
V= fo‘”dm{f*m)ATBe(m)+f(w)B*9*(w)A}

+fo‘”dv{g*<v)BTC¢<v)+g<v)c*¢>T(v)B} L@

We adopt the convention that the form factors f and g
are for the “one-body to two-body processes:” 4 — B0,
B —C¢, respectively. We may take the labels w,v to
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refer to S waves only. For this Hamiltonian there are, in
addition to itself, three further constants of motion:

N,=4'4+B'B+C'C,

N2=B*B+f0°°¢*(v)¢<v)dv , (2.6)

Ny=a"a+ fome*(w)e(m)dm :

Consequently there is no transition between distinct “sec-
tors” labeled by these three quantum numbers. The vac-
uum state has N;=N,=N;=0 and is stable. So are all
the states with N, =0 containing only 8 and ¢ “parti-
cles.” The state N;=1, N,=N;=0, that of a C particle
is also absolutely stable, and has zero energy.

The lowest nontrivial sector has Ny=N,=1; N;=0
contains the B particle or the Ce continuum. This sector
has the same structure as the V' —N8@ sector of the Lee
model [8] and therefore the solutions in this sector can be
written down. Define

- »g*(vglv)

Y& =¢—no— [ vl
which is a real analytic function analytic in the cut plane
cut along the real axis from 0 to o and behaves as { at
infinity. The function y(&§) may have at most one zero in
the cut plane for £ <0 provided g(v) vanishes nowhere in
0 <v < «, which we shall assume unless otherwise explic-
itly stated. If such a zero exists there is a discrete nor-
malized state which may be identified with the physical
B; further we have a continuous spectrum 0<v< o
which corresponds to the continuum normalizable (ideal)
eigenstates of the system. Since these are already avail-
able in the literature we do not write them down explicit-
ly. The dimensionless scattering amplitude at energy v
has the explicit form

2.7

tv)=|gW)|*/y(v+ie)=eXsiny , 0.8
exp(2iy)=y(v—i€)/y(v+ie) . '

The physical scattering amplitude with the dimensions of
length is obtained by dividing #(v) by the momentum k
so that the (S-wave) cross section is

(47 /k?)sin?y . 2.9

The relation between k and v depends on the energy
function

Vki*+m?—m, relativistic ,
v(k)= k2

Eyn nonrelativistic .
m

(2.10

There is a phase-space factor k?dk which has been ab-
sorbed into g(v):

lg(v)|2dv~k2dk|g,(v)|?, 2.11)

where g,(v) is a smooth function of v without any thresh-
old singularities. We recall that any state in the
N,=N;=1, N,=0 sector may be expanded in terms of
the bare B and Cp(v) states.

N,=N,=N;=1 is richer and instructive. There are
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possibilities of states 4, BO(w), COH(w)p(v) all coupled
together. If we denote a generic state by the vector

n
dw) |=V,
Y(w,v)

the effective Hamiltonian in this sector can be written in
matrix form

(2.12)

M, ') 0
flo) (pytw)dlo—cw') g (v )8(w—w') =H.
0 gv)dlo—w') (0+v)dlo—w')d(v—1")

(2.13)
The eigenvalue equation is
HY =AY (2.14)
with repeated variables ©’,v' being integrated over.
These equations imply
(A—My)n,=F, ,
(A—po—ol(0)=G)(o)+ flo)y, , (2.15)
(A—o—vY(0,v)=g(v)d, () ,
where
= [ 1 @gende’
(2.16)

Grl@)= [ “g*(v (e, v )dv' .

An infinitely degenerate set of continuum (ideal) states
are obtained by choosing, 0 <n <A; expressions obtained
from (2.15) and (2.16) through the replacement of sub-
script “A” by “An” are applicable to the ideal states of
“An”:

_ g(v)g; (@)
Y. (0,v)=ed(n —v)6(A—w—v)+ N —wo—viic
(2.17)

Here e is a (real) constant yet to be fixed. Then
GM(w)=fo""g*(v'm,,(wv')dv'
=eg*(A—w)8(A—w—n)

+ 0@ [ ” TEJ—H;%Z (2.18)
Substituting this value for G, ,(w) we may write
Y(A—w+ie)d, ,(w)

=eg*(n)d(A—w—n)+flo)y, , , (2.19

where y({) is the denominator function (2.7) already
defined. A possible choice for ¢, , (@) is

g*(n)d(A—w—n) , flo)n ,
= +
bin(@) y(n) y(A—w)
+b8(A—w—p) (2.20)
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and, writing a(A) for a(A+ie),
_ef*(A—n)g*(n) " bf*(A—p)

, 2.21
Ton = (hFie)aln) a(l) @21
where
|f(0)|*de’
A LR LA 2.
a(A)=A—M,— f o tid) (2.22)

In these expressions u is the real zero of (&),

y(u)=0

if it exists; if no zero exists we must choose b =0. A set
of continuum normalized (ideal) eigenstates of H are ob-
tained as

nk,n
\I/}\,n:: ¢}L,n(w)
Lbk,n(w,V)
f*(A—n)g*(n)
a(A)y(n)
_ g*(n)d(A—w—n) flw)
y(A—w) y(A—a) Thn
_ o g(v)
8(n—v)§(A—w n)+——_—}»~a)—v+ie¢}""(w)
(2.23)

irrespective of whether ¥({) has a zero. If it has, we have
an additional continuum of states:

U
‘I/A: ¢}\(CO)
¢A(w,V)
[*A—p)
Vy'a(d)
_ 1 Sflon,
= ‘/7,8(7& o—p)+ Y —o) (2.24)
gv)
k—w—v+ie¢ ()
Here
)
(
~ac? )

and the state is chosen to be (ideal) normalized. Note
that these states are defined for

p<A<oo .

Hence the continuous spectrum begins at p rather than
to- Unlike in the lower sector where the continuous spec-
trum remains unchanged, here the additional continuous
spectrum also shifts; and this shift is consistent with the
shift of the discrete state in the lower sector. We can
then physically interpret this to be the physical B0 state
and the three-particle continuum (A,n ) to be the physical
three-particle states COg.
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In addition to these continuum states there would be a
discrete state at A=M provided

a(M)=0, a’=—a—a(z)
aZ z=M

This normalized state is

1
MM f(‘/;t’
\II = = ——w
M dp(@) y(M~w)nM
Yy lo,v) g(v)
M—o—vul®

It is necessary to verify the (ideal) orthonormality and
completeness of this set of states so that we can be sure
that there are no more eigenstates of H in #. This is
done in the next section. Here we conclude by pointing
out that having once proved the orthonormality and

J

completeness we can use the Moller matrix [14] of wave
functions to diagonalize H and thus determine the com-
parison Hamiltonian H with the correct spectrum. The
comparison Hamiltonian would explicitly contain the
mass and ‘“‘wave-function” renormalization. Whether
there are stable 4 and/or B particles, the Moller matrix
would be unitary [15].

