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Bremsstrahlung anti Fulling-Davies-Unruh thermal bath
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The bremsstrahlung effect associated with a point charge with constant proper acceleration is dis-
cussed from the point of view of the frame coaccelerating with the charge. In this frame the charge is
immersed in the so-called Fulling-Davies-Unruh thermal bath. It is shown that the emission of a photon
from the source as described by the inertial observer can be interpreted in the accelerated frame as either
the emission or the absorption of a zero-energy Rindler photon in the thermal bath. It is shown by expli-
cit calculations that the emission rate of photons with fixed transverse momentum in the inertial frame
agrees with the combined rate of emission and absorption of zero-energy Rindler photons with the same
transverse momentum in the accelerated frame. A discussion on the issue of the detectability of these
zero-energy Rindler particles is provided.

PACS number(s): 04.40.+c, 03.70.+k, 04.60.+n, 12.20.Ds

I. INTRODUCTION

At present it is widely believed that the study of quan-
tum field theory in curved spacetime can provide some
insight into quantum gravity effects, while the full theory
is not available. Despite the fact that this semiclassical
theory of gravity is not appropriate to be applied in the
Planck scale, it has already provided some enlightening
results. Undoubtedly, one of the most important devel-
opments in this field was the discovery by Hawking [1]
that quantum effects can lead to thermal evaporation of
black holes. This nontrivial effect was soon realized to be
closely associated with the existence of an event horizon
in Schwarzschild spacetime. Among all the different
background spacetimes in which quantum field theories
have been analyzed, the Rindler wedge associated with
accelerated observers in Minkowski spacetime has been
given special attention. This is so because in addition to
possessing a horizon the spacetime is also Hat. In fact it
is well known [2] that a detector accelerated in the stan-
dard Minkowski vacuum perceives a thermal bath of par-
ticles with temperature directly proportional to its proper
acceleration. This effect has already been the subject of
comprehensive discussions (see, e.g., [3]). Specific calcu-
lations of emission rates can also be found in the recent
literature [4].

In this paper, we discuss in detail some results previ-
ously announced [5] concerning the radiation emitted by
accelerated classical charges (i.e., the bremsstrahlung
effect), as described in the source's rest frame. In order to
make a meaningful comparison of the results in the
source's rest frame with those obtained in the inertial
frame, we must take into account the Fulling-Davies-
Unruh (FDU) thermal bath. (See Ref. [6] for a related
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The Rindler wedge can be described by the line ele-
ment (see, e.g. , Ref. [7])

ds =e '&(d r dg ) dx —dy— — (2.1)

The standard line element ds =dt —dx —dy —dz of
Minkowski spacetime is obtained by letting

ca& cap
t = sinhav. , z = cosha~ . (2.2)

Hence, the metric (2.1) covers the portion of Minkowski
spacetime with z ) gati (the Rindler wedge). The boundary
planes z+t =0 (g=+ co ) constitute the Killing horizon
of 0/Bw, i.e., the null hypersurface which is orthogonal to
the Killing field 8/B~.

The world line with constant g, x, and y has a constant
proper acceleration ae '~. Thus, a point charge q placed
at g=x =y =0 has a constant acceleration a. The corre-
sponding conserved current is

(2.3)

Note that ~ coincides with the proper time of the charge.

work computing the response rate of a classical source in
two different frames of reference in de Sitter spacetime. )
The problem of detectability of the relevant Rindler
modes, namely, the zero-energy Rindler particles, is also
addressed.

The paper is organized as follows. In Sec. II we discuss
the appropriate classical current to be considered in this
problem. Section III is devoted to the quantization of the
Maxwell field in the Rindler wedge. In Sec. IV we com-
pute the combined rate of absorption and emission of
zero-energy Rindler photons in the thermal bath by the
charged source. In Sec. V we compare the results ob-
tained in Sec. IV with the usual bremsstrahlung emission
of photons as measured in the inertial frame. Finally, in
Sec. VI we summarize the results. We also discuss here
the issue of the detectability of zero-energy Rindler pho-
tons. We will use natural units kz =c =A'=1 throughout
this paper.

