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Influence of the electric coupling strength in current-carrying cosmic strings
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The fully coupled Witten model for superconducting cosmic strings is analyzed in detail, with special
emphasis on the effects due to a nonzero value of the electromagnetic coupling constant in order to
check the accuracy of the neutral-limit treatment of the equation of state. Qualitative differences for the
influence of the coupling constant between timelike and spacelike situations are examined in order to ob-

tain a new understanding of the mechanical (as opposed to electromagnetic) properties of a cosmic
string. Longitudinal- and transverse-perturbation velocities are estimated and related to stability cri-
teria. It transpires that superconducting cosmic-string loops are generally not strictly stable against
nonaxisymmetric perturbations.

PACS number(s): 98.80.Cq, 11.17.+y

INTRODUCTION

In a previous article [1], the most important properties
of current-carrying cosmic strings, which are of purely
mechanical origin, were investigated by studying the lim-

iting case of strictly neutral currents for which ambigui-
ties resulting from divergent integrals are entirely absent.
The equation of state was investigated for timelike as well
as spacelike currents and it was shown (contrary to what
occurs in the commonly used linear approximation [2,3]}
the longitudinal-perturbation velocity is systematically
lower than that of transverse perturbation [4] while the
effective tension remains strictly positive everywhere.

The purpose of the present work is to examine the ex-
tent to which these results are affected by the allowance
for a small but nonzero coupling constant e such as was
included in the original Witten [5] model with the as-
sumption that its numerical value is given by the usual
formula e =—„', (in unrationalized units with A'=c =1).
The results of the work described below confirm that the
neutral-limit treatment mill, in fact, be a very good first
approximation for a wide range of realistic applications
with the implication that qualitatively and quantitatively
correct results can be obtained from the use of the macro-
scopic formalisin [3,4,6—8]. This will be useful as a basis
for more reliable investigations of electromagnetic effects
of potential cosmological interest such as formation of
galaxies [9,10] (including voids [11,12]), and the interac-
tion of strings with charged particles (including fermionic
interactions [13,14] and the Aharonov-Bohm effect [15])
and plasmas [16]. (Many of the pioneering studies of
such phenomena mere flamed by the use of a treatment
that took electromagnetic effects to be not just a correc-
tion but dominant, while neglecting more important
mechanical effects whose significance was first realized by
Davis and Shellard [17,18].)

An important effect that was pointed out in the
neutral-limit model [1] concerning the "electric" part of
the equation of state, i.e., that for which the current is
timelike (as opposed to "magnetic" states for which a

spacelike current is considered} is the existence of a
phase-frequency threshold beyond which no stationary
solution exists. The meaning of this threshold is clear: if
the phase gradient of the trapped boson exceeds its mass,
then it becomes energetically favored for the current car-
rier to flow out of the string. It is found that the lifetime
of such configurations may be estimated as being roughly
of order m lM&, where rn is the mass of the current
carrier and M& the mass of the Higgs boson, the resulting
value (typically & 10 s) being so small that such states
are of no practical relevance for any physical purpose.

In principle, when a charge coupling constant is intro-
duced, strictly stationary "electric" string states do not
exist at all because the phase-frequency. threshold for par-
ticle emission is moved to zero due to the well-known
logarithmic divergence of the electrostatic potential sur-
rounding an infinite charged string: as the energy density
increases with increasing distances, it will eventually be-
come sufBcient for there to be a finite Coulomb-tunneling
probability of a charged particle to go out of the core, so
that if the surrounding space is large enough, any electri-
cally charged configuration is, in principle, unstable. In
practice, however, as discussed in Sec. II, there always
exists a natural cutoff scale (determined by the charac-
teristic distance between neighboring string segments, or,
at most, the cosmological-horizon radius), which is
suScient to keep the energy per unit length, the tension,
and the charge (or current) density finite (with values in-
sensitive to the particular cutoff length that is actually
chosen) both in electric and magnetic states. Due to this
cutoff, the effective phase-frequency threshold for particle
emission is only moved to a smaller (nonzero) value, and
"electric" string states survive with what, in practice, is
usually a very long lifetime. Indeed, the validity of the
stationarity hypothesis is recovered since the lifetime we

&o'obtain already exceeds 10' s for a symmetry-breaking
scale of order 10 TeV, while for a symmetry-breaking
scale of order 10' GeV [grand unified theory (GUT)] one