III. STRUCTURE
OF THE THREE-PARTICLE SECTOR

We proceed to verify orthonormality and complete-
ness. For the states (2.24) the scalar product (¥;,¥;.) is
given by
Wiw, =ty + fowdw’gb{(w’)mv(w’)

+ ® ’ wd ’ * . ) ' s 3.1
J o [ Tdvyt@viguey) 3.1)

where the quantities 7, ¢(w), and Y(wv) are defined by
(2.24). But

g*(v')g(v')

Jdvit v inov)=¢i () la) [ dv

AN

AN —A+ie
_ X (0" ) (')
AM—A+ie

)
fdv’g*(v’)g(v’) [

(A—o'—v'—ie)(M—w'—Vv' t+ie)

1 1
A—o'—v' —ie AN—o'—Vv +ie

{y(M—o'+ie)—y(A—o'—ie)+A—1"},

where use has been made of the definition (2.7) The sum of the second and third terms of (3.1) is therefore given by

S(A—w'~p)

S @ )}

f “ do’ YN —a&')—y*(A—0w')
0

A —A+ie Vy'

r*(A—o')

SN —w'—p) ACRUR
vy y(M'—w')

= fda)’ SA—w —,u)45’(7» —o'—u) 1

14
SA—p)ny

Sr —p)ny

LN AT — !
k’—k[y(k @' )—y*(A—w")]

do'f*(o')f (@) 1 1

(M=AVY' (M —AVy

=8(A—A")—n¥ny .
Taking account of the first term also in (3.1) we get
Wi, =8(A—1) .
Now compute W]W,.,. using (2.23) and (2.24):

Vv, =ntn..+ fdw'[¢{(w')¢kvn'(w')+ fdv't/);f(w’v')lllkln'(w’v’)] .

The integral inside the square brackets of (3.3) is

*(v)pl(w')
fdv'g—V,L,w.— 8(v'—n")8(A'—w' —n')+
A—o'—v' —ie

_ g*(n/)S(A’I_wr_nl)tﬁz(kl_n:)

+tme [

M—Atie |y*(A—o') M=)

(3.2)

(3.3)

g(vl )¢Nn'(wl)
AMN—w—v+ie

YA —o')—y*(A—w’)

A—AN—ie

The ' integral now gives a value which cancels the term
g*(n')ﬁ(}»"—w'—n')qﬁ;f(w')
A—A'—ie

and the term 7% ,., so that

* w0} (0")

A—A+ie !
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viw,. .=0.
The computation of \PI,, ¥,.,» proceeds along the same lines. Start from

\I’Inwl'n'zn’).:rlnk’n’+fdw’[¢xn(w,)¢1‘n’(wl)+ fdvllpxn(CD”VI)lﬁA',,'((U"V')] .

But
910 (@)byn(@)+ [ dVYL, (@'Y Wypla'v')

=834(@")pna)+ [dv' {5(v’~n )B(A—aw'—n)+

=8(n—n")8(A—AL")8(A—n—w')+

g(n)$y,(A—n
AMN—A+ie

On doing the o' integration and using the definition of
a(z) and 7, we get

vl W, =8(A—A)8(n—n") . (3.6)

When there is a discrete state with energy A=M <y,
the state corresponding to this is given by (2.25). A
direct calculation in this case shows that ¥,, is normal-
ized and orthogonal to ¥, and to ¥, .

The (ideal) states ¥, , exist for all values of the param-
eters M,u, and the form factors f(w),g(v). The states
V¥, exist provided y(§) has a real zero; and the state ¥,
would exist if a(z) has a real zero. If one or more do not
exist, the corresponding relations (3.2), (3.3), and (3.6) are
empty: in their derivations we had used y(u)=0 and
a(M)=0. If ¥, exist, this branch of the spectrum is con-
tinuous and nondegenerate with a threshold at A=p <0
while the ¥,, spectrum is continuous and infinitely de-
generate and has a threshold at A=0. If ¥, exists,
M <u below the ¥, threshold. When M|, increases with
p and the form factors are fixed, so that a(z) no longer
has a zero, we expect to find a pole in each of the analytic
continuations of the vector spaces. Similarly, when y, in-
creases, keeping g(v) unchanged so that y({) no longer
has a zero, the ¥, branch of the continuous spectrum
moves its threshold to O and then disappears; again, ana-
lytic continuations would display this as pair complex
J

1

g*(v')e3, (')
A—w' —v' —ie
gV )y, (@)
AMN—o'—v' +ie
g*(n" )X, (M —n')

A—A—ie

X (6(v'—n’)8(l’—w'—n’)+

S(AM—n'"—w")

(@' Y*A—o)—y(A —a')

)
8(h—n —0')+ 4, (0" b, P T

f
branches with complex thresholds. We can, of course,
have the situation that a(z) has a real zero but y(§) has
none. In this case M <0 would be a renormalizable state
together with a continuum of infinitely degenerate states
0 <A < oo with states ¥;,,. These results would be conse-
quences of our study of the spectral problem in the con-
tinued spaces §.

Given the continuum of orthonormal states ¥,,, we
can construct a projection operator

,= [dA [dny,, V], . (3.7)
If neither ¥ (&) nor a(z) have a real zero, we expect these
states to be complete and II; to be 1. But if there are
zeros we need to include

L= [ dAw, V] (3.8)
and

I, =¥,¥, (3.9)
with

10, =5,11, (3.10)

O, +1,+1,=1 . (3.11)

We should compute the nine matrix elements of II;. Let
us begin with the relations

a(M)—a*(M=— [ f*(e")f(a") | "

SA—w'—p)

1 ]dw’

Ao +ie) y(A—o'—i€)

* —_ ’ — ’
g*(A—w')g(A—w’) do'

—_ * ’ ’ — ;
[ )f(m[ 2w

2mi

Y(A—o'+ie)y(A—o' —i€)

=+27riff*(w’)f(w’)’ ”

S(A—w’—ﬂ_‘_ g*A\—o')g(A—0’) do'
YA—ao')y*(A—w")

=2vi{f*(k—#)f(k_“) +fdn’f*(}‘_"')f()‘_"')g*(”')g(”') ’ . (3.12)

Y

y(n")y*(n')
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In case y(&) has no (real) zero, the first term would be missing. Further, if a(z) has a zero at M,

— * -
1 1 =__2m.8(7» ’M)_'_a(k) a(A) (3.13)
a(h)  a*(A) a a*(A)a(i)
We can now compute the various matrix elements of I1;:
1 1
dx[ dn b ., +1t ]= dA——[a(A)—a*(A)]————
f f 7N M TN f 217-1[a a ]a(k)a‘(k)
1 1 1 2mid(A—M)
=— - - 14
21ri d}”[ a*(A)  ald) a’ ] 3.14)
so that the (1,1) matrix element of IT,+11; is
il § dz
(M +113)o, 0= —— fcz+03 o (3.15)

where the subscripts 0,0 are the kinematic label for the (1,1) or ( 4, 4 ) element, and

1 1 dz
a 2mi Y€ alz)

We now explain the contour labels used. Let the contour slightly above the real axis, from 0 to «, be C,. We label
the contour deformed from C in the fourth quadrant of the second sheet by C. When there is no singularity between
C . and C, such as the situation in Fig. 1, the relation C, —C =0 holds. For the situation in Fig. 2, two additional con-
tours C; and C, need to be taken into account. Thisleadsto C, —C=C,+C,.

Let the usual counterclockwise contour on the physical sheet at infinity be C . The absence of singularities on the
physical sheet leads to the relation C,—C_ +C, =0, with C_ being the contour, slightly below the real axis, from 0
to «. For the situation of Fig. 2,

—C,=—C_+C,=—C_+(C,+C,+C)=C,+C,+(—C_+C)=C,+C,+C; ,

where C'_ is the continuation of C_ and C, is the counterclockwise contour encircling the three-body branch cut along
C.