II. THE CHARGED SOURCE
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We will need to evaluate the response rate of this
current in the FDU thermal bath in the Rindler frame.
The response will consist of emission and absorption of
photons to and from the FDU thermal bath. It is clear
that the rate of spontaneous emission is zero because the
current (2.3) is static. However, it does not imply that
the rates of induced emission and absorption vanish as
well. This is because these rates are proportional to the
number of photons present in the thermal bath which
couple to the current (2.3). Since the number of zero-

energy (Rindler) photons in the (FDU) thermal bath,
which are the relevant ones in this case, is infinite, the
rates of induced emission and absorption are indejfnire.
Hence one needs to "regularize" the current (2.3) to
make both its strength of coupling to the field and the
relevant photon number finite. (The "regulator" will be
removed in the end. )

Let us discuss our "regularization" procedure in two
steps. First we modify (2.3) by considering a charge oscil-
lating with frequency E,

j'=&2& cosEr5(g)5(x )5(y ), j &=j "=j»=0, (2.4)

and take the limit E~O in the end. The factor ~2 ap-
pears because of the following reason: Note first that the
radiation rate, in first order of perturbation, is propor-
tional to the square of the charge. When the oscillation is
slow, i.e., when E ((a,k~, the charge is expected to in-
teract with the field as if it were a constant charge at each

(We assume continuity of the rate in the limit E~0.)
Hence, the ~ average of the square of the charge must be
set equal to q, and therefore, the factor v 2 is necessary.

Now, the current (2.4) does not satisfy electric charge
conservation. For this reason we replace this current by
an oscillating dipole arrangement described by

j '=&2q cos(Er)[5(g) —e ' 5(g L)]5(x)5(y—), (2.5)

j I=~2qE sin(Er)e '&e(g)e(L —g)5(x)5(y), (2.6)

(2.7)

III. QUANTIZATION OF THE MAXWELL
FIELD IN THE RINDLER WEDGE

We will analyze the interaction of the source
(2.5)—(2.7) with the Maxwell field in the Rindler wedge.
For this purpose we need to quantize the electromagnetic
field with the positive-frequency modes defined with
respect to the Rindler time ~. We start with the standard
Lang ran gian

X=—v' —g FF"—'+ (7"2 )
1 1

4 "" 2a
(3.1}

The corresponding field equations in the Feynman gauge
(a= 1) are

V„V'"A„=O . (3.2)

The presence of (}„a„,and i}» as Killing fields makes it
sufficient to look for solutions of (3.2) of the form

(A, ro, k„k, ) , (A, , cu, k„,k ) i(k„x+k» roe)—
P J p 5 (3.3)

where A, labels the mode polarization. The physical
modes are defined as those which are not pure gauge (the
gradient of a scalar) and which satisfy the Lorenz condi-
tion

V'„A"=0, (3.4)

in addition to (3.2).
Next, we expand the electromagnetic quantum field in

terms of annihilation and creation operators as

We will take the limit E~O and L~+ Oo in the end.
Neither the extra charge introduced at (=L in the dipole
(2.5} nor the current fiow j ~ between the two charges will

contribute to the final results. They are added here only
to keep the condition V"j„=O valid and make the com-

putation gauge independent even before taking the limit
E~0.

4
&„(x')=f dk„ f dk» f dc@ g {a(k k k )Az' ' "' » (x")+H c ], . .

