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Polyhedral cosmic strings
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Quantum field theory in Mobius corners is discussed using the method of images. The vacuum aver-

age of the stress-energy tensor of a free field is derived and is shown to be a simple sum of straight
cosmic-string expressions. It does not seem possible to set up a spin- —,

' theory easily.

PACS number(s): 03.70.+k, 02.40.+m

I. INTRODUCTION

ds =dr + A r (d0 +sin Bdg ) . (2)

It is not locally Hat, the curvature being proportional to
(1 —3 )/r . (Actually, such a metric was earlier suggest-
ed by Sokolov and Starobinsky [5] as an example of a
metric with a conical singularity. )

In the present work we wish to discuss another situa-
tion with a solid angle deficit that is locally fiat. The
price that must be paid is that there are string singulari-
ties. Further, the deficit can only take the values
4n(1 —1/N) where N is an integer. The nontrivial values
are thus much too large to be realistic. Nevertheless, the
geometry is interesting if only because its simplicity
makes Geld-theory calculations easy and, in some ways,
obvious. It is in this spirit that the present calculation is
presented.

II. THE BASIC CONSTRUCTION

The triangulation of a two-sphere obtained by its inter-
section with the symmetry planes of an inscribed regular
polyhedron is classic, if not ancient. Consider such a tri-
angulation applied to the constant r sections of the fiat-
space metric

ds =dr +r (dB' +sin 0'dP'2)

A straight, ideal cosmic string can be thought of as a
conical defect in space. A number of field-theoretic cal-
culations have been performed in such a background
which we do not wish to summarize here but simply refer
to a short review article [1]. The attraction of this back-
ground is that it is locally fiat and the effect of the defect
can be accommodated by changed boundary (i.e., periodi-
city) conditions.

The defect is an angular one. The spatial metric can be
written most naturally in cylindrical coordinates:

ds =dz +dp + A p d(()

where P is a "physical" angle running from 0 to 2'. The
deficit angle is 2sr(1 —A ).

An object (a global monopole) with a defect in solid an-
gle has been discussed by Barriola and Vilenkin [2] (see
also Harari and Lousto [3], Mazzitelli and Lousto [4]).
The metric is

and join the triangle vertices to the origin r =0 to give a
set of "triangular cones. " We allow r to extend to
infinity.

If there are 2X triangles equivalent under the corre-
sponding extended point group I", one obtains a division
of the total solid angle into 2N portions of 2m /N, one for
each cone.

One can now either treat such a cone as a physical re-
gion of R and proceed to do (quantum) field theory in it
with, say, Dirichlet or Neumann boundary conditions or
one can think of the cone as analogous to the segment
0 ~ (t

' (p (p= 2m/N ) whic. h, when its edges are identified,
yields the straight cosmic string (1) with A =p/2'

For this latter interpretation it is necessary to be more
careful regarding the group action. Conventionally, the
triangles are alternately shaded and unshaded. The pure
rotations of I", i.e., I, take shaded to just shaded and
unshaded to just unshaded regions. The remaining ele-
ments interchange shaded and unshaded triangles and
correspond to single refiections (with possibly a rotation
as well). Thus, if we use the full extended group to con-
struct the Green's function (of scalar field theory say) by
the image method, we will automatically obtain Dirichlet
or Neumann boundary conditions depending on how we
combine the various contributions. Therefore this is suit-
ed to our first interpretation of the triangular cone as a
physical region. The idea of the triangular cone, as a
trihedral kaleidoscope, is due to Mobius [6]. (See, e.g. ,
Coxeter [7,8].)

To produce a periodic structure it is necessary to use
the rotation part I only and to take the quadrilateral
combination of a triangle and one of its contiguous
reAections, say, as the fundamental domain on the two-
sphere. This "quadrilateral cone" is the analogue of the
segment in the straight cosmic-string case mentioned
above. One expects the edges of the cone, which are just
the axes of symmetry of the corresponding regular solid,
to be stringlike.

If we adopt this attitude then the coordinates in (3),
(r, 0', P'), are unphysical and it is necessary to find a coor-
dinate transformation (analogous to /=2m/'/p for the
cosmic string) that takes the quadrilateral cone to physi-
cal space, i.e., onto an lR . (Coordinates on this R will be
our definition of "physical coordinates" although nothing
physical can, of course, depend on any particular choice. )

A possible coordinate transformation is provided by
the conformal transformation that takes a spherical trian-
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gle into an upper half plane (and so takes the quadrila-
teral into the whole plane). The calculations are, again,
classic, the basic paper being that of Schwarz [9]. Of
course, the field-theory calculations are most easily done
in the metric (3).