The (1,1) element of IT is

My o =TT, + 11, +113)g o

1 d _, 1 [ di_
2mi Y C+Cy,+C5 a(z) +217i wa z 1, (3.16)

I

where the relation C +C_, =0 (see Fig. 1) is used.
The (2,2) or the BO(w), B6(w') matrix element of IT,+ 115 is

(Mt 113),,= [ dh | 43001830+ [ dngy, (@)1, (") |

1 flw) — [ ')}
=— [dr |sA—p—a)+Vy —L2L g | [s(A—p—0)+VyL—T2
7’f [( p—o) Y h—a) ™ A—p—a’) Y =)
+ [ ddn g (n)d(A—w—n) f(w)mn_ g(n)s(A—n—w’) +f‘(co’)ni‘,.
Y(A—w+ie) y(A—w+ie) r*(A—') Y*(A—w')
_ , SA—u—w) g*(n)g(n)
= [dr{8lw—0") = + [a 8(A—n—a')
f {6lo—w')} f ny(n)y"(n) n—o
flo)f* (') 1 _ 1 flo)f* (o) 1 _ 1
2riy*(A—o')a*(A) | y*(A—0') Y(A—w) 2riy(A—w)a()) | y*(A—0') v(A—w)
flo)f*(o') 1 1
2miy(A—o)y*(A—0') | a*(A)  ald) |’

Carrying out the dn integration and rewriting the dw integral as a contour integral along C_, the first term gives
8(w—w') while the remaining terms together yield
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A

o — >
Op————
[ C,
C
FIG. 1. Contour for integration over A in demonstrating
completeness identity. FIG 2. y*(n)/y(n) as a function of n.
+ flw)f* (@) f dA -0
2mi Co Y(A—@)y(A—a')a()) '
Thus,
S0+ [dAgr(0)85 () + [dnyy, ()P}, (0)=80—w') . (3.17)

For the (3,3) or [CO(w)p(v),CO(w' )p(v')] element of II; we compute for the case when neither a(z) nor y({) have a
zero; then we have the expression

[ ar [ dn v,,(0,v¥8, (")

=8(a)~w')8(v—-v’)+g(v)g*(v')8(w—co’)fd}» S(A—w—v) 1
(A—o'—v' —ie)y*(A—a")
1
(A—w—vt+ie)y(A—w)
+ 1 1 _ 1
A—o—vtiedA—o' —Vv —ie) | y*(A—0') VA—w)

+8(A—w' —v')

] .

(3.18)

But the dA integral terms cancel each other so that

j(w,v;0",v)=8lw—a")8(v—') . (3.19)
If ¥ (1)=0 so that II, is nontrivial, the additional terms

[ drgy(o, et v)
would have to be added to obtain (3.18) and (3.19) would be amended by

(I, + 1)), v;0',v')=8(o—a')6(v—2') . (3.20)
The same comment applies if a(M )=0; then

(I + I, + ;N 0, v; 0", v ) =8l — 0" )0(v—2') . (3.21)

Next we compute the off-diagonal elements. The (2,1) element of IT,+ 115 is

(M +115),0= [ dA |$@)nt+ [ dng, (@it |

8 i e |

+ [didn g‘(”)&q):(;i;;o) + y(fk(fio) f‘;}(‘;)n) gy:(nn)) o{f?x_):*)f;)
o[ 2 g e

| L e L T an L e
zfdk[zﬂﬁf)j)* y*(}j—m - y(ll—w) y()fﬂu)ﬁ a(;»)‘ - a(IM ] 022
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where, for the second time, the discontinuity identity of a(A) of (3.12) was used. So

_ flo) [ ! — !
(I, +1hy), 0= 5= [ d My O—w)  aly(i—o) |

From (2.25),

__f*)

_ ) 1 _ fHe) 1
2mi fcld}\

y(M—w) a aMy(A—w)
Combining (3.23) and (3.24) and using C , = —(C, +C, +Cj3) leads to
_ __fYw) 1
(M), 0=(IT;+T,+113), 6 o fcwd}‘——__amy(x—w)

__ [ ¢ dh_
T 2mi J c. 2 O
The matrix element (3.1) for the three-particle continuum is given by

(n3 )aw,0= fd}"dn '/}An(wv)nxn

= [didn 8(n—vIS(A—n—alyf, + —E S(A—n—a)

g*(n)

A—ow—v+tie Y(A—w)

Y (A—w) T

=fdx[s<x—w—v) flo)gv) | gWfle) gh—akg*(A=o)

a*(M)y*(A—w) A—o—vtie y(A—w)y*(A—w) a*(})

L EWf@) 11 1 1
A—ow—v+ie 2w | a*(A) a(}d) | y(A—w)

_8W) (w)fdk 1 _ 1 1
2mi A—w—v—ie A—w—vtie |y*(A—w)a*(X)
N 1 11 1
A—o—vtie |y*(A—w) Y(A—o) |a*(]})
N 1 1 11
A—w—v+ie y(A—o) |a*(A) al})
_gWf(w) 1 1 _ 1
27 fd}‘ A—w—v—ie y*(A—w)a*(A) (A—o—v+ie)y(A—w)a(l)
__gW)f(w) di 1

27i ¢, T (A—w—vtie)y(A—w)ald)

3515

(3.23)

(3.24)

(3.25)

(3.26)

We leave it as an exercise for the reader to show that, with the replacement of C; by C, and C,, the same expression is

also applicable for the two-particle continuum states and
C,=—(C3+C,+C,), we arrive at

= __ gWf(e) 1
(D, 0= My + T, + 1T 0 2mi fcw“(x—w—wy(x—w)am
—_8gWf(w) 1 _
o Jo 4 5=0.

The element (3,2) for the 3-particle continuum is given by

the discrete state M, respectively.

Since

(3.27)
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(M), = [ dAdn ¢, (0v)$}, (')

8(n—v)S(A—n—w)d}, (o) +——g(—¢ln(w)¢ln(w

=fdldn A—w—v+tie

g(v)5(k——a)’—n)+ [*@') f(A—n)g(n)

= [drdn {8(n—v)8(A—n—w)
Y*(A—a') y*(A—w) a*(A)y*(n)

g(v) 1
+ —_ —_— !’
A—w—vtic 2m 2@ )

1 1
y*A—o) vA—ow)

1 1
+fw)f* (o) -
S e o h—ona () 7wy (i ah) }
S(w (o) 1 g*(v)
fdl[ [k v—o—i€e A—v—o+tie | y*(A—0')
g*(v) 1 1
A—o—v+tie | y*(A—w) VY(A—w)

1 1 1 1
A—v—otie y*(A—w') A—v—o—ie y(A—o')

_Slo—w')g(v)
2mi fdk

Slw—w')glv) 1
=— d A . (3.28
2 (A—v—w)y(A—a') )
Again we leave it as an exercise to the reader to show that the same expression is also applicable for the two-body con-
tinuum and the discrete state M with the replacement of the contour C; by the corresponding contours C, and C,,.