A, =1
(3.5)

(A, , a), k„,k )
where A„' ' " ' (x") are solutions of (3.2) of the form
given in (3.3). These modes are conveniently expressed in
terms of the solutions of the scalar field equation HQ=0,
or, equivalently,

2

e
ap

a2

Qf2

8 8 /=0
Bx Bp

(3.6)

(see Ref. [8]). For each set of quantum numbers the solu-
tion which does not diverge for g'~+ oo is given (up to
an arbitrary multiplicative constant) by

(cg, k„,k )

i cola

k J g Ek x+ Ik g Ec07
cay e x (3.7)

where I(.„(z) is the Bessel function of imaginary argument

[9], and k) =+k„+k . (We will not treat the case

k) =0 because its measure is zero in the solution space. )
(a), k„,k )

The solutions P
' " ' go to zero very rapidly for

g~+ oo.
One can choose a set of independent normal modes as

(3.8)

(3.9)

(&„' ' "' ' =C ' ' "' ' (0,0,k„g,k P),
(A,, co, k„,k )

where A„=(A„A&,A„, A ), C ' ' " » are normaliza-
(co, „,k ) (I, co, k„,k ) .

tion constants, and P—=P
' "' ' . The mode A

' ' '
isP

clearly a solution of Eq. (3.2) because the equations for
and A become the massless scalar field equation if
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A, = A
&
=0. (This is because there are no nonzero

Christoffel symbols with indices x or y. ) This mode also
satisfies the Lorenz condition (3.4}. Thus it is a physical

(II,a), k, k )
mode. Next, note that the mode A„' ' "' ' is propor-
tional to e„„V"P where e„„ is the antisymmetric tensor
e„=—e„=1 {in the standard Minkowski coordinate sys-
tem) with all other components being zero. (Note that
e,&= e&—,=e '~ in Rindler coordinates. ) Since

(II,co, k„,k )

V V (e„„V"(t))=e„„V"VV it), the mode A„' ' "' '
satisfies Eq. (3.2). It also satisfies the Lorenz condition
(3.4) because V"(e „V"it))=e „V"V"(t)=0. Hence it is also

(G, , k„,k,
') .

a physical mode. The mode A„' ' "' ' is proportional
to V„P and therefore is a pure gauge mode. [It is a solu-
tion of equation (3.2) since V V V {{}=V V V /=0. ] Fi-

(I.. .k„,k )

nally the mode A„' ' "' ' satisfies Eq. (3.2) because the
x and y components are proportional to ()I) while the r and

g components are zero. But it does not satisfy the Lorenz
condition.

The normalization constants C" can be determined
from the canonical commutation relations of the fields by
requiring suitable commutation relations for the opera-
tors a(;) and a (;). [Here the label i represents
(A, , cu, k„,k~).] In this context, it is convenient to intro-
duce the generalized Klein-Gordon inner product

(A" A'j')—: dX W"[A",A'j'] (3.12)P

between any two modes A" and A '~'. The integration in
(3.12) is performed on some Cauchy surface X for the
Rindler wedge, e.g., any hypersurface v.=const, and

for A, =I or II, with A,
' being any polarization other than

In other words, the physical modes are orthogonal to
the pure gauge mode 6 and to the Lorenz-condition-
violating mode L and to each other.

Now, from the canonical commutation relations one
finds

[(A" A), (A, A'j')]=(A" A' ')

This equation and Eq. (3.5) imply that

(A"' A'")[a a' ](A"' A(j'}=(A"' A'j')

(3.16}

(3.17)

where we have used the fact that positive- and negative-
frequency modes are orthogonal to each other. The
schematic summation over l represents integrations over
co, k, and k„, as well as the summation over A, . Next,
define the matrix M' ' ' by

M(i)(j) —
( A (i) A (j)

) (3.18)

Then Eq. (3.17}implies (see Ref. [11])

—1

[a(;) a(,)]=(M )()(j)

where (M ')(, )( )
is defined by

(3.19)

(M ') M'"'j'=5~~'5(co —a)')5(k„—k„')5(ky —ky') .