10~obtains 10' s.
A different and more practically relevant mechanism
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for charged-particle emission by a charged cosmic string
is that of ordinary pair creation since this effect has been
shown to be of purely electric origin (neglecting gravita-
tional effects or direct coupling with the Higgs field [19]).
Assuming the trapped particles are much more massive
than an electron, the electric field surrounding a charged
cosmic string will indeed be generally sufficient to yield a
pair-creation probability per unit time such that the ini-
tial charge of the string is "instantaneously" screened
(considering the stationarity hypothesis) until it decreases
to a maximum value depending only on the mass of the
electron (i.e., the lightest charged particle), and the age of
the Universe. As a result, the long-range electromagnetic
effects are much smaller than would otherwise have been
the case, a consideration which provides further
justification for using the neutral-limit approximation for
the treatment of "electric" string states in many applica-
tions.

rp=qr(r)e'" =q&e'

X=cr(r)e't'"" =o e'~

and find the equations of motion to be

V„[y (V"a+qB")]=0,
V„[o (V"P+eA")]=0,

V„V"y=
q&( V„a+qB„)(V"a+qB ")

+ y(qP rt )+—2fptr2 2 2

2

V„V"cr=cr(V„Q+eA„}(V"P+eA")+2fqPo

+A, o'+(m' 2fg')—o,

(7)

I. BASIC EQUATIONS

The aim of this section is to recapitulate the essentials
of the model used throughout the rest of this work to-
gether with the indispensable notation. We shall consider
a Witten-type theory in which a U(1) symmetry is spon-
taneously broken by means of a Higgs field 4 which ac-
quires a vacuum expectation value g. The Higgs field is
coupled with a gauge vector B„by means of a coupling
constant q, and with a charged scalar boson X. Elec-
tromagnetism is described in the usual way by the photon
A„and the coupling constant e. The most general La-
grangian one can build with such fields is therefore

V„HI"=4~qy (V a+qB"),

V„F""=4neo (V"f+eA") .

(10)

Once the equations of motion are solved, we can use
the solutions to compute conserved quantities such as the
energy-mamentum tensor (which we shall examine in de-

tail later) and the Noether current whose conservation is

expressed by (7},and which is associated with the invari-
ance of the Lagrangian (1) with respect to local changes
in the phase of the current carrier X, namely,

,'(Dq4)(D —"4—)'——,
' (D„X)(D"X) V'"=o ( V"f+e A ") . (12)

F„„F" H„H"—' V(4, X), —1 q„1
'

( I@'I'—ri')'+f ( I @I' —g'}
I
X I'

8

Pk ~+ IxI4+ IxI',
4

(2)

D„4=(V„+iqB„)4, D„X=(V„+ieA„)X, (3)

F„„=V„A„V,A„, Hq„=—V„B„VQ„. —(4)

This kind of theory aBows the formation of vortex de-
fects of the vacuum by the Kibble mechanism. Such a
vortex —the subject of the present study —is defined as a
stationary configuration of cylindrical symmetry which
we may choose to be aligned with the z axis. This means
that quantities having a clear physical significance (e.g.,
the scalar-boson amplitudes and all the integrated func-
tions of these) may depend neither an the internal string
coordinates (z and t) nor on the polar angle 8. Conse-
quently, the scalar-boson amplitudes can depend only on
the radial coordinate r. The phase of the Higgs field has
the form n 8 for some integral winding number n, and the
phase of the current carrier is a function only of the
internal string coordinates. Thus, we can set

/=cot —kz . (13)

Setting

Q (r) =n +qCe,

P, (r) =B,f+e A, ,

P, (r) =d, Q+e A, ,

and using a prime to denote differentiation with respect

This current is well defined even in the neutral limit [1],
and when a nonzero electromagnetic coupling e is al-
lowed for, it determines a corresponding electric current
given by 5X/5A&=e7 .