Using the relation, —C , =C;+C, +C,,, it leads to

m,, ., =(I,+1,+1I;)

_, o—a')glv) dA
+ 2mi fcw (A—v—)y(A—o')
_ Slo—w')gv) dar _
== [ SE =0, (3.29)

The off-diagonal elements I1;; =IT7;. Using (3.25), (3.27), and (3.29), the remaining elements are

Iy, ,=15,=0, (3.30)

M,,0=M§.,=0, (3.31)
and

n, . =I* .=0. (3.32)

ﬂ)VﬂJ

IV. THE MOLLER MATRIX AND THE COMPARISON HAMILTONIAN

The matrix (with continuous indices) of the (ideal) eigenfunctions including the discrete solutions, if any, by virtue of
the results demonstrated on orthonormality and completeness, furnishes us the generalized Mdller matrix:

Q=(V,,,¥,,¥,,) 4.1)
so that

QMo;M)=7y, QUMgA)=1n,, QUMyA,n)=n,, ,

Qo M)=¢y(0), UwsA)=¢\(0), QUaosi,n)=¢,,(w), 4.2)

Yo, v;M )=y (w,v), UNo,v;A)=¢(0,v), Uo,v;A,n)=1¢,,(w,v) .
The generalized Moller matrix is unitary
ao'=1, ala=1. 4.3)

Further, it diagonalizes the Hamiltonian,
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HQ=QH., Q'HO=H_, 4.4)

where H is the comparison Hamiltonian:

M 0 0
He= |0 (u+)8(6—¢) 0 . 4.5)
0 0 (E+n)8(E—¢)8(n—n")

where A=p+¢ and {+n. This is to be contrasted with “free Hamiltonian” H, obtained from (2.13) by setting
f=g=0:

M, 0 0
Hy= |0 (yp+ow)dlo—o') 0 . (4.6)
0 0 (0+v)§(w—w')8(v—2')

[

When we compare H. and H, we see that, while they inessential and the mass renormalization making Hy+A
have quantitatively the same structure [provided identifiable with H is only necessary in this sector.
a(M)=0, y(u)=0], their spectra are different [15]. These renormalizations are sufficient for the higher
There is the mass renormalization of the discrete eigen-  sectors, e.g., Ny=1, N,=1, N;=2, where the mass re-
value from M, downwards to M; and the continuous normalizations alter the continuum thresholds from M
spectrum p<A<oo is also shifted downward from to M and u, to u but the four-particle threshold at 0 is
Ho<w< . Only the double continuum 0<n <A< o is left unaffected.
coextensive and of the same multiplicity as the double The relation (4.4) can be obtained through the
continuum 0<v<(w+v)< o of H,. The Méller matrix  definition of the eigenvalue equations,
intertwines H. and H, but not H; and H. _

H_ could be identified as the free Hamiltonian if we in- HQ=(M¥y, A¥, A8, )
clude mass and wave-function renomalization terms in the and the use of the orthogonality relation:
interaction. The mass renormalization requires that we
add to H, the quantity A given by

M(MIM) A(MI|L) A {M|An)
o'HO= | M(XM[M)  MAIA)Y A (N|An)
M-M, 0 0 M{Mn'|M) AAX'n’'|A) A(A'n'|An)
A=| o0 (L—pe)8lw—w') 0], @.7) M 0 0
0 0 0 =10 AS(A'—A) 0
0 0 AS(A'—A)8(n'—n)

which is negative definite. There is the need for a wave- _

function renormalization and a consequent coupling con- =Hc .

stant renormalization in vi;w of the :trucjture of (2.24}) Notice for the (2,2) element, with A=p+¢,
and (2.23). The A, B fields have wave-function renormal- AB(A'—A)=(u+E)B(E'— ).

1zations Thus, the unitary transformation, taken in reverse, can

p s convert the comparison Hamiltonian to the total (in-
B—Zg " *B=(y')'/“B , teracting) Hamiltonian:

T=
A—’ZA_I/ZA =(al)l/2A , 4.8) -QHCQ H . (4.10)

The notion of interaction is basis dependent. However,

0—06, o> . the distinction between H. and H is obvious.
Since there are no proper vertex corrections the coupling V. THE S MATRIX
constant renormalizations reflect the wave-function re-
normalizations:

The solutions we have obtained for the continuum
' =172 eigenstates of H are not the only ones we could obtain. If
flo)>(y'a’) fla), 4.9) we changed reciprocals of the singular operators from
=172 :
g)—(y)" ) . A—w—v+ie) '5(A—w—v—ie) ™! (5.1
Since there are no diveigences in the problem, the wave  in (2.17), the solutions (2.23) and (2.24) would acquire the
function and coupling constant renormalizations are form
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f*(A—n)g*(n)
M a*(M)y*(n)
* —_—y —
¥, = | 6, (o) g*(n)(A—w n)+ flw) - ’
, Y*(A—w) Y*(A—w) 7
Yn(@,v) g(v) ,
8(n—v)8(A—w—n)+ P —— & n(@)
=) (5.2)
7 Vy'a*(d)
’ ’ 1 f(w)
v, = (0) |= |—=8A—0—p)+—"———n,
A ‘{’x ‘/7, I 7 (—o) U
vilev) gv)
A—w—v—ie i@
[
with 0
iHt :
li C*, —iHt — .
v, =V, . (53 ome e T, 0 5.9
M=¥y 8(n—v)6(A—w—n)
The Moller matrix and
Q'=(¥), ¥, ¥,,) (5.4) i , 0
lim e ~Hy, = ()" 28(A—0—p) | , (5.10)
is also unitary and intertwines H and H: f—=— 0
aot=ata =1 which, apart from the need for the wave-function renor-
’ (5.5) malized (4.8), are the “plane-wave” ideal eigenstates of
HQ'=Q'H, a'HQ = He . the comparison Hamiltonian (4.5) with the renormalized
threshold for W,. These states are, therefore, called the
Hence, “in” states of scattering.
The vanishing of the first components in (5.9) and
oton o oto)yft=H c - (5.6)  (5.10) are attributable to the rapid oscillatory phase fac-

So, if the spectrum of H. is nondegenerate a''q is al-
most a phase: We write

S:QTQ' , (5-7)

SHc=HcS . (5.8)
So for the discrete state S is unity, and for A <0 it is, at
most, a phase. But, for A >0, we have a matrix for S di-
agonal in energy.

The states (2.23) and (2.24) are so chosen that

tor in the limit where t — — . The equalities for the
second and the third components in (5.9) and (5.10) are to
be understood for scalar multiplication of both sides by
bra vectors whose components are smooth functions of w.
The integration over  in evaluating the scalar product is
along an open contour; for  — — o the contour could be
closed in the upper half-plane with the results given in
(5.9) and (5.10).

We could equally well evaluate the lim when 1 — + o
but in this case the contour has to be closed in the lower
half-plane and thus enclosing the zero at A=w +v.