Using the inner product (3.12) for the normal modes
(3.8)—(3.11), we can verify the orthogonality properties

» g I

(3.15)

W&[A", A(&)]—= ( A (i)» (j)Pv A (j) (i)Pv»
)

.(3 13)V V (3.20)

~(()Pv —+ g [VvA(i)P V@A(i)v gzvV A(i)a] (3.14}

It can be seen [10] that the field equations ensure conser-
vation of current (3.13), and thus the inner product (3.12)
is independent of the choice of the Cauchy surface X.

with m"""—=BX/8 A
~

. The n"""are calculated inP V A()
the Feynman gauge to be

Since the physical modes are orthogonal to the other
modes [see Eq. (3.15)], it is sufficient to know the restric-
tion of the matrix M"'"' to the physical subspace (i.e., to
A, =I,II) in order to derive the commutators among the
physical annihilation and creation operators according to
Eq. (3.19). Thus, by requiring the commutators of an-

nihilation and creation operators associated with the
physical modes (i.e., with A, and A,

' being I or II) to be

[a(), k k ),a, „,„,, ]=5&),.5(co—co')5(k„—k„' )5(k» —
k& ), (3.21)

we find the normalization condition

(A
' ' "' ', A

' ' "' ' )=5 "5(co—ro')5(k„—k„')5(k —k') . (3.22}

(II, co, k, k )
We will use Eq. (3.22) to determine the normalization constant C ' ' "' ' . We do not need any other normalization
constants because the current (2.5)—(2.7) will not excite the physical mode I [see Eq. (3.8)] nor the unphysical modes G
or L via the appropriate interaction Lagrangian

X.;„,=&—g j"A„.
Using (3.22) for A. =A.'=ll, we obtain

~C
' ' "' '

~
I(co,co')=k) 5(co—a)')5(k„—k„')5(ky —ky'),

where

(3.23)

(3.24)

I( coa'))= i f dgdx dy (t
' "'—' 8,()(

X
(3.25}
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(a), k„,k ) . (co,k„,k ) .
and P

' " ' is defined in (3.7). [We have used the field equation for P
' "' ' in deriving (3.24}.] We can express (3.25)

as

I(co,co') =4M( co+co')e'" "'S(co,co')5(k„—k„')5(k» —k„'),

where

(3.26)

kq kj
S(coco') = dgK;„z, e' K; &,

e'
00 a a

(3.27)

We have used the fact that K; (x) is real for real a if x is real and positive. In order to compute (3.27), let us define

k~
S„(co,co') =f dgK, „&,

ag +iu'/a a
(3.28)

which can be shown to satisfy

(co —co' )Sq(co, co')= K; q,
— e'& B(K;„»g e'~

a a g= —A

(3.29)

by using

kI
e

—2ag +2 k2 g e'& =0
~~2

I i a&la (3.30}

(II,co, k„,ky )

2&k,
sinh(n co/a )

(3.35)

Next, applying the well-known formula for the Bessel
function J,(z ) for small z and the definition of K„(z) [9],
one finds

in.(z/2)'
2 sinhma I'(1+ia)

(z /2)
I'(1 —ia) (z«1) .

(3.31)

It is straightforward to evaluate S(co,co') as the & ~+ 00

limit of S& (co, co') by using this formula and the relation

lim
sin Ax =m5(x) .

g —++oo x

We obtain

(3.32)

S(co,co') = . 5(co—co') .
2co sinh mo/a

(3.33)

As a result, we can use (3.24), (3.26), and (3.33) to find the
absolute value of the normalization constant:

(II, ru, k, )

i

2n kI
sinh(n co/a )

1/2

(3.34)

Hence, the physical mode of interest (3.9}can be written
up to a phase as

IV. EMISSION AND ABSORPTION RATES
OF ZERO-ENERGY RINDLER PHOTONS

a(I „,k k ) lo&a =0 (4.1)

foI all (A, ,co, k„,k ). In lowest order in perturbation
theory this amplitude is given by

A(~ k k ) =I( ( II co,k, k» ~

Xi fd x& gj "(x—)Aq( )x~0& I,((4.2)

where

"» &II =a(Ir, ,k„,k, ) ~0&I( ~ (4.3)

It is straightforward to compute A( k k )
for thex' y

current (2.5)—(2.7) using (3.21} and (3.5) with (3.35). We
obtain

We first use the interaction Lagrangian (3.23) to deter-
mine, at the tree level, the amplitude A(' „k ) of emis-

x' y

sion of a Rindler photon, with quantum numbers
(II,co, k„,k»), from the charge into the Rindler vacuum
state ~0&s.