A brief discussion of the wave equation in triangular
cones was early given in the book by Pockels [10],as not-
ed by Laporte [11] who further developed the mode
analysis. The reader will find in this paper a useful sum-

mary of the situation. Keller [12] includes the corners in

his list of domains for which the image method applies
and there is mention of them, as "Mobius corners, " in
Terras and Swanson [13] in connection with potential
problems. No doubt they occur elsewhere.

Developments of the mode problem from various
points of view are contained in papers by Poole [14],
Hodgkinson [15], Meyer [16], Stiefel [17], Altmann [18],
Altmann and Bradley [19],and Huber [20].

III. TRIANGULATIONS OF THE TWO-SPHERE

The classic account of the triangulations of S and
their relation to the finite-dimensional subgroups of SO(3)
[or SU(2)] is that of Klein [21] and its continuation in the
work of Klein and Fricke [22]. Discussions in English
are less numerous but that by Forsyth [23] is useful and
he also treats the conformal mapping by Schwarz triangle
(automorphic} functions. Further informative references
are the works by Ford [24], Cayley [25], Hurwitz and
Courant [26], and Caratheodory [27]. A more recent
source of information and of further references is the pa-
per by Coxeter [7,8]. A summary of Schwarz's theory
can also be found in Darboux's treatise [28].

Further, 2(g, n; —1)=N
In our situation, we start from the metric (3) where 8'

and P' are standard angular coordinates on the unit
sphere. The usual stereographic projection onto the
equatorial plane yields the Cayley-Klein parameter
w=u +iv which undergoes a linear fractional transfor-
mation (a homography or Mobius transformation) when
the sphere is rotated. For a projection from the north
pole, w =cot( L9'/2)exp(itl}') =(x '+ iy') /(r —z') where
x',y', z' are the Cartesian coordinates of a general point
(r =x'2+y' +z' ) The m. etric (3) becomes

ds =d +4 2 dw dw*

(1+
~

w~z)'
(4)

The conformal transformations, w ~g that map one w

triangle onto the upperhalf g plane are (e.g., Forsyth,
1893)

There are five basic cases corresponding to the cyclic
C„,dihedral D„,tetrahedral T, octahedral 0, and
icosohedral Y point groups, but the first two are more or
less the same and correspond to the straight cosmic
string.

The angles of the fundamental triangles are written
m/v, . (i =1,2, 3), where (v„vz,v3) equals (2,3,3) for T,
(2,3,4}for 0, and (2,3,5) for Y. The v; are related by

1 2g—=1+-
,. v, N

and, if there are n; symmetry axes of the v;-fold type,

gn;(v; —1}=N 1.—

(w +2iwz&3+1)~
for T,

(w 2iw ~3—+1)

(w +14w +1)
for 0,(w' —33w —33w +1) (5)

(wz —22w' +494w' +228w +1)
[w +1+522w (w —1)—10005w' (w' +1)]

The metric (4) is written equivalently
2

ds =d1' +4
[1+Iw{g)l ]

(6)

ly introduced by projecting the g plane onto a unit sphere
by, say,

(=cot(8/2)e'~ .

where w is an algebraic function of g by (5). Equation (6)
explicitly shows the singularities which conventionally
have been chosen at /=0, /= 1, and g= 0O. These posi-
tions can be altered by homographies applied to g or to w

(Cayley [25]).
We now think of (r, g, g*) as coordinates in one to one

correspondence with the points ofphysical space. To em-
phasize this, angular variables 8 and P could be arbitrari-

The entire g plane is covered by the ranges
0 + 8 (n, 0 ~ / (2n The singularit. ies lie at the north and
south poles and at one point on the equator of this g
sphere.

There are three (cosmic) strings corresponding to the
edges of the fundamental quadrilateral (two vertices of
which are identified). The "strength" of a string will be
determined by its associated v parameter, i.e., by its an-
gular deficit. The strings meet at the origin, r =0.
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IV. THE CYCLIC GROUP C„ANDTHE COORDINATE
QUESTION

It is useful to discuss this elementary case as an exam-
ple of our general approach.