For t — + o« we get

0
liT eiHC'e_"H"I/A,,,= —21Ti8(l.—cop,)f(:, )77;\,, (5.11)
* 2wig(v)f(w)n,,
S(A—w0—v) |8 —v) |1—2m B0 E ) | 2T (@),
y(n) Y(A—w)
and
0
. iHot iy — 1 o _21Tlf*(A-"‘[L)f(}\_,u) (5.12)
Jim e me T E | Ttk me—u) )1 y'ad) ’
o iera o BWIf(A—V)f*(A—u)
2mid(A—w—v) V?*y(v)a()\)
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while

iHct

lim e e Hy, =, . (5.13)

t—+ o
In contrast with these are the “out” solutions which
behave simply as t— + o but have a more elaborate
structure as t — — . These also form a complete ortho-
normal set.
Given the “in” and “out” states, we can compute the
scattering amplitude from

W atterea = lim [W(2)—W(—1)] (5.14)
t— 0

or by considering the scalar product of the “in” and

“out” states to get the S matrix:

(¥, ¥)=S . (5.15)

Of course, both these should give the same result for the
scattering amplitude.
If the form factors are real,

fHo)=f(o), g*(v)=g(v),

then the “out” states are simply the complex conjugates
of the “in” states. On the other hand, the time-reversed
“out” state is the complex conjugate of the “in” state
whether or not the form factors are real. Consequently,
the S matrix would be symmetric for real form factors,
J

(5.16)

that is for time-reversal-invariant Hamiltonians.
For convenience, in the following calculations in this
section we will assume the form factors to be real so that

y=y* (5.17)

We now proceed to compute the S-matrix element. By
virtue of (5.4),

S(M;M)=1, S(M;A)=0, S(M;A,n)=0. (5.18)
Using (5.17) we can write
S(MA)=(¥},¥,.)
=(¥$,¥,.)
=+ [ do ¢ (0)¢(@)
+ [do [ dviyo,v)(,v) . (5.19)

But
f‘ﬁx(w,v)lﬁk-(w,v)dv

(A=) —y(X—0)
1+ A\

$(w)py(o) ,

so that the dw integrals can be written

fdw YA —w)—y(A—w) | 8(A—w—v)

A=A Vr |y

Hence
S(ALA)=8(A—A")[1—2mia(r)n]] .

Below the three-particle threshold
a*(A)

S(AA)=8A—A")———

an)’ M0

flom, Haw—w—m

Sflo)ny
vy YA —w)

= — iy —24T8(A—A )a(Mm2 +S(A—L') .

(5.20

(5.21)

In a similar fashion the production amplitudes for the three-particle channel from a two-particle channel

SsA, )=+ [do [¢A(m)¢x,,,(w)+ fdv;bkm,v)tp“,,.(w,v)] .

But

g(n"),(A'—n")
d , ) , e —
f v, VY ,lw,v) A— A tie
which together with the other terms in (5.22) yield
S(AA,n' )= =2mia(A)nny, 8(A—A") .
Finally,

SN ) =+ [ doo [¢M(m)¢y,,'(a))+ fdvlpkn(w,v)lpk,n.(m,v)] .

But

+ [do ¢)(0)gy, @)

8(n")prn (A" —n’)

(5.22)

i (5.23)

YA —0)—y(A—w) 1 ]

(5.24)

(5.25)

g(n )¢k"'()\f_n)

Jdo [dvi,, (v, (ov)=6(n—n")s(A—1")+

+ [dody,(@)dym(@)

A—A+ie

—1+

A —A+ie

YA—w)—y(A —w)
A—A'
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Adding the other terms in (5.24) and rearranging, we obtain

X(n) ,
Ay, Myt %S(n —n')

The occurrence of the common factor §(A—A’) in .S was only to be anticipated in view of (5.8).
By writing
S(A)=8(A—A")[1+2iT(A)], (5.27)
we have the scattering amplitude matrix
T(A;p,pm) T(Au,n')
T(A;n,u) T(A;n,n') =

S(A,n;A'n')=8A—L") ‘B(n —n')—2mi

, . (5.26)

77% MATAn’

g¥n)d(n—n") |’
a(A)y(n

with the form factor taken to be real. The symmetry of the T matrix is a direct reflection of the implied time-reversal
invariance.

T(A)= —ma(A)

MMan ManMan Tt

(5.28)

VI. UNITARITY OF THE S MATRIX

The unitarity of the S matrix is a consequence of the unitarity of the Mdller matrices [see (4.3), (5.6), and (5.7)], and,
in turn, implies the unitarity relation of the (dimensionless) scattering amplitude (5.27) in the form

T—1'=2T1T". 6.1)

Since T is energy diagonal, the A dependence of the T-matrix elements can be suppressed. It is instructive to verify this
relation directly.

Compute the (u, 1) matrix element of (6.1): the right-hand side of the equation gives the expression

T(u;)T* () + [ dn T(usn)T*(p;n) =ma(Ma*(AMnin,

nm+ fd” ’hnTI:A]

1 1
= * }\'
ma(A)a*(A) (0 PN
_ M o f(k B, . 6.2
Y [a(A)—a*(A)]= vy (mx—m) (6.2)
which equals

1. . 2____ =T SfA—p) oy 6.3
21[ ma(A ) +ma*(A)nt?] a()»)m(m ) 2 ‘/7, (nt—m,) - (6.3)

For the T(u,n ) matrix element of (6.1), the right-hand side is
2
T T* )+ [ dl T DT* (n31)=ma(Ma* (Mnyng, [mn; + [ dlymi, ] +atn,—E )L (A n)g(n)

y*(n)y(n)
s * * TA - » *
=S i la(d)—a*(M)]+ —=[a* (Mnf, —a(A)n, ]
= e i, —amm, ] (6.4)

which coincides with the left-hand side.
For the T(n,n') matrix element of (6.1) the right-hand side is

(M (Mmnimant,e+m* [ dl n—D+a*(A)mi,miy(n)

5%;1/)&5(1 n)+a(A)n,

g(n’)g(n')s(
,}/#

. - 1 1 T * — 1 — 1
M M | 2o = Gy | 288 B =) |
T _ 1 1 * T o* * $o+latnt— ’
+2-8(n)f(A—n) ) 7 M+ 57 (@ Anty —aMma, Ity + 7@ 0l =AMy I,
. . - 11 L
=57 L@ M) = (@R, )1+ 578 (ngln) y*(n) v(n) dn=n)

which coincides with the left-hand side.



I&

VII. EIGENCHANNELS AND EIGENPHASES

For energies u <A <0, the scattering is elastic since
only the B8 channel is open. For this open channel the S
matrix has the unimodular eigenvalue

_a*(d)
a(l)

For A>0 the CO¢ channel is also open and we have a
continuum of states ¥,,0<n <A which are also open.
The S matrix now takes the form

1+2iT, , 2T, ]

S(A)=efl2amEa* ()] (7.1)

Shmn )=\ it . 8(n—n")+2T, (7.2)
The eigenchannels of scattering must satisfy
S¢=o¢, lol*=1, (1.3)

which is equivalent to

v(n)

o—1+ 2mig(n)g(n) ]gn

=—2mia(l)n,, [ﬂx§u+ fdl bl ]

or
*
la - ]gn = —2ria(Mm, [méut [ dlmuti |
(7.4)
and
(0 —1)¢,=—2mia(l)m, [m&,+ [dlnug, ] . (1.5)

There is a continuous spectrum for o and possibly one or
two discrete values. If we define

o)=Y _ exni2i0n)]

(7.6)
v(n)
then for
o= exp[2i6(n,)] (7.7)
we have the solution
£=— 77 1
H (o—1+ie)x(n,) Vo'’
(7.8)
=‘/_'8 _ _ ManTh L
bn=Veodlo—alm = e Vo
where
e —Nnt ' a .
M=, €=0%, o'=- expl2i6(n)]l,=s, ,
and the function y(n,) is given by
2 2
_ 1 M Mt
x(ny)= 2Tia + o—1 +fdla—a(l)+ie (7.9)
For the case where there is a bound state,
n=p<0,Rey(0)>0 and Imy(0)=0. Beyond the
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threshold Imy is positive. As n goes from O to A, 6(n)
decreases from O to 8(A) and hence o(n)= exp[2i6(n)]
moves along a circle of unit radius from 6=0 to 6(1) in
the complex plane; as long as y(n) has no resonance up
to energy A, the unimodular quantity

o(n)=y*(n)/y(n)=exp[2i6(n)]

will remain in the fourth quadrant, see Fig. 2.
The solutions (7.8) are continuum normalized:

S lotie), (o' —ie)+ fdl (o t+ie), (o' —ie)
=8(c—0o'). (7.10)

This will not be complete if there are discrete zeros of
x(6) for

1 1no <0 or Lo >60) . (7.11)
2i 2i
The equation x[(1/2i)1no ]=0 implies
oA _ fO—p)f(A—p) 2
T v’ o—1
4 [ LOZWI =g
y*(y()
x—2 . (7.12)

a.e--2i0(l)___1

But the imaginary part of this equation is automatically
satisfied by virtue of the relation

Ima(A) _ fA—p)f(A—p)

T Y
+f f(l—l)f(k—l)g(l)g(l)dl' (71.13)
y*()yW)
Hence
— 2
F(cotd)= Re‘:r(k) +If(k fu)L cotd
— 2
+ [18BSAZDE o561y 1a1=0,
y*(Hy(l)
(7.14)
where
=g (7.15)
We note that
dF(cotd) _ — el
acotsy |V AT
+ [[g(hfA=D]
215
x SCR0D] ytso. a6
CSC

The discrete eigenvalue should be outside the range of
6(1),0<1 <A. The two possibilities are § values less than
6(A) or positive [more than 6(0)]. This question is dis-
cussed in the Appendix.

Usually when we have an S matrix with more than one
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channel open, the S-matrix elements contain not only a
phase but also an inelasticity factor [16] familiar from the
case of nucleon-nucleon scattering with tensor forces [17]
in the channels with parity (—)’ ! In that case the di-
agonalization of the eigenchannels is energy and potential
dependent. In the present case the problem can be com-
pletely solved and hence the eigenphases and the (ideal)
eigenchannels of scattering can be explicitly determined.

VIII. ANALYTIC CONTINUATIONS
OF THE STATE SPACE

In the presentation so far we have considered the state
vectors ¥,,, ¥,, and ¥,, expanded in terms of wave
functions Y(w,v), ¢(w), and 7, where o and v range over
real values O0<w and v< o. These wave functions are
boundary values of analytic functions of  and v provid-
ed the form factors f(w) and g(v) are themselves analytic
functions. The question arises as to the analytic con-
tinuation of these wave functions into the complex plane
[18]. This would entail a continuation of the vector space
Ff of the vectors V¥ into a collection of vector spaces &
[19]. The Hamiltonian operator is defined by the same
form with f*(w)— f*(0*) and g*(v)—g*(v*).

The vectors ¥,,, ¥,, and ¥, have wave functions
which have analytic forms which have natural extensions
to w,v becoming complex provided we make an extension
of the & function for complex arguments [20]. This can
be done by choosing a deformation of the real spectrum
of H to a complex contour. The space of analytic con-
tinuations of the complete orthonormal set of (ideal)
states ¥, ,, V¥;, and ¥,, can be analytically continued so
that the spectra are along complex contours. Each of
these choices of the contours provide an analytic con-
tinuation of the vector space 7 to a new space §.

Before presenting the analytic continuation of the vec-
tor space of the cascade model in this sector, it would be
instructive to deal with the lower sector B=2Cg and its
analytic continuation [18].

The states in this sector can be written in terms of
wave functions

(n)
= (P¥ (8.1)
p(v)
with an inner product
' =p*(u)p(u)+ fo‘”dw*(v)qm (8.2)

and may be completed to form a Hilbert space #. For
the effective Hamiltonian in this sector,

Bo &)

H= glv) vd(v—v') ]’ ®.3
we have the (ideal) eigenvectors
@nlp)
®n = |uv)
g*(n)
(n)
= ’ *(n)g(v) &4
— _ g \nglv)
8(n 1/)—*-)/(n)(n—v-He)
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with possibly an additional state

~ P B (y")~172
v e | T (71)_1/2&)_ . (8.5)
u—v
These states are (ideal) orthonormal and complete:
®lP,=8n—n"), ®ld,=1, &L, =0,  (8.6)
[an @, 0 +o,0/=1. (8.7)

There are also left eigenvectors which are the adjoints of
the right eigenvectors:

O H=nd] . (8.8)
The spectrum of »n is the positive real axis with u nega-

tive:
pu<0<n<o .

Depending on the value of u,, the discrete state may or
may not exist.

For analytic continuation we choose a contour I
which begins at 0 and makes an excursion into the lower
half-plane and choose A along this contour. For z along
I" we denote by z*ie points to one side of I" or the other
and close to it. So € really is a complex infinitesimal
quantity normal to I" and pointing to the left of the con-
tour " when we traverse it from O to «. The 8 function
8(A—z) gives, for integration along the contour T,

8(A—2)=0, A#z, [dz8(A—z)=1. (8.9
These are illustrated in Fig. 3 where both the possibilities
of having a discrete state or not having one are displayed.

The continuous spectrum in § is along ' with a
discrete point at u which may be real and negative or
complex. The states in & corresponding to (8.4) and (8.5)
in # are

gA)

y(A+ie) (8.10)

P, = — ) .
B T A (D) (¢
y(At+ieA—z+ie€)
( I)71/2
o= ), , (8.11)
(" g(z)
u—z
where

FIG. 3. Spectraof Hin # and in §.
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g(A)=g*(A*) . (8.12)

These are also left eigenvectors [19] in a dual space &:

g(z)g(A)

&= |—EM _ s(a—z)+

y(A—ie)’ y(A—ie)(A—z—ie) |’
(8.13)
1/25
o= (y)” nly) gz (8.14)
u—z

The orthogonality and completeness relations now take

the form
J

g(A)g(A)dA _‘l_f dA
ry(Atie)p(A—ie) 2mi Y Cpy(A+ie)

$ulmIBw)+ [

1 dA 1 d
__fc _8ér. 2

2mi

3,0, =8(A—1"), $,9,=0, B,&,=1, (8.1

[ 2@ dri+o,3,=1. (8.16)

The effective Hamiltonian acting from the left in § (and
acting from the right in #) is

Ho g—(z')

= lglz) z8(z—2z") 8.17)

The verification of the orthogonality relations is straight-
forward. Completeness may be verified block by block:

ry(A+ie) 2wi

’

C, y(2) -
(8.18)

where the discrete integration contour Cjp, the continuous spectrum Cp, and the contour C, are illustrated in Fig. 4.

Then we have

_ - _ g(z) g(?») _ g(z)g(A)
¢#(}t)¢#(#)fr¢x(ﬂ)¢x(2)d}‘ Y (u—z+ie) f dh Y(A+ie 8(A )+(k—z+ie)y(k—ie)

=§(Z)f g(Z)f
2mi YCp (A— z)}’(k) 2w YCr y(k)(k z)
_ 8(z)
2mi fw‘y(k)(k z) ®.19)
Finally,
1 1 '
82821+ [ drgr2)Fpz)=7 g(z)g(z )f (M o o=z
g(z)g(z ) f 1 1 _ 1
A—z +IE v(A+ie) | A—z—ie A—z+tie
g(z)g(z’) 1 _ 1 1 1
+ j frd}\ —z—ie A—z'tie |y(A+ie) A—z—ie
g(z)g(z’) 1 | 1 1
+ ] frdkk——z’+ie y(A—ie) y(A+ie) | A—z—ie
=8(z—z")+ £2EZ) | dA =8(z—2") . (8.20)

Thus, the discrete solution at the (real or complex) value
u is an essential part of the spectrum and together with
the continuum 0 <A < o constitute a complete set [18] in
the space S.

