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End point of Hawking radiation
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The formation and semiclassical evaporation of two-dimensional black holes is studied in an exactly
solvable model. Above a certain threshold energy flux, collapsing matter forms a singularity inside an
apparent horizon. As the black hole evaporates the apparent horizon recedes and meets the singularity
in a Snite proper time. The singularity emerges naked, and future evolution of the geometry requires
boundary conditions to be imposed there. There is a natural choice of boundary conditions which
matches the evaporated black hole solution onto the linear dilaton vacuum. Below the threshold energy
flux no horizon forms and boundary conditions can be imposed where infalling matter is reflected from a
timelike boundary. All information is recovered at spatial inanity in this case.

PACS number(s): 04.60.+n, 97.60.Lf

I. INTRODUCTION

Recent months have seen a lot of activity in the study
of quantum effects on black holes. For this purpose, Cal-
lan, Giddings, Harvey, and Strominger (CGHS) [1] pro-
posed a simple two-dimensional model involving gravity
coupled to a dilaton and conformal matter fields. The
model has classical solutions which describe the forma-
tion of black holes and enables a semiclassical treatment
of Hawking radiation and its back reaction on the
geometry. This has been developed further by a number
of authors [2—10]. The semiclassical equations of the
CGHS model have not been solved in closed form, but re-
cently Bilal and Callan [9] and de Alwis [10] have shown
how the original model can be modified to allow explicit
construction of exact quantum black hole solutions. As-
tutely chosen field redefinitions allow the modified theory
to be written as a Liouville model, and the semiclassical
equations are straightforwardly solved in that form.

In this paper we will study a variation on this theme.
Rather than modifying the dilaton potential to achieve a
solvable field theory, as was done in [8—10], we instead
change the kinetic term. This change simplifies some-
what the field redefinitions which take the model into a
Liouwlle theory and also allows us to identify the vacu-
um configuration in a straightforward fashion. While the
emphasis in [8—10] was on achieving consistent confor-
mal field theories, our goal here is limited to modifying
the CGHS equations to make them exactly solvable and
then to study the physics of the resulting solutions. The
complete quantization of this system is outside the scope
of this paper.

The classical action of the original CGHS model is
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In addition to the equations of motion of p, P, and f;, we
have to impose two constraints corresponding to the
equations of motion of the vanishing metric components:

O=e '&(4a~-a y 2a', y—)+ ,' y a,-f,.a,f, . (1.3)

The classical action has a useful symmetry

5$=5p=ee 4, (1.4)

where e is infinitesimal. The associated conserved
current is

J'=any —p)

and the conservation equation is

a„a~(y —p) =o . (1.6)

This fact allows one to choose a special conforrnal gauge
in which p=P. It turns out to be convenient to preserve
this simple form of the current at the one-loop level.
This enables us to use the special conformal gauge when
solving the semiclassical equations. We can always add
covariant terms to the definition of our model for this
purpose.
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S=Sc— J d x& g—R R+2$R
Sm p2

=So ——Jd x[a+pa p+$a+a p], (1.7)

where K=X/12 and the constraints become

Let us now consider one-loop quantum corrections.
The matter fields contribute the familiar conformal
anomaly term, and we also add a local and covariant
term to preserve the simple form of the current (1.5}.'
One obtains the effective action

These solutions exhibit reasonable physical behavior for
all values of X, and in particular the rate of Hawking eva-
poration is always proportional to N.

In this paper we will not attempt to resolve all the is-
sues involved in the quantization of these models, but will
focus on exact semiclassical solutions and their physical
properties. We will assume that K takes a positive value
in the following analysis. Our results therefore apply
both to the N )24 conformal model (1.7) [with
«=(N —24)/12] and to the Strominger-type theory with
« =N/12.

N
0= e &——(4a~ a~/ —2g((})+—,

' g a~f, a~f,
i=1

K(a~ a~ a~+ ry ) . (1.8)

S „„,= fd x[a+(p —P)a (p —P)] . (1.9}

Adding this term does not violate the symmetry (1.4). In
fact, the variation of S h„, vanishes for all solutions of
the semiclassical equations of motion obtained from (1.7).
This is as it should be since the role of the ghosts should
not be to modify equations of motion, but rather to im-
plement the gauge fixing of the path integral over off-shell
geometries. Unfortunately, the theory is no longer a con-
formal field theory with vanishing central charge if this
prescription is used, but exact solutions can still be found.