The triangulation of the unit sphere is a division into n
lunes running from pole to pole, which are the only fixed
points. The z' axis is taken as the (polar) rotation axis
and the stereographic projection onto the (x',y') plane is
a set of n wedges of angle 2m. /n. The standard conformal
transformation is

which opens out each wedge into the whole g plane. The
singularity (the string) in R lies on the rotation axis.

The metric (6) will be a complicated function of the
new colatitude 8 [in (7)]. In order to regain the "natural"
metric (1) a coordinate transformation from 8 back to 8'
using [cot(8'/2)]"=cot(8/2) is necessary and then p and
z can be introduced conventionally. The result of aH this
is just to rescale the azimuth p' to p and to leave the cola-
titude 8' alone. This is what one does immediately, of
course, but the general case is not so clear and the con-
formal transformation seems to be the only systematic
way of obtaining "physical" coordinates.

The remaining problem in the general case is the inter-
pretation of the coordinates. That is to say, what is the
physical significance of the singularities? In the cyclic
case one can talk about lensing effects, for example. Is
there anything similar for the other cases? Is it possible
to produce a source for the singularities and does any-
thing special happen at the origin where the three strings
meet?

V. QUANTUM FIELD THEORY

%"e abandon the question of physical significance and
return to the metric (3). The point (O', P') on the unit
sphere is denoted by q and the elements of I" by y. The
action of I" on the unit sphere can be extended in the ob-
vious way to R by yr=y(r, q)=(r, yq). The triangular
cone C' can be taken as the fundamental domain of I"
acting on all of three-space:

(y'(r))„„=,, y a(y)
1 1

4' r r~;z d(q, yq )
(10)

where d(q, q') is the Euclidean distance between (l, q) and
(l,q').

For complex fields the equation corresponding to (10}
1s

&IP('(r))„„= » g Re[a(y)]
2% T d(q, yq)

Restricting attention for the moment to the periodic
case, the sum over I in (10) can be recast into a sum over
the fixed points (or axes). Denote a typical symmetry axis
(=two fixed points or vertices) by k. Let the associated
parameter be vi, (one of the v;) and the corresponding
generator A 1, . Simple geometry gives

rd(q, A i, q ) =2 sin(me. /vi, )p(r, k),
where p(r, k) is the perpendicular Euclidean distance
from r to the axis k, so that (10) becomes (we drop the
"ren" subscript)

[For complex fields, we might allow the a(y ) to be more
general phases. This will be discussed later. ]

The coordinates (r, q) on the left-hand side of (8) are, of
course, restricted to the fundamental domains C' or C as
the ease may be.

It is often considered interesting to calculate vacuum
averages of various operators, particularly ( P ) and
( T„,, ), as evidence of a Casimir effect. For example,

(P ) = i—lim G(x;x'),
X ~X

where x stands for (r, q, t). Equation (8) shows that this
will diverge and we remove the offending term, y=id,
from the sum as our renormalization. Then

(P )„,„=i —g a(y)GO(r, q, t;r, yq, t) .
']r W ICl

The unit element of a group is denoted by id or, some-
times, by E.

For a massless field Go(x, x')= (i/—4n)(1/. A, ), as a
distribution, where A, = ( t t '

)
——

~
r —r'

~
. Therefore

&y'(r)) =
16m.

1

p(r, k)
The quadrilateral fundamental domain is C =R /I .

In the case of free scalar field theory, or quantum
mechanics, the Green's function, or propagator, in the
corner will be given an image sum of standard, Min-
kowski Green's functions, or of standard Euclidean prop-
agator s. Typically,

G(r, q, t;r', q', t')= g a(y)Go(r, q, t;r', yq', t') .
qCr

The phase factor a(y }, in the simplest cases, are either all
equal to unity (giving Neumann boundary conditions) or
equal to one when y is a rotation and minus one other-
wise (giving Dirichlet conditions).

As mentioned earlier, to produce periodic conditions
the summation in (8} should be restricted to the group I
of pure rotations. The phase factors are then all unity.

1 vi 1
2

48m i, p(r, k)
(12)

=Go(r, t;r', t')+ QGi, (r, t;r', t') .
k

(13)

This is just the sum of the (p (r))'s for each of the
singularity axes taken separately.