Recall that the Rindler vacuum is defined by

T 1/2

A( k k )=lq 5(E co} K~@«—(kI/a) e' Kz», (kIe' /a) —
k
— Kz«(z)x' y 277 a

a I a ak k /z &
I a

(4.4)

where derivatives with respect to the argument are denoted by primes.
We are interested in the differential probability of emission per unit time and transverse momentum squared, for fixed

transverse momentum (k„,k» },given by
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dWO (co, k„,k )=lA~'„, ), ), )I dao/T, (4.5)

where T is the length of the time interval during which the interaction remains turned on. At this point we take the
limit L ~+ ao in (4.4) to eliminate the influence of the extra charge; thus, we obtain

q
2 2 2

dWO (ci) k k»)=
3 slnh(wE/0 ) K gg (kj /tt )

E + dz
K;E», (z) 5(E —co)des, (4.6)4m'a a/ g /g z

P(~ ~ )=f dWO (to k» k») z» +1 . (4.9)

The two terms inside the parentheses are associated with
induced and spontaneous emissions, respectively.
Evaluating the integral (4.9} and taking the limit E~O
(thus removing the "regulator"} we obtain

2

P~), ), )dk„dk = ~K, (kj /a ) ~ dk„dk» .
8m'a

(4.10)

Analogously, the total absorption rate of photons with
fixed (k„,k ) is

P()b' „)=f dW() '(co, k», k»)

On unitarity grounds we have

where we have let 5(0)=2m T, following the standard in-
terpretation [12].

Now, it is well known that the Minkowski vacuum de-
scribed in Rindler coordinates is not the Rindler vacuum,
but a thermal state characterized by the temperature
P '=a/(2n. ), i.e., an incoherent mixture of states with
the weight of a state containing n photons with the ener-

gy co being

p„(~)=Z 'e t'" (4.7)

where Z is a normalization factor. The probability d W„'
of emission of an extra photon into an n-photon state is
related to the probability dWO™of emission of a photon
into the vacuum by d W„' = (n + 1 }dWo . Therefore, the
total differential rate (per unit transverse momentum
squared} of emission of photons with given transverse
momentum (k„,k» ) into the thermal bath is

P(), ), )
=f gp„(t0}dW„' (to, k„,k»), (4.8)

n

which can be written as

In the next section, we compute the emission rate of pho-
tons from an accelerated charge in the inertial frame, and
compare it with the results obtained here.

V. BREMSSTRAHLUNG EFFECT
IN THE INERTIAL FRAME

In this section, we study the bremsstrahlung efFect, i.e.,
the emission of photons from an accelerated charge, as
seen in the inertial frame. In particular we compute the
emission rate of photons with fixed transverse momen-
tum. (Some related results including the energy-
momentum spectrum of radiation have been obtained us-
ing classical electrodynamics by Nikishov and Ritus
[13].) We find that this rate is equal to the combined rate
of emission and absorption in the FDU thermal bath ob-
tained in the preceding section. The fact that the trans-
verse momentum (k„,k ) is invariant under boosts in the
z direction allows us to compare the emission and absorp-
tion rates corresponding to Minkowski and Rindler pho-
tons with the same transverse momentum. We will adopt
the notation of Itzykson and Zuber [12].