Inserting (5}into (10) and (11)and using the cylindrical
symmetry, we see that the only nonzero components of
the gauge fields are A, (r), A, (r), and B&(r). Now, again
invoking axisymmetry, one finds that the current defined

by (12) cannot depend on the internal string coordinates z
and t. Since only this current is required to be gauge in-
variant (with respect to electromagnetism}, we see that
the most general form for g is, up to the addition of an
unphysical constant,
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to», we obtain the following set of radial equations:

qr" +r 'y'= —yQ + A—&qr(qP g—)+2fyo.

o "+r 'cr'=o(P, P—, )+2fgr o+A, 0'

+(m 2f—g }o,
(15)

and we define the free parameters of the theory as

2m
Ai=

fm2

Q" r'Q—'=4nq qr Q,
P,"+» 'P,'=4' 0 P, ,

P,"+» 'P,'=4' cr P, .

and

4m~

QAr~ g
4

(22)

P,(r)=P, (0)P„(r), P, (r)=P, (0)P, (r),
for some function P, (r) satisfying

P", +r 'P» =4m.e o. P,

(16)

Since the last two equations are linear in the quantities

P, and P„and since regularity on the axis requires that
the derivatives of both these quantities should vanish at
» =0, it follows that we shall have

Since we require that the charged boson be trapped in
the string, we have to impose that the potential for X in
the vortex should have a minimum for o %0, which is
achieved by imposing that 2fq —m be positive (we
shall see later on that this is a quite weak requirement),
and as the vacuum is observed to be neither supercon-
ducting nor charged, the potential should be greater in
the core of the string than in the vacuum. This condition
is restated in terms of the a parameters as

with the boundary condition P, (0)= 1, so we may set
w =P, (0}—P, (0}to get

(a3 —2az) ( (23)

P —P =wP
where

w & 0 in the magnetic case,
w(0 in the electric case, (18)
w =0 in the null case,

this parameter being strictly identical to the one previ-
ously defined in a previous article [1]. This classification
corresponds closely to that of Carter [6,7] in the sense
that, for w &0, there exists a referential in which the
current (12) is purely spatial, so that there is no charge
density, while if w (0, the preferred frame yields a four-
current having only one (timelike) component, i.e., a
number (or charge} density.

Due to the requirement of local regularity on the axis
and the requirement that the medium surrounding the
string is the vacuum as defined after the symmetry break-
ing, we have the physical boundary conditions

y(0}=0, y( oo )=q,

The equations that are now to be satisfied with the
boundary conditions (19) read

X"+—X'= 2XQ +—X(X —I)+2a2XY2,
p p 2

A2 CX3Y"+ Y'=— P~ Y+2 (X —1)Y+ Y( Y +1),
p a&

*
a& Q)

(24)
Q"— Q'=4m—q X Q,-2 2

P

P", +—P', =4m' Y P~,1

These equations have been solved numerically [20] in
electric (as well as magnetic) configurations (the magnetic
case has already been studied in detail, see, for instance,
the work of Babul, Piran, and Spergel [21]}and a typical
solution may be seen in Fig. 1.

II. PERTURBATIVE EXPANSION

(0)=0, cr( oo )=0,
d»

Q(0)=n, Q(oo)=0,
dp~

P, (0}=1, (0)=0 .
d»

(19)

m~
y=gX, cr = Y, »= (20)

w=
2 f) w, q =Ay/ e
CT 0'

(21)

This set of conditions uniquely determines the solution of
Eq. (15).

We recall briefly the rescaling (necessary for numerical
purposes) whereby one obtains a set of dimensionless
variables given by

Assuming the mass of the X field to be less (and even
much less} than that of the qr field [22], we can make a
perturbative expansion in the parameter 2, i.e., as usual
in electromagnetism X=XO+2 X&+ -, and so on,
with P, =1+e P&+ -. . . It has to be emphasized that
this perturbative expansion is strongly justified because,
according to Eq. (21), e is proportional to the ratio of
the carrier mass m to the Higgs-boson mass

M+ =+A.+g. If the latter is at the GUT level, the result
for e will be microscopically small, while even for the
more moderate value required, for instance, if the super-
conducting cosmic strings are to be used for Universe-
filling purposes, it has been plausibly argued [23] that the
symmetry-breaking scale should not be much less than
roughly 10 TeV, whereas the current carrier might be the
8'intermediate vector boson say, of mass —100 GeV, so
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where 8 is a numerical factor of order unity given by

pdp Yo p
QG

(28)
0

The system (26) also yields an asymptotic behavior for
the function Yo given by

2

(29)
Ko(ap) if w ) —m

J(a. ) ifw( —m

modified Bessel functions of zeroth order (for which we
use standard notations [24]), and C is a constant whic is
numerically) found to be approximately independent o

a. This may be understood as being due to the norma i-
zation of the Bessel functions which is more or less t at
of the function Y so that a matching at the origin wit
the asymptotic solution is possible without any further
dependence on the parameters. The mass of the current
carrier is then seen to represent a phase-frequency thresh-
old beyond which no stationary solution exists since the
integral (28) diverges with the solution Jo. Due to the
fact that C is independent of a, one finds the behavior o
8 when co approaches m as

FIG. 1. A typical solution of the system (24) for an electric
situation: X (solid line), Y (dashed), Q (dotted), and P» (dash-
dotted) whose nearly constant behavior for large p is clearly
shown.