A similar result holds for other vacuum averages. This
can be shown quite generally, and easily, by writing the
sum over I in (8) as one over the axes k and the associat-
ed cyclic operations:

vk
—1

G(r, t;r', r')=Go(r, t;r', t')+g g Go(r, t; Ai, r', r')
k m=1
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Go+6& is the Green's function for a singularity axis k.
Invariance under the general rotation R says that

Go(Rr, t; AzjRr', t')=Go(r, t; Akr', t'),
where Az& =R A zR ' is a generator about the axis R k.

All renormalized vacuum averages then have a similar
structure. That of the stress-energy tensor is given by

"r
l

& ~.,(r) & =y& ~.,(r) &„„,,
k

(14)

where & T~tt(r ) &
„ I, is the vacuum average around a cosm-

ic string of angle 2n lv along the axis k. This expression
allows for a simple numerical evaluation since the indivi-
dual vacuum averages are already known. We must note,
of course, that the tensor indices in (14) refer to coordi-
nates on the IR covering space so that the standard result
for a single, straight string along the z axis must be
transformed to strictly Minkowskian coordinates in lR

and then rotated from z to k. Performing these opera-
tions, the general form of &T ~(r)& for a string lying
along the axis k is found to be FIG. 2. Relief plot of Fig. 1.

C
&& ~(r)&„j,= ', , (p'ri t'+4u ut'),

16m p
(15) conditions are generally similar. We give in Fig. 3 a con-

tour plot of the tetrahedron Dirichlet case.
where C„is a constant depending on the deficit angle and
the vector u =(O, kAr). This expression is for confor-
mally invariant, massless fields.

In Fig. 1 we show a contour plot for a periodic confor-
mal scalar. We have chosen the octahedral group for il-
lustrative purposes and have pictured & T (r) & for r =1
over the equatorial plane of the stereographic projection
of the triangulation, which is also shown. Figure 2 shows
a relief plot of the same quantity.

The plots for the Dirichlet and Neumann boundary

4

VI. PHASE FACTORS

In quantum mechanics, or in the theory of a complex
field, one is allowed to choose the phase factors in (8) to
be a unitary representation of the ramified covering
group of 8'(8), which is 1"(I ). The character tables in-
dicate nontrivial one-dimensional representations in the
T and 0 cases. To establish some other notation, we
check these facts in a standard way. Consider the presen-

V] V2 V3
tation A, ' = A 2' = A 3' = A, A2 A3 =E where A; gen-
erates rotations through 2m/v; about the vertex of angle
n/v; The A. bel.ian nature of the representation ta(y)1
implies that
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FIG. 1. Contour plot of the vacuum average of the energy
density of a massless, conformally coupled scalar field for
periodic boundary conditions in an octahedral Mobius corner.
The section is for constant radius r = 1 and the horizontal axes
are those of the equatorial plane of the stereographic projection
which is also depicted.
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FIG. 3. Contour plot of the vacuum average of the energy
density of a massless, conformally coupled scalar for Dirichlet
boundary conditions in a tetrahedral Mobius corner.
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a(y ) =e'"'

where q; =s; /v; and p; is the number of times the genera-
tor A; occurs in the word presentation of y. The final re-
lation translates into gq; EZ with 0 ~ q; ( 1.

Analyzing the cases yields the complex representations
s=(0,2, 1) or (0,1,2) for T and the real one (1,0,2) for 0.
[Equivalent statements are H, (E /T;Z) =Z3 and
H, (E /0;Z)=Z2. Also Ht(E /Y;Z)=0. ]

For T, one interpretation of (0,2, 1), in the covering
space picture, would be of 4 strings of two units of Aux
running from the origin to the four vertices and four
strings of unit flux to the four face centers (which are the
vertices of the counter tetrahedron). Such a flux distribu-
tion has no effect on the quantum mechanics on the cov-
ering space so that the Green's function, or propagator,
Go, in (8) is unaffected.

Nothing physical is altered by adding three Aux units
along any of the v=3 rotation axes and we have the
equivalent interpretation as four U(1) Aharonov-Bohm
Aux tubes along these axes all carrying either one unit or
two units of Aux corresponding, respectively, to the two
cases (0,2, 1) and (0,1,2).

Results analogous to (12), (13), and (14) hold with the
appropriate modifications of the individual cosmic-string
contributions.

Figure 4 shows a relief plot of ( T (r) ) for the (0,2, 1)
tetrahedron case.