The functions tz(x*) reflect the nonlocal nature of the
anomaly and are determined by boundary conditions [1].
The contribution to the constraints from our extra term
in (1.7) vanishes on classical solutions, and so it will not
affect the rate of Hawking emission from black holes.

It remains to include the one-loop contribution from
the reparametrization ghosts, dilaton, and conformal
model. If the number of matter fields in the theory is
large, this contribution will be insignificant compared
with (1.7), which scales with N. Therefore our model, as
it stands, at the very least provides a good description of
large-N black holes. The most straightforward way to in-
clude the ghosts, while preserving the symmetry (1.4), is
to shift the value of « in (1.7) to (N —24)/12. This has
the desirable feature that it turns the theory into a con-
formal field theory with vanishing total central charge
and thus makes it one-loop finite [8-10]. However, the
flux of Hawking radiation from a black hole is propor-
tional to K, and so this shift leads to the undesirable result
of unphysical modes contributing to the Hawking radia-
tion [7].

Strominger has suggested an alternate prescription for
the one-loop ghost contribution which is designed to
decouple the ghosts from the outgoing energy flux [7]. In
our model his method boils down to keeping « =N/12 in
(1.7) and including the following term in the action:

II. EXACT SOLUTIONS

N

+—,
' g a+f a f; (2.2)

and the constraints become

~r, = a,~a,~+—~~a',~+a,Qa, Q

+—,
' g a~f;agf; . (2.3)

Note that Q is bounded from below in (2.1) and therefore
(2.2) defines a rather unconventional quantum field
theory. In this paper we only work with semiclassical
equations, and it should be kept in mind that the full
quantum theory may well be describe very different phys-
ics in regions of strong coupling.

The equations of motion derived from the Liouville ac-
tion (2.2) can be solved exactly. Let us first consider
asymptotically flat static geometries:

Q=y= — — +P&~ ln( —
A, x x )+AX+X —

2 + M

(2.4)

where P and M parametrize different solutions. We are
using "Kruskal" coordinates [1,3], which make up the

To solve our model, we follow Bilal and Callan [9] and
de Alwis [10] and perform a field redefinition to a Liou-
ville theory. Our new fields are defined as

—2t]Ii

Q= P+
2

(2.1)
e '~

y =&trp — ((}+
2 K

The effective action (1.7) takes the form

S=— d'x —a ya y+a Qa Q+A, 'e'" ""r "'1

7T

'The symmetry transformation (1.4) will receive quantum
corrections 5$=5p=ee ~/[1 —(Ir/4)e ~j, but the conserved
current (1.5) remains unchanged.

If we do not adopt Strominger's prescription but rather per-
form the shift of ~ in (1.7), then K will be negative for N (24. In
this case no singularity is encountered in gravitational collapse,
which might sound attractive, but as pointed out above, the sys-
tem is unstable and emits negative-energy Hawking radiation.
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coordinate system where P=p. Comparing with the
definitions (2.1) immediately reveals that the solution
with P = —

—,
' and M =0 is the familiar linear dilaton vac-

uume '&=e '&= —X'x+x
Adjusting the value of P corresponds to having a

different energy flux at spatial infinity in these solutions.
In particular, solutions with P= —

—,
' have a vanishing

asymptotic energy density, whereas a geometry with
P =0 has a smooth horizon (at x+x =0) and describes a
quantum black hole in thermal equilibrium with its envi-
ronment [4]. Solutions with PA ——' have an infinite
Arnowitt-Deser-Misner (ADM) mass because in all these
solutions there is a nonvanishing energy density at
infinity. For the P = —

—,
' solutions, the ADM mass is M.

Static solutions with a positive ADM mass are weakly
coupled, but singular at x+x =0 [4—6]. Solutions with
a negative ADM mass have a naked singularity at a finite
value of —x+x

The thermal equilibrium solutions (with P =0) have an
interesting property. Two such static solutions with
different values of the parameter M can be continuously
matched across an infall line, x+ =xp+, up to a uniform
shift of x . This corresponds to a black hole absorbing
an incoming shock wave with the shift in M being equal
to the energy carried by the wave. The fact that the solu-
tion remains static indicates that the Hawking tempera-
ture of two-dimensional black holes remains independent
of their mass, even when our quantum corrections are
added. This can also be checked by direct calculation us-

ing the geometry (2.4).
Now let us consider a dynamical situation where an in-

coming shock wave carries energy into the vacuum. The
corresponding solution is constructed by patching togeth-
er across an infall line the linear dilation solution and a
time-dependent solution (with P= —

—,') which describes
the subsequent evolution of the black hole:

Q=y= — — — ln( —A x x )
A X X i K

4

(x + —x p+ )8(x —x p+ ) .
XKX p

(2.7)

This singularity occurs at the boundary of the range of 0,
which is deep in the quantum-mechanical strong-
coupling region. It may therefore well be absent in the
full quantum theory.