The amplitude of emission of a photon with momen-
turn k and polarization k by the accelerated charge in the
Minkowski vacuum is

&"")=M(k,a~i fd4x j"(x)A„(x)IO&~, (5.1)

thermal bath that prevents P~I, I, ] and P~I,
'

& ~
from van-x' y X' y

ishing. In the absence of the thermal bath, the emission
and absorption rates would vanish.

Next, we note that since there ig no interference be-
tween the processes of emission and absorption of
Rindler photons at the tree level, the total response rate
will be given by adding (4.10) and (4.13); thus we find

2

"P~),' & )dk„dk»= ~K, (kj/a)) dk„dk» . (4.14)(k„,k ) x y

dWO '(co, k„,k» }=dWO (co, k„,k»), (4.12)
where the subscript M indicates Minkowski states. The
current (2.3) can be written in Minkowski coordinates as

and one can evaluate (4.11) using (4.6). We obtain, in the
limit E~0, j '=

aqz (5g) (5x)5(y),

(5.2)
P~),

'
), )dk„dk = ~K)(k~/a)~ dk„dk

8m'a
(4.13) j '= qat 5( g )5(x )5(y ),

The reason for the equahty of Pta, a ) and P(a', k ) is thatx' y x' y
the spontaneous emission becomes negligible in compar-
ison to the induced emission as E approaches zero. It is
also interesting to note that it is the existence of an
infinite number of zero-energy Rindler photons in the

5(z )/t +a )—
a&t'+a '

Using for A „(x) the standard Fourier expansion,

(5.3)
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A (x)=fp d k
" 2(2~)'k,

X g [a' '(k}e„''(k)e ' +H. c.], (5.4}

with ko =—Qk, +k ~, we obtain, for (5.1),

A' "'=i f d x j"(x)e' '(k)e'"' (5.5)

( —1,0,0, 1),(p)p—
2

(5.6)

where e„' ' are polarization vectors that can be chosen as

1 (1,0,0, 1) .
2

(5.9)

2
inptot ~ +

gk (Ak) 2 T,{k„,k )
A, =1

(5.10}

Here, the Cartesian frame is chosen such that
k"=( ~k~, o, o, ~k ~ ) (where the first component is the time
component}. Next, we can express the total rate of emis-
sion of photons with fixed transverse momentum (k„,k ),
divided by the total proper time T of the accelerated
charge during which the interaction remains turned on,
as

e'""=(0,1,0,0),
e")~=(0,0, 1,O),

(5.7)

(5.8)

where dk, —:dk /[(2m )32ko], and the sum runs only over

the physical polarizations A, =1,2. Using (5.5) in (5.10),
one has

2
inP&o& dk d4x d4x ~ e(x)(k)e(A)(k) JP(x )J v(x~)eire(t t') ——ik (x—x')

(k„,k ) z p v
A, =1

Now we note the identity

2
g(&)g(~) — p(p)p(3) g(3)g(p)
Ep Ev 6p 6v 6p 6v Qpv

A, =1

(5.11}

(5.12)

where ri„„is the metric of Minkowski spacetime. Because of current conservation Bp"=0 and due to the fact that e„(3)

is proportional to k„, the first two terms in (5.12) do not contribute when one substitutes it in (5.11). Hence,

'"P'" = —— dk d x d xj'"(x)j (x')e'+'{k„,k ) T z (5.13)

Next, substituting the current (5.2) in this formula, we obtain

kpf '"dk, f '"dr f + dr" chos(ra' r"}exp— i (co—sham' cosha—r")+i (sinhar' —sinhar")
T —oo —ao 00 a a

(5.14)

where we have made the transformation of coordinate t =a sinha~. This integral is infinite due to the fact that in-
teraction is turned on for an infinite amount of time. To obtain the rate per unit time it is necessary to factor out the to-
tal proper time T= f + „"dr, where r= (r'+r")/2. To this end, we first note that the momentum of the emitted photon
is boosted due to the nonzero velocity of the source, which is ~ dependent. Hence, it is expected that the integrand can
be made v independent by boosting back the momentum variables. Motivated by this physical picture, we introduce
new momentum variables as

k,' =k, cosha r—kosinha r,
k p kpcosha ~—k, sinha 7

(5.15)