CO8 cx

co m~
(30)

Now we can obtain a lot of information concerning the
fi t- d t rm without actually solving the correspon-
ing system of equations. The first thing we see is a e
equation for P &, namely,

4~e & 10 (25)

one obtains a maximum numerical value1 for e of order ",'+ —P', =4~Y02
1

p
' (31)

(with the fine-structure constant a-—10 ). The effect of
this coup ing as1' h been exaggerated on our curves by set-
ting the value 4m.l' =0. 1 (with other parameters fixed to
the values they had in a previous article [1] . Since even

th' exaggerated case the corrections uin is
b'ect torat er sma, i oh 11 't f llows that in realistic cases subj

(25), the effect of the coupling constant can be neg ec e
atoge er a1 th as a first approximation, w ic gives the
zeroth-order set of differential equations (i.e., e p
ously studied neutral limit):

X"+—Xo =—XoQo+ —Xo(Xo —1)+2a2Xo Yo,

2
1 )w+2az(Xo —1) a3Y"+—Y0= Yo o o0 0

(Xi CX)

is exactly soluble in closed form by means of

P x dxP, (p)=4m lnp f x Yo(x)dx — x Inx Yo(x)dx

(32)

in which the integrals are convergent as p —+ oo with hm-

its given respectively by B as defined in 28 and by

A = f x lnx Yo(x)dx,
0

(33)

so that, as p~ ~, one obtains the asymptotic expression

P, (p)-4ne(B lnp+ A). , (34)

expressing e we-th ell-known logarithmic divergence. How-
re thisever, the re ion of space around the string where isever, t e region o

divergence becomes important is p p where p„ is

such that e ~Pi (p „)= 1, which gives

Qo' ——Qo =4m.q XoQo .-2 2

p
p =exp (4vre B) +—.—2 —1 (35)

Let us recall briefly the most useful results concerning
this limit (for which we use a subscript 0): integration of
the current (12) leads to a charge number density
which is expressible (see also Sec. III) as

Due to the definition of e, we find, expressed in units
of the inverse of the energy scale (or in any standard unit
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of length, as numerical application reveals), a divergence
radius of order

[P, (p) —[ I +4m e ( A +B lnp) ] [ (e, (39)

1 1
p -exp

4 e~B 4
(36)

because the ratio A /B is found numerically of order uni-

ty and therefore effectively negligible in practice. Equa-
tion (36} corresponds to 10' for a symmetry-breaking

&026
scale of order 10 TeV, and 10' for the GUT energy
scale, with, as before, a 8'current trapped in the string;
these numbers greatly exceed the horizon size. This is
very important because it is the reason why such strings
can be considered to be effectively stable with respect to
Coulomb tunneling: the characteristic time for the
charged particles to flow out of the string is found to be
of order p„(it is evaluated in Sec. III B 2) and is therefore
very much greater than the Hubble time.

In view of the finite, albeit large, value of the diver-
gence radius, all the quantities of physical interest need to
be regularized. When numerically solving the system
(15), we have to choose an appropriate cutoff length A de-
pending on the various parameters which are used. In
order to fix this length more precisely, we require as a
consistency prescription that the zeroth-order current
density (27) integrated up to this cutoff should yield an
approximation of the fully integrated function having an
error less than 4m' . This means that we require

& 4~e (37}

KA ~ lnp~ (38)

The behavior of P, allows us to define a structure
around the string: let c be a small numerical constant
(which might be fixed by computer precision) and let p,
be the value ofp beyond which Yo is negligible so that

a subscript A having the meaning throughout the rest of
this work that the corresponding integral is computed
with its upper limit fixed at p=A. Using Eqs. (28) and
(29), one can develop (37) explicitly and thereby conclude
that the effective cutoff has to be chosen at least to satisfy

this behavior being true at any order of perturbation (if A

and B are arbitrary constants) since it satisfies Eqs. (24)
asymptotically with Y~O for p~ ~. Then, due to the
very slow variation of the logarithm, for p, &p «p„, as-
suming this region exists, which we do because of Eq.
(36), one can write