The singularity forms inside an apparent horizon,
which is located where 8+/=0 [3]. The apparent hor-
izon defines another curve (x+,x } above the infall tra-
jectory:

K 1
X

4k' x +m/X'xp+
(2.8)

When a massive black hole begins to evaporate, the ap-
parent horizon recedes at a rate which agrees with calcu-
lations in the original CGHS model. The agreement will
hold as long as the remaining mass is large compared
with NA, . We were not able to follow the evaporation to
completion previously, but this is straightforward now
that we have exact solutions. In [3] we conjectured that
the singularity would always remain inside the apparent
horizon and that the geometry would have a global hor-
izon separating the two. However, the exact solution
(2.5) exhibits very different behavior. As suggested by
Hawking [5], the singularity and apparent horizon collide
in a finite proper time. The intersection point
(x+,x )=(x,+,x, ) of the two curves (2.7) and (2.8) is

given by

dQ &x 2

dP 2 V'K

vanishes. It lies on a curve (x,x ), which is the con-
stant P contour of (2.5) at P=P„and is defined by the
equation

4
1 —ln —= — x+x —ln( —

A, x+x )
4 ]c

(x+ —xp+ )8(x+ —xp+ ) .
Kx p

(2.5)

The matching conditions at x+ =xp+ are provided by the
+ + constraints in (2.3) with

KA,X p+ p
(

4m/ai.

4m

m 1

X'x+ (1—e 4 '"') '
X p
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=1 Ql I

8+8 p, 0+0 g 8+0 8 00' (2.6)

The singularity forms where

N

—,
' g d f d f;= 5( —x+),

i =1 ~xp

where m is the energy carried by the incoming shock
wave.

The Liouville fields 0 and g are nonsingular in the
solution (2.5), but in terms of the original variables P and

p, a singularity forms on the infall line at
p=p„= —

—,'ln(K/4). This is easy to see by computing,
for example, the curvature scalar 8 =8e i'3+3 p. Us-

ing the transformations (2.1} and the conservation equa-
tion (1.6), one finds

The singularity goes from being spacelike behind the ap-
parent horizon to being timelike, and therefore naked,
after the two have merged. As a result, the future evolu-
tion is not uniquely determined unless boundary condi-
tions are imposed at the naked singularity.

We emphasize once again that the naked singularity
occurs deep in the quantum-mechanical region where the
semiclassical theory is not applicable. The occurrence of

A shock wave sent into a static geometry with positive ADM
mass (and P = ——') wi11 lead to topology change. No singularity

is formed on the infall line in this case, but one will form at a
later time, splitting the space into two disconnected regions. A

topology change of this sort will not occur if the initial state is

the linear dilation vacuum.
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such singularities means that very quantum-mechanical
effects are in causal contact with outside observers. The
precise nature of the phenomenon is beyond our present
knowledge. It therefore seems appropriate to replace the
detailed dynamics of the naked singularity of phenome-
nological boundary conditions. In particular, we can ex-
pect radiation of quantum-mechanical origin out along
the null line x =x, . Hawking has speculated that the
emergence of the naked singularity would precipitate a
cataclysmic event, a thunderbolt, which propagates out-
ward at the speed of light [11].

e '&=e '&= —
A, 'x+ x + m

X'x+
0

(3.2)

N (1 e
—4m/~k)

—,
' y a f, a f, = ——' ', , gx- —x,-).

4 (x +m/A, xo+ )

(3.3)

The fields are continuous at x =x, , but their x
derivatives are not. Evaluating the ——constraints at
this null line, one finds a 6-function contribution:

III. FINAL STATE

A possible boundary condition which suggests itself is
analytically to continue the solution (2.5) across the null
line x =x, from region I into region II in Fig. 1. This,
however, does not lead to reasonable behavior in the
asymptotic future. To see this we observe that all con-
tours of constant P=Po&P„enter into region II. These
contours are timelike everywhere outside the apparent
horizon and can be used to define fiducial observers. One
finds that the scalar curvature tends to —00 as x+~ Do

along every such a contour:

R ——~k

—4p0e x
ln

(
~&0 2&or)3 x+

0
(3.1)

X

Thus all fiducial observers eventually find their way into a
region of diverging curvature, no matter how far away
from the black hole they set out. Fortunately, this disas-
trous conclusion is by no means inevitable.