(5.16)

[Equation (5.16) follows from (5.15) and the definition ko =—Qk,' +k) .] Then we indeed find that the integrand be-
comes ~ independent and

'"P~'),' ), )
= q f —dk,'f da coshao exp

2lkp a 0
sinh

a
(5.17}

where dk,'—=dk,'/[(2m) 2ko] and o =r' r" To evalua—te t.his integral we cut ofF the contribution from large ~a ~

smoothly by letting cr ~o +2i e (where e is an infinitesimal positive number) in the exponent, and then taking the limit
e~o in the end. (Otherwise this integral would be indefinite. ) With this change, the exponential in (5.17) becomes

exp
2lkp ag

sinh ~exp
a 2

an j2 e
—an/2 (5.18)
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+" —i 'Pdxx -'exp " x—
0 2 x

2Pv i vn. /2' (P

Then by introducing change of variables as

k0+ k,'
s = ' 'e-+' ",

k~

and, using the formula [9]

(5.19)

Rindler vacuum. Roughly speaking, this is because a
state with small Rindler energy is concentrated near the
horizon. (Thus, one cannot utilize the nonzero transverse
momentum for detection unless one goes arbitrarily close
to the horizon. ) To see this, we consider a wave packet
~P) given by

~P) = f dcodk„dk c(co,k„,k )a(„k ), ) ~0)~, (6.1)

where

where Im(M )0, Im(p ((c) (0, we obtain

(5.20) fda)dk dk ~(c(co k k»)~ 1 (6.2)

2

P(k k )dk dk» 3 IKi(ki/a)I dk dk (521)
z P 4~ a

By comparing this equation and Eq. (4.14) we find
"P~k' k ~

='"P~k'
k ~. Thus, we have established by expli-

cit calculations that the rate of photon emission from a
uniformly accelerated charge can be reproduced by sum-
ming the rates of emission and absorption of zero-energy
Rindler photons in the FDU thermal bath.

VI. DISCUSSIONS

In this paper we studied the QED bremsstrahlung rate
from a classical charge with a constant proper accelera-
tion at the tree level from the point of view of an observer
coaccelerating with the charge. We showed by explicit
calculations that it is reproduced as the sum of emission
and absorption rates of zero-energy Rindler photons in
the Fulling-Davies-Unruh thermal bath. This result is
consistent with the observation that each photon emitted
in the inertial frame must correspond in the accelerated
frame to either the einission or the absorption of a
Rindler photon [3] since both observers must agree con-
cerning changes in the state of the quantum field.

Finally, we address the issue of the detectability of
these zero-energy Rindler photons. One might be tempt-
ed to conclude immediately that they could not be detect-
ed by a Rindler observer, i.e., an accelerated observer
whose horizon is the same as that of the charged source,
because their energy is zero. However, it might also ap-
pear that one could use their nonzero transverse momen-
tum to detect them.

Let us first ask whether or not a Rindler observer sees
any difference in the thermal bath due to the emission
and absorption of these photons. The answer is negative.
To see this, note that the source not only emits and ab-
sorbs these extra photons at the same rate, but also leaves
the thermal bath undisrupted, since the transition rate
from an n-photon state to an (n+1)-photon state and
that of the inverse process become equal in the limit
E~0. That is, the source is in thermal equilibrium with
the quantum field. In addition, since the expected num-
ber of photons in a mode with energy E is I/(e~ —1),
which diverges as E~O, it becomes increasingly difBcult
to distinguish an extra photon from those already in the
thermal bath as E approaches zero.