P, (p) = 1+4m 2 ( A +B lnp, ), (40)

o-p&p, (41)

in which the Higgs field differs significantly from its vacu-
um expectation value, a second region which we call
"physical infinity" in which the electromagnetic potential
is nearly constant (region [II]),defined by

p, -p«p- (42)

and finally "mathematical infinity, " having no physical
relevance in most of the astrophysical applications such
as formation of galaxies or dark matter (region [II]),
defined by

p p~ ~ (43)

The existence of these distinct regions gives insight on
the cutoff needed to regularize the theory. As A is

i.e., P, (p) has a value diff'erent from unity because of
eAO, but still approximately constant. The validity of
this approximation is "demonstrated" in Fig. 1 where a
typical (stable) electric configuration is shown, obtained
by numerical resolution of the system (24},that effectively
includes all orders in e since we have chosen a large
value for 4m' . The flatness of the behavior of P, that
one sees in this figure is not due to any special values of
the a parameters but is really a quite "standard" corn-
portment except in regions for v in which the integrals
that appear in (32) become divergent, in which case the
expansion itself does not have any meaning and the string
is unstable.

Thus, as shown in Fig. 2, there exists three qualitative-

ly distinct regions surrounding the string, namely, the
core (region [I]),defined by

Fields

pc pe

I

I

I

I

I

I

I

I

I

I

I

I

P.

plum

1n p

[III[—

FIG. 2. The various characteristic distances and cutoff needed to define regions [I], [II],and [III] (see text).
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chosen so that Yo is negligible in practical cases [for
which 4m.e satisfies Eq. (25)], it seems clear that A
should be in region [II] (see Fig. 2), so that it is possible
to compute (nuinerically) the constants that appear in the
asymptotic behaviors of the fields and then to integrate
until p goes to another (fixed} cutoff p„„,which is chosen
in region [III]. It turns out that even if choosing A in re-
gion [II] is crucial in order to obtain physically correct
results, these are quite insensitive to the actual value
chosen for p„„as long as it is in region [III] in the sense
that it can vary by many orders of magnitude without
changing the numerical results. We have chosen this
fixed cutoff at e ' over the mass of the Higgs field for nu-
merical computations, and we checked that the results
obtained were not dependent on this latter value. In ex-
amining the integrals with a cutoff in the range
e' ~e', consistency was always within the limits of
the computer precision.

To conclude this section, let us mention a phenomenon
which is qualitatively (and in most cases also quantita-
tively) not affected by the inclusion of a charge coupling
constant, namely, the existence of the phase-frequency
threshold obtained in the framework of the neutral limit
as a consequence of the behavior (29). Indeed, in the
"physical-infinity" region [II],Eq. (24) for Ybecomes

Y"+—Y'- [ I +4ne ( A +B lnp, )] Y
P G)

CX3+ Y(Y +1),
a&

(44)

which implies that w, is moved to the right (assuming
B lnp, ) A, a relation which is verified numerically): the
solution of the asymptotic equation (44) in the charge
coupled case also has form (29) with w, replaced by

tX3

[1+4m e ( A +B lnp, ) ]
(45)

because of the nonzero value of the electromagnetic cou-
pling constant. If no cutoff was introduced, then, as P,
diverges, we would get w, =0, but, in practice, we have
seen that the cutoff is always physically justifiable (the
Hubble radius of the universe being more than sufficient)
and in any case necessary for the existence of strictly sta-
tionary current-carrying string states. We shall see later
(Sec. IIIB2), however, that such a shift in the phase-
frequency threshold correspond to an (exponentially
suppressed) emission of charged particles. It may be seen
in Eq. (45) that, unfortunately, the new threshold is only
defined implicitly since the coefKicients A and B, as in-
tegrals over the zeroth-order fields, do depend on w.