The spectrum of the Hamiltonian in the A-B6-COp
sector in # was determined in Sec. II. It consists of an
infinitely degenerate continuum ¥,,,0<n <A < « with a
nondegenerate continuum W;,u <A < o« if there is a real
zero for y(§) at {=p <0; and a discrete state ¥,, if there
is a real zero for a(z) at z=M. We have also demon-
strated that they are mutually orthogonal (ideal) states
and complete in /. When we continue ¥,, solutions and
the corresponding spectrum falls along the contour T, we
have to look for complex zeros of y(£) and a(z). We

Co (A=2)y(ANA—2")

|

know that y(&) would develop a complex zero if there is
no real zero, which would be uncovered if I" sweeps over
it. With regard to a(z) there is the possibility that once
1 becomes complex there may be more than one complex
zero. We denote this collection by M i J= 1,2,....
Then the completeness that we need to verify in § is

frsdkfdn v, %, + fl_zdk v, ¥, + = Wy ¥a; =1

(8.21)

The set M; is studied later in this section.
Along the real axis the functions y(§) and a(z) are
given by
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(: . \) By T
M, Fs

FIG. 5. Spectrain 9.

> y(x)=y(x+ie)
A=A+u v )g(v')dv'
N My ! =X —lo— f i;:—v_'f_-T’ (8.22)
o o a(M)=a(A+ie)
' \ —A—M,— fwf_w_Mw_ (8.23)
v I, T, (A—w'+ie) ’

which, on making analytlc continuations along K and T,
become (see Figs. 4—6)

> e Elvigv)
y(E+ie)=&—p, K E—viie’ (8.24)
A'=A+u,
M, Hq flo)fw)do
AOL alz+ie)=z—M,— fr —otie) (8.25)
with the understanding that € are complex numbers along
A, the positive normal to the contours K and I" and v and
\ ' are complex numbers along K and I'. The complex
F Fa .
8 “denominator functions” y and a have discontinuities
across the contours K and I'. So does 1/y(z). We then
FIG. 4. Spectra and contours of integration in §. have
y(z) y(z) 7(z) Y y(z)¥(z)
Disca(z)=a(z)—a(z)=— [ do f(o)f()Disc —a) (8.27)
| Lemwifle=p) . f g, SO ”)f“ ") en)g(n) | . (8.28)
v’ (n)y(n)

In Fig. 4, three different configurations of the analytic continuation defined through the deformation of the contour I'
are displayed. The first configuration is defined along I' =T, where there is only the three-particle (C8¢)-branch cut
on the “continued physical plane.” The second configuration of I is along I',, and also along the quasi-two particle
(u6)-branch cut IT';. The third configuration is along I';, I'3, the 10 cut, and the contour I'}, which encircles the point
M,, where a(M[)=0. The completeness relation along I" can be worked out following the same procedure as the com-
putation of the relation in #f carried out in Sec. III. For any given, analytically continued configuration, it is the con-
tour, which encircles all the branch cuts and the discrete poles exposed, that contributes to the generalized spectrum of
the theory.

In general, it is also possible to have two zeros of a(z) exposed, which would occur on the two sides of the quasi-two-
particle cut. We start afresh with new notations here. Let the quasi-two-particle cut be along I'; and the three-particle
cut be along I'; (see Fig. 5). The two second sheet discrete zeros of a(z) are at M, and M, (see Fig. 6). The C,, in Fig.
7 would be obtained, when and only when all the exposed cuts and the contour D, and D, around the two discrete
zeros of a(z) are included.

The additional discrete state is the “image state.” Let us have a closer look at the situation. Using (8.27) and the
asymptotic form of a(z), we can write the integral representation

ey [ SR N =) o F =) f(V —n)g(n) (8.29)
alz+ie)=z—Mo— [ di Y'(A—A'+i€) Jax Jan (A=A +ie)7(n)y(n)

Therefore,
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FIG. 8. Movement of the resonance when p <0.

a'(z)=1+ff(}”’J)f(N_‘u)d}J-l-fdl’fdn’f()"—n)g(n)f(}“_n)g(n) ,

y'(z—2A)?

_ gvigvidv
=1+ [ £V
f (u—v)?

There is a “bound state” at M if

a(0)>0, a(M)=0, a(w)=—ow . (8.31)

If a(0) <0 there is no real zero of a(z) but a complex
zero appears when the contour I' sweeps sufficiently
down in the complex plane. We distinguish two cases.

Case 1. p<0. The trajectory of the zero of a(z) is
given by the line P,Q,R in Fig. 8. As M, increases the
real zero disappears at the threshold u <0 and then
moves into the lower half-plane first to positions such as
Q, where ReM <0 and eventually to places such as R,
where ReM >0. To the extent that the discontinuity
along I'; is weak to start with, there should be a nearby
zero on the sheet reached by analytic continuation
through winding around the branch point of I3, i.e., the
origin in a clockwise manner. The zero trajectory as a
function of M on this sheet is indicated in Fig. 8 by the
dotted line where Q, is a typical point. As M further in-
creases, this zero trajectory emerges from the contour I'y
and extends into the exposed region. It appears as the
dashed trajectory in the figure with R, being a typical
point. The completeness integrals would include the
combination of the poles exposed by the contours (see
Fig. 9).

Case 2. Rep>0, u complex. In this case the real con-
tinuous spectrum in # consists of only the three-particle
infinitely continuum 0<A < o. When I'; sweeps down
the continuous spectrum, I';, in & appears. The zero of
a(z) now moves along P to Q and this trajectory bifur-
cates at the threshold p of T',. A zero appears at R, and
an image zero at R,. Depending upon the location of T,

FIG. 7. Contours of intergration in 9.

7(n)y(n)z—A')?
(8.30)

r

R, may or may not enter the complete set of states in §.

We have not considered other possible image zeros for
“deep” analytic continuation when the contours sweep
past the third quadrant. For the kind of contour
configurations that we have considered they do not enter
in the determination of the complete set of states.

IX. CONCLUDING REMARKS:
FUTURE PROSPECTS

In this paper we have explored the spectra, the com-
plete set of (ideal) state vectors in a three-particle sector,
and their analytic continuations. Because of the struc-
ture of the effective Hamiltonian in this sector the solu-
tion can be carried out explicitly. We have traced the
evolution of the two-particle B spectrum coupled to the
three-particle CO¢ spectrum and a possible discrete 4
state.

It is gratifying that the spectra are such as one would
expect from a B particle of energy p <0 coupled to a 6
particle of energy w, 0 <w < ; and a C particle of energy
0 coupled to 6, ¢ particles of energy w,v; 0<w, v< . It
is reassuring that the interacting field theory has a particle
interpretation.