A more reasonable possibility, suggested by Strominger
[12], is that the boundary conditions can be chosen in
such a way that each fiducial observer eventually tends to
a region with vacuum behavior. Miraculously, this type
of boundary condition occurs naturally in the exact solu-
tion (2.5). Both P and p take vacuum values on the null
line x =x, dividing regions I and II. This means we
can match the evaporating solution (2.5) in region I onto
a linear dilation configuration in region II, which is shift-
ed with respect to the original vacuum:

This means that a matter shock wave carries a small
amount ( —aA, /4)(1 —e "

) of negative energy out
along the line to null infinity. This result can be checked
independently as follows. The energy carried by a black
hole across null lines of constant x is given by

m(x )= lim e ~R .1

x+ 4g
(3.4)

This gives the correct ADM mass for the P= —
—,
' static

solutions and provides a definition of the remaining mass
of an evaporating black hole [6]. Using the solution (2.5)
to evaluate the mass at x =x, gives precisely the same
small negative energy as found above. When the
negative-energy shock wave reaches null infinity, it brings
the energy to zero, the vacuum value, in region II.

The fact that negative energy is carried out from the
naked singularity looks strange, but is not very serious.
First of all, energy density is not positive definite in quan-
tum theory and global energy positivity is not violated.
Second, the amount of negative energy is limited by—ir)i, /4 for all values of the original black hole mass m
(and vanishes in the m —+0 limit). The limiting value is
the analogue of the Planck scale in this theory, and so
this negative energy may simply be an artifact of our
semiclassical approximation. At any rate, the outgoing
shock wave does not represent a violent event on an as-
tronornical scale, and so we will refer to it as a thunder-
pop rather than a thunderbolt.

We find it rather compelling that it is possible to match
the evaporating solution onto the vacuum, with only a
Planck mass worth of adjustment needed to the energy.
The physical picture this presents is that the black hole
evaporates completely, leaving no remnant behind. The
region P )P„ is completely unphysical in this case
[3,4,6]. The vacuum should be taken to be the linear dila-
ton solution for P(P„and some boundary conditions
supplied at the critical line where it is timelike. Perhaps
the appropriate framework for this system is to couple
two-dimensional gravity to nontrivial boundary degrees
of freedom, as considered in [13] in the context of open
string theory.

FIG. 1. Black hole formed by an incoming shock wave at
x + =x0+. A spacelike singularity forms inside an apparent hor-
izon, which recedes until it collides with the singularity at x, .
The solution in region II is determined by boundary conditions
at the naked singularity.

4The definition in [6] included a factor of [1—(N/12)e ~]
which goes to 1 as x+~~.
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IV. GENERAL DISTRIBUTIONS
OF INCOMING MATTER Q=g= — —x+ x +

A. X0

&Ir
4

ln( —
A x x )

M =Xf "dx p+x p+ T++ (x p+ ) . (4.1)

Another quantity of interest is the total incoming
Kruskal momentum conjugate to x0 . This is given by

P+ = f dxp T++ (xp )
0

(4.2)

We will also define x+-dependent truncated versions of
(4.1) and (4.2) as

xM(x+)=A. dxp+xp+T+i(xp+ ),
X

P+ (x+ ) = dx p T++ (xp ) .
0

(4.3)

Finally, we want to consider arbitrary distributions of
incoming matter. We will need expressions for the in-
coming flux of energy in terms of Kruskal coordinates.
Let Acr*=+in(+Ax+—). In this coordinate system, the
metric asymptotically approaches the Minkowski metric.
The energy is by definition conjugate to —,'(o++cr )

Transforming to Kruskal coordinates is straightforward,
and the total energy of a distribution of incoming matter
is given in terms of the Kruskal energy-momentum ten-
sor by

X1+ln
XO

(4.7)

The curve P=P„ is timelike for e(Irk. /4, as shown in

Fig. 2. Region i, where x (—K/4k x0+, is not in causal
contact with any singularity. On the other hand, region
ii, where x ) —K/4A. x0, can receive signals from the
singularity and therefore the solution (4.7) is not correct
in this region.