The above discussion can be generalized by taking the
field to belong to a representation of some non-Abelian
internal symmetry group G. Then the a(y) will be ele-
ments of HomG(1, G) and we can use our knowledge of
the representations of I to construct this homomor-
phism. Since the vacuum averages involve a trace over
the internal indices, expressions such as (10) will contain
the G character y(y ).

A simple example would be &P in the fundamental rep-
resentation of 6=U(2) and a(y) the 2X2 irreducible
representation of 0 usually denoted by E. 6 has been
chosen to be U(2) rather than SU(2) to allow the use of
the irrep E, which is not unimodular.

A glance at the character tables shows that certain
classes of 0 will disappear from sums such as (10). The
result is the same as that for the unimodular representa-
tion EeE* in the T case. Thus, so far as certain vacuum
averages are concerned, the gravitational effect of a
singular string can be removed by a suitably contrived ar-
rangement of (non-Abelian) internal symmetry fluxes.

UII. OTHER FIELDS

For simplicity, we will discuss the periodic case first,
and indicate the modifications needed for the extended
group I" later.

A. The electromagnetic 6eM

For brevity we use the P=H t'E for—formalism em-
ployed elsewhere in a similar context. Using Cartesian
axes in the covering R space, the relevant vector Green's
function 60 is a 3X3 matrix and rotational invariance
now reads

Go(Rr, t; A~„Rr',t')=D(R)G0(r, t; Akr', t')D(R '),

where D (R ) is a spin-one representation of SO(3).
It is possible to extend this formalism to the spin-j case

and we will imagine this to be done simply by taking the
matrices to be (2j+ 1)X (2j+ 1) ones.

The projected Green's function on T X IR /I is

G(r, t;r', t')= g a(y)GO(r, t;yr', t')D(y}
rer

a(y )D(y )Go(y 'r, t; r', t'),
reI-

(18)

'J u J".

where the D(y ) factor arises from a rotation between a
local dreibein system (invariant under I ) and the globally
Cartesian one. [Cf. Banach and Dowker [29] equation
(A5).] The U(1) factors, a (y ), have been retained for gen-
erality.

The summation can again be written over the singulari-
ty axes, as in (13), but where Gz is this time given by

v~
—]

G„(r,t;r', t')= g a(A& )Go(r, t; APr', t')D(AP) .

(19)

FIG. 4. Relief plot of the vacuum average of the energy den-

sity of a massless, conformally coupled complex scalar with

twisted boundary conditions in a tetrahedral corner.

60+6& is the spin-j Green's function for a singularity
axis k in Cartesian coordinates and with respect to a glo-
bally Cartesian dreibein system.

In the electromagnetic spin-one case, the vacuum aver-

age of the energy density is proportional to TrG and we
see from (18) and (19) that it has the same form as in (14}.
The same statement, i.e., (14) with (15), holds for the
complete stress-energy tensor.
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B. The spin- —' Seld

There appears to be an obstruction to setting up a spi-
nor field on a fundamental domain 8. The reason is that
the image method for deriving the Green's function
around a single, straight cosmic string, i.e., in the cyclic
Z„case,does not work if v is even. This problem can be
circumvented for the straight string by artificially intro-
ducing a U(1) flux through the string so as to give an ex-
tra minus sign when the string is encircled. In the T, 0,
and Y cases this is not possible because of the relation,
A, A2 A3 =E, between the generators.

It is possible to put spinors around the general straight
cosmic string but the Green's function can only be writ-
ten as an image sum when the angle is 2m/v with v odd.
It is not clear whether spinors can be set up easily on C
without using images.

VIII. THE EXTENDED GROUPS

The extended groups are the complete symmetry
groups of the regular solids. In the Schonflies notation,
they are denoted by Td, Oz, and Yz.

They can be generated by the planes of symmetry, in
particular by reflections in three (concurrent) planes (e.g.,
Coxeter [8] Sec. 5.4) and, as mentioned before, the ele-
ments fall into two sets depending on whether they con-
tain an even or an odd number of reflections. Even, or
proper, elements can be written as y E I and odd, or im-

proper, elements as yo. , where cr is a reflection in a syrn-
metry plane of the regular solid.