The “mass” renormalization of the B particle alters the
continuum threshold of the B states. While we are fa-
miliar with the “mass” renormalization for a discrete

FIG. 9. Movement of resonance position for complex u.
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state, its propagation to alter the threshold of the B6
continuum is not so familiar. True, it can be seen in the
higher sector of the Lee model but the analytic structure
of the solution is formidable. Not only the “mass” renor-
malization but also the “wave-function” renormalization
of the B particle is seen explicitly in the plane-wave com-
ponent of the solution (2.24) and (2.25).

The diagonalized form of the (effective) Hamiltonian is
what we have called the comparison Hamiltonian. The
comparison Hamiltonian is isospectral with the total
Hamiltonian. Thus, its spectrum differs from that of the
free Hamiltonian in the displacement of the two-particle
continuum in addition to the discrete values. This is a
nonperturbative effect and can be handled only by a re-
normalized perturbation scheme in which the comparison
Hamiltonian is taken as the starting point.

We have also considered the analytic continuation of
the vector space # into a generalized vector space §.
The correspondence is between the dense subset of ana-
lytic vectors in # to those in & [19]. The explicit solu-
tions for the (ideal) eigenvectors can be analytically con-
tinued into a corresponding set of (ideal) eigenvectors of
the analytically continued Hamiltonian in §. The adjoint
left eigenvectors are continued into left eigenvectors in G,
the dual to §. Despite the continuous spectrum changing
from being along the real axis in # to being along com-
plex contours I'; and I'; in &, we can get a complete set
of (ideal) eigenvectors in §. The spectra in # and in &
may differ in the set of discrete states that need be includ-
ed or even in the continuous spectrum. But these are im-
plicit in the analytic form of the solutions in #. The rel-
atively simple analytic form makes the continuations

rather straightforward. This enabled us to explore a
range of circumstances in which either the A particle or

the B particle (or both) became unstable.

We have, in this paper, used the Dirac formalism [21]
of ideal eigenstates corresponding to points in the con-
tinuous spectrum. These ‘“eigenvectors” are not in the
space #f or § since they do not have a finite norm. Yet
they are very convenient to use. A more rigorous way of
handling the continuous spectrum is to use the formalism
of Gelfand triplets [22] of these linear spaces #,, #, and
F, such that

H\DHDH, 9.1)

where 7, is the dual of #, with # remaining its own
dual. Bohm has advocated the use of this rigged Hilbert
space [23] formalism for quantum mechanics. In the
problem of analytic continuation of the vector space 7,
this formalism can be extended. It has already been car-
ried out for the Lee model by Gorini, Parravicini, and Su-
darshan [24], and by Bohm [24]. The cascade model may
also be handled using this more rigorous formalism,
though no essentially new results would be obtained.
Then we will have to introduce spaces ¢;, D¢ and 9,C 6.
The continuum eigenvectors would be in &, but not §.
We shall carry out this refinement elsewhere.

We found that when we explore the B6/C0g sector it
can be thought of as the addition of the @ particle to the
B /Cg sector. This kind of particle interpretation contin-
ues to be true under analytic continuation. This would
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justify our introducing creation and annihilation opera-
tors for complex energy particles and thus have a field
theory which is analytically continued. For this purpose
we define annihilation operators with complex energies,

A,B,C,0(z),9(§) ,

and their adjoints
4,B,C,6(z),5(¢)

with the commutation relations
[e(v),@(v')]=8(v—n'), 9.2)

etc., where 8(v—+') is defined on a complex contour I.
The Hamiltonian is

H=H,+V ,

Ho=M,AA+p,BB+ [ r2alzz‘9‘(z>9(z) 9.3)
+ frldé’é'(‘p(é’)cp(g‘) , (9.4)
V= frzdz{f(z)ﬁg(z)A +f(z)AB6(z))
+ [ d6(8(OCPEIB+EOBCHE) . (9.9)

where the contours I';) and I', may be chosen indepen-
dently. The parameters m, and u, are real. I'; and I,
both begin at 0. The conserved quantities (2.6) are ap-
propriately modified and so are the denominator func-
tions y(£) and a(z).

In the treatment of the Hamiltonian (2.3) with conven-
tional real frequency creation and annihilation operators,
we could obtain time-reversal invariance if the form fac-
tors f(w) and g(v) are real [25]. If they are not real the
phases would have to be absorbed into a redefinition of
B(w) and @(v) before we could display time-reversal in-
variance.

A corresponding situation is obtained for the cascade
model field theory with complex contours if

g(8)=¢g(&), flz2)=f(z), M§=M ps=p,,

then the system is time-reversal invariant.

Using an extension of the techniques developed by Bol-
sterli and by Nelson, the still higher sectors of the cas-
cade model can be worked out explicitly; we defer these
solutions to a later investigation.

With a suitable choice of the parameters here the B —6
channel disappears in 7 but can be recovered by analytic
continuation. We have thus studied scattering of an un-
stable particle [26]. Throughout we have recognized the
importance of identifying the complete set of states which
could differ from what may be deduced from the singular-
ities of the scattering amplitude. In this paper only the
barest outlines of analytically continued quantum field
theory are given; yet it shows the unreliability of both
conventional perturbation theory and of the analytic
properties of scattering amplitudes by themselves.
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FIG. 10. Spectrum of the eigenphase shift &.
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APPENDIX: THE DISCRETE EIGENVALUES
FOR THE EIGENPHASE SHIFT

We explore the spectrum of the scattering matrix start-
ing with the defining equations

(0 —=1)g= —2mia(M)no( M) {no( Mo+ {1, (M),

(A1)
((o—7,)=—2mia(A)n, (M) {no(ME+{n, (AT,
(A2)
where 7, =y ! (1) /7 (1) is unimodular. Writing
Z=—2mia[ny(A)o+ {7, (M), )], (A3)
we rewrite these equations in the form
So=Zno ="', §,=Zn,(0—7,)7". (A4)
This implies
2 2
R P P IS
or

o —1) "+ {n2(c—7,)"1)=1. (A6)
As mentioned in the text (Sec. VII) the imaginary part of
this equation is an identity. Therefore, the defining equa-
tion can be rewritten as the real part of this above rela-
tion. Introducing

+
=g 20 =ry)=1Y (n) , (A7)
v(n)
we obtain

0=F( cotS)E% Rea(A)+ %f’(k—,u)f(k—u)cot&

+ [an & RBW) poy oy ph—n)
y*(n)y(n)

X cot[6—6(n)] . (A8)
From their definition, sinf(n ) <0.

The function F( cotd)—(1/m)Rea() is sketched as a
function of 8 in Fig. 10. The term with cot$ is the famil-
iar dashed curve with asymptotes at §=0,t,. . . and in-
tersecting the & axis at +7 /2,137 /2, etc. The integrand
in the second term would be similar but displaced towards
the left (since 8 <0) by |8(n )| and suitably weighted.

The line F( cotd)=0, or

F(cotd)— L Rea(A)= — - Rea(1)
m m

intersects the curve in two points 8, and 6, which are the
discrete values of the eigenphase shifts. In addition,
there is a continuous spectrum along 8§=6(n), where
0<n <A, as deduced in the text [see discussion after
(7.16)].

In an earlier work based on two-body local potential
models, Newton [27] showed that the three-particle S
matrix divided by the two-particle S matrices has only
discrete eigenvalues. Our model gives this result in an
even more restricted form: the continuous eigenvalues of
the three-particle amplitude is the same as the two-
particle amplitude.
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