In fact we will find that zero-energy Rindler photons
are not detectable by a Rindler observer even in the

The corresponding one-particle wave function is

)t(0~A„~(())= f dcodk„dk c(a), k„,k )A„' ' "' '
(6.3)

Now, consider a wave packet with small average Rindler
energy E and bE-E and with the support of c(co,k„,k» )

bounded away from k~ =0. Then the maximum value of

fdk„dk»c(co, k„,k ) (as a function of co) will be of order
I /&E. Now, for a fixed value of g, the mode function

(II,GQ, Jc„,k )
A „' ' "' ' goes to zero like &E because of the normali-
zation factor sinh' (n.co/a) in (3.35). Hence we find

z (0~ A„~ ))()-E. Thus the one-particle wave function
goes to zero away from the horizon for E~O (Thi.s is
true also for derivatives of the one-particle wave func-
tion. ) Another measure of probability distribution in
space is given by the expectation value of the energy den-
sity:T, : which is normal ordered using the particle no-
tion in Rindler spacetime. We find that the quantity
( P ~:T;:~ P ) will concentrate more and more near the
horizon as E approaches zero. Thus, although the state
has nonzero transverse momentum, one cannot use it to
detect the photon as long as one stays away from the hor-
izon.

Note, however, that wave packets which approximate
zero-energy Rindler photons are all detectable. Hence it
is helpful to clarify in what sense these photons, defined
as the "limit" of wave packets, are not detectable. In the
spirit of the standard method of Cauchy completion we
identify a zero-energy Rindler photon with a sequence of
wave packets [ ~P;) ];",with the property

lim fdgdx dy e '~(P;~:T',:)(P;)=0. (6.4)
f ~ (X)

Next, we define the detectability of a sequence of wave
packets. We specialize to the cases where particles are
defined through a timelike Killing field [14] as is the case
for Minkowski as well as Rindler particles. Consider a
localized detector D and a device R which carries it. We
require that the proper acceleration a of R integrated
over the proper time be less than a fixed value F, which
cannot be varied once the device R is given. (For exam-

ple, the device R can be a rocket with a finite amount of
fuel represented by the quantity I'.) We do not need to
put any restriction on the detector D other than that its
detection probability be proportional to the square of
one-particle wave function of the state where the detector
D is located. The detector is allowed to be turned on only
when it is following an orbit of the Killing field so that
the particle concept under consideration agrees with the
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detector response. (We assume that the whole detector
can approximately follow the orbits of the Killing field

[3].) We say that a sequence of a wave packets [ ~P; ) I,".

is detectable if there exists a detector D and a device R as
above and a sequence of trajectories for the detector, each
one compatible with the restrictions placed on R, such
that the greatest lower bound of the corresponding se-
quence of probabilities P;, for detecting the wave packet
~P; ), is nonzero. This definition of detectability is natu-
ral in the sense that ordinary (normalizable) Minkowski
and Rindler photons turn out to be detectable while
zero-energy Minkowski photons do not. (In this context,
an ordinary wave packet state will be represented by the
sequence whose elements are all identical to this packet. )

We find that zero-energy Rindler photons are not
detectable according to this definition. This is because
the motion needed for the detection along the Killing
vector approaches the horizon as the energy of the wave
packet goes to zero [15]. This requires the proper ac-
celeration of the device R to be increased without bound.
Hence the proper time of detection must approach zero
due to the restriction on the device R as i~+00.

Hence, the greatest lower bound of [P; I,+", is zero. {We
are using the assumption that the probability per unit
proper time does not diverge in this case as the limit
E~0 is taken. This assumption can be shown to be valid
for some model detectors. )

Boulware [16] has shown in classical electrodynamics
that all electromagnetic radiation emitted by an ac-
celerated charge goes into a region of spacetime inacces-
sible to the coaccelerating observers. His analysis is in
agreement with our observation here that the emission
and absorption of zero-energy Rindler photons by the
charge cannot be detected by a coaccelerating observer
inside the Rindler wedge.
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