The image sum (18) then becomes

G(r, t;r', t')= g a(y)[G0(r, t;yr', t')
yeI

+a(o )G0(r, t;yor', t')X]D(y),

(20)

where X(cr ) is the action on the field induced by cr

Actually, because a reflection mixes left and right, it is
necessary to extend the (2j+1)(2j+1) formalism to a
2(2j+1)2(2j+1) Dirac one. For neutral fields we can
write /=Pe CP' where C is the charge conjugation ma-
trix. The D(y) in (20) should thus be taken as a direct
sum representation:

D(y) =D(y)SD(y) =D(y)1
Choosing ctp=H iE correspond—s to setting C equal to
the unit matrix.

The reflection o, in the plane with normal t, can be
written as a rotation through m about the axis t combined
with the parity inversion c:r~—r, i.e., o,=R,(n )c F. or
arbitrary spin, we have the reflective action

[R,(w)PQ](r, t ) =X(o,}g(o,r, t },
where P is the usual parity action

(PP)(r, t }=1o'g( r, t }—,
o'' being the standard Pauli matrix. Thus the representa-
tion X(o,} is given by

X(o, ) =D[R,(n.)]cr' .

Explicitly for spin-one, in the Cartesian basis (C = 1),

The action on P =H = i E—corresponds to complex
conjugation together with a reversal in sign of the parallel
component while the sign of the normal part is un-
changed. Thus a(o ) should be set equal to —1 in order
to give the correct (perfect) boundary conditions in 8' for
the electromagnetic field.

The reflection term in G(r, t;r', t') disappears trivially
from Trg. Therefore the vacuum average of the elec-
tromagnetic stress tensor is the same in the periodic and
reflective cases.

For the cyclic wedge this agrees with known, and old
results (e.g. , Deutschand Candelas [30]). In this simple
geometry the result also holds for the conformally cou-
pled scalar field because the contribution to the average
coming from single reflection terms vanishes. This also
agrees with old results. There is, however, a difference in
the polyhedral cases for the scalar field.

For the octahedron and icosahedron, the extended
groups can be composed as I"=I UI ~. The inversion ~

can be expressed in terms of the generating reflections
0.

&, e2, o 3, in the sides of a fundamental triangle, as

c=(o,c,o,)"",
where h is the Coxeter-Killing number connected with
the order of the group by ~

I"
~

=h (h +2).
In general, h is the period of the product of the

reflection generators of a finite reflection group. When
h/2 is even, (o,ozcr3)" is a half-turn. The generators
A; introduced earlier are relaxed to the o; by A

&
=cr3o 2,

etc.
In the cases Oz and Yz, (20) can be replaced by

G(r, t;r', t')= g a(y)[GD(r, t;yr', t')D(y)@1+G0(r, t; yr', t')D(y)—o ] .
yeI

(21)

Incidentally, a light ray sent into a tetrahedral corner
wi11 emerge, after six reflections, in a different direction
whereas, in the octahedral and icosahedral cases, it will
come out simply reversed (and translated).

IX. CONCLUSION AND COMMENTS

The method of images has been used to set up nonin-
teracting field theories in Mobius corners. The physical
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system corresponds to a combination of three concurrent
ideal cosmic strings. Some Casimir effects have been cal-
culated and, although somewhat academic, the expres-
sions are, we feel, sufticiently attractive to warrant expo-
sure.

We still have to address the questions raised in Sec. IV,
particularly the product of a source for the metric.

In the cyclic case C„onecan introduce m-fold cover-
ings of the sphere with a lune of angle 2am /n as funda-
mental domain (m EZ). Letting m tend to infinity one
gets an infinitely sheeted covering (cf. Sommerfeld [31])
and a wedge of arbitrary angle can be treated.

For the other cases it is only possible to find a finite
number of finitely sheeted coverings (Schwarz [9]). It is

not clear whether this means that one cannot find a way
of treating an arbitrary solid angle deficit. The corre-
sponding conformal transformation in terms of hyper-
geometric functions is standard, but the problem is the
construction of the Green's function on the multisheeted
Riemann surface. Unless this can be done, and this is an
open problem, there is little point in analyzing the possi-
ble observational significance of the metric (6), except as
a mathematical exercise. Serebryanyi [32] gives some in-

teresting generalities on the converging space method.
At a calculational level the group theoretical analysis

of the mode problem and the Clebsch-Gordan series is in-
teresting and has been looked at in some depth by the
chemists, e.g. , Damhus, Harnung, and SchafFer [33].
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