The simple reflecting boundary conditions (4.5) imply
the following relation between the incoming and outgoing
values of the matter energy-momentum:

a-
Tf (x ) = Tf++ (x+ ) (4.8)

Bx

where x+ =x+(x ) defines the boundary and
Tf++ =

—,'g+=, t)+f; 8+f;. These boundary conditions

along with the equations of motion are sufficient to corn-
pletely determine the fields as well as the boundary curve
itself in region ii in Fig. 2. In our simple example of a
sma11 uniform incoming flux, the solution in region ii
turns out to be a static configuration (2.4) with x shifted

by e/A, x0+ and parameters
The exact solution which generalizes (2.5) is

P+(x+)
Q=y= — —x+ x +

A,
2

M(x+'

1 E'P= ——+
4 KA,

K KA, 4eM=@ 1 —ln — + —e ln 1—
4 4 KA,

(4.9)

4
ln( —

A, x+x ) . (4.4)

This solution will typically have naked singularities. In
this case (4.4) is only applicable in those regions which
are not in the causal future of such singularities and we

have to supply additional boundary conditions. We do
not know what is the "correct" set of conditions to im-

pose at a naked singularity, but for the purpose of illus-

tration we will adopt a particularly simply boundary con-
dition, demanding that matter energy, carried by the f
fields, is totally reflected from the P=g,„ line where it is

timelike:

The solutions on either side of the line x = —K/4A, x0+

match smoothly across it. In particular, there is no out-
going shock wave propagating along this null line, as is
easily seen by evaluating the ——constraints there.

For a more general incoming flux distribution, which is
smaller than KA, /4 at any given time, the solution in re-
gion II is more complicated, but it can be constructed in

terms of the incoming flux distribution given the bound-
ary conditions (4.5). In this case all information is
reflected off the boundary in the semiclassical approxima-

f; =Olp=p (4.5)
X

It is not meaningful to apply boundary conditions where
the singularity is spacelike.

We consider first a simple example in which the incom-
ing energy flux is turned on at some finite time and
remains steady at smaller rate than the Hawking flux for
a two-dimensional black hole. In this case the incoming
energy momentum in Kruskal coordinates is

Arl

T++(x )= 8(x+ —xp ),
A.(x+)

(4.6)

where @&K', /4 is the constant energy flux and x+ =x0+
defines the leading edge of the incoming energy. The
solution (4.4) reduces to

FIG. 2. Small steady incoming energy Aux at x+ & xo leads
to a timelike singularity. Region i is not in causal contact with

the singularity, but the solution in region ii depends on the
boundary conditions imposed at P=P„.
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tion. This can be interpreted as saying that information
loss does not occur in low-energy (sub-Planckian) physics,
at least at the semiclassical level. This does not preclude
the possibility of information loss of a more quantum-
mechanical nature, e.g., tunneling, in low-energy process-
es.

The situation is very diff'erent when one considers an
energy flux e & scA, /4 for which the singularity goes space-
like and an actual black hole is formed. This case is qual-
itatively similar to the incoming shock wave considered
in Sec. II. An apparent horizon forms. If the flux is
turned off at some point, the apparent horizon will recede
and eventually collide with the singularity, sending off a
thunderpop. The final state will be the linear dilaton vac-
uum as before. The boundary condition we applied in
Sec. II is in fact a special case of the reflecting boundary
conditions we employed in this section.

Let us assume that the incoming flux is large enough
from the start for an apparent horizon to form and that it
is maintained for a finite length of time. In this case the
solution (4.4) is valid until the naked singularity emerges.
In particular, the bulk of the outgoing Hawking radiation

is found in the region to the right of an outgoing null line
analogous to x =x, in Fig. 1 and therefore described
by (4.4). It is striking that the final (x+ —+ ao) behavior of
the fields in that region depends on only two moments M
and P+ of the incoming T++ and not on the detailed
history of the initial state. Evidently, most of the infor-
mation contained in the initial state is lost in this one-
loop semiclassical approximation. It should, however, be
noted that the present situation is somewhat better than
that without any back reaction because the classical no-
hair theorem implies that the final state can only depend
on one of these moments, i.e., the total mass M. It is
tempting to conjecture that a more systematic quantum
treatment of the problem (for example, including higher
gravitational loops) will introduce a dependence on
higher moments:

pn —f dx+( +
) n+1Z —

(
+

) (4.10)

A simple electrodynamic system where unitarity is re-
stored by quantum corrections was considered in [14].
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