As emphasized before, one expects "electric" strings to
have a (qualitatively) finite lifetime (see Sec. III 82). The
typical lifetime ~ as a function of the fundamental param-
eter v=sgn(w)&~m~ may be qualitatively evaluated as
shown in Fig. 3: we see that, in the neutral-limit case, its
inverse r ' is actually zero (so that the lifetime is infinite)
for v) —rn but that ~ ' rapidly increases as v gets
more strongly negative, so that the corresponding states
are no longer effectively stationary. The presence of a

—m CT

FIG. 3. The inverse (~ ) of the typical lifetime of a charged
cosmic string as a function of v. This is a qualitative picture so
the axes are arbitrarily labeled. Typical behavior with the regu-
larization cutoff A is shown with A& & A&.

charge coupling constant somewhat modifies this qualita-
tive picture since ~ ' is nonzero as soon as v & 0, but it is
nevertheless found that quantitatively the dynamical be-
havior is not changed much, since the lifetimes that are
obtained typically exceed the age of the universe unless v
is close to the threshold v, for particle emission in the
neutral case.

III. INTEGRATED VARIABLES

A. Equation of state

We now turn back to the conserved quantities resulting
from the invariances of the Lagrangian (1) such as the
energy-momentum tensor

TI,' = —2g~ +&'Q, (46)

(48}

with the numerical density of charge or the intensity of
current (depending on the case)

(49)

The energy per unit length U and the tension T are
defined in general situations by diagonalizing T in the
form T' = Uu'u~ —TU'U", where u and v are, respec-
tively, a preferred timelike and spacelike unit vector

and the electromagnetic four-current is given by Eq. (12).
Introducing Latin indices a, b =1,2 to label the intrinsic
coordinates, we then define the macroscopic tensors
internal to the string by means of

Z''=2m f r dr T'', (47)

and
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and

T= —T

(50) I

1
I

I

i.e. ,

U=T .

(51)
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4q2p24e2p2
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FIG. 9. First-order difference Y(v) between 8 and p.

it has to be remarked that the maximum of p does not
correspond exactly to that of 8 since

dp, dC+2 2 o d ydr&( )
dC

dv dv dv dv r

dT d8 2 o dr&+ 4
dC

dv dv dv r
(63)

so that, assuming the integral to be positive, one finds
that the minimum of the tension is shifted to the right or
to the left of that of C depending on whether 8o is found
to be decreasing or increasing for the corresponding
value of v. All the previous considerations have been
used as tests of the numerical code developed to solve (24)
and it has been found that discrepancies between the pre-
dicted values (at the first order) and the "observed" ones
were always roughly of order e as required.

The efFective equation of state is shown in Fig. 10
where the tension is plotted as a function of the energy
per unit length. It may be remarked in this figure that
the charge coupling does not afFect qualitatively the equa-
tion of state so that a macroscopic local treatment is in
any case appropriate (as far as global efFects are negligi-
ble). Also in Fig. 10 is plotted the special (integrable)
equation of state

UT =const (64)

nism by which the charged bosons flow out of the string
so as to minimize the energy.

A last modification that is imposed by the nonzero
value of the electromagnetic constant in the "magnetic"
regime concerns the minimum of the tension. It turns
out that in the neutral limit, as in the macroscopic for-
malism [7], this minimum coincides with the maximum
of the current. This relation is modified at the first order
in e by

+Co f Po(r)
dv T

(62)
(represented as the dot-dashed curve), which results in
particular from models using dimensional reduction [7].

which implies that the value of k for which IM is max-
imum is shifted to the right or to the left (depending on
the sign of the quantity inside the square brackets) of the
value of k which corresponds to the maximum of C. It
may also be seen that Y passes through zero precisely (up
to numerical errors) where C is maximum; that is, p= C
for k such that d 8/d v =0. We conjecture this
phenomenon to be of exact nature (i.e., valid at all orders
in e ) since it has been generically found for various
values of the a parameters, even if its interpretation
seems up to now rather unclear.

There is another interesting feature to be noticed in
Fig. 8, namely, the fact that p is found to become nega-
tive [25] where the tension (Fig. 4) is still increasing. This
means that there exists another region in which the string
is stable against longitudinal perturbations (see next sec-
tion), the existence of this region being entirely due to e
being nonzero. Indeed, for e =0, one has C =p with C

defined positive and therefore the energy (in the magnetic
regime, whereas for the electric regime it is the tension)
must always be an increasing function of v. This the
reason why the energy so abruptly reaches the value it
has in the decoupled version of Kibble. Here, however,
the energy can exceed this latter value by an amount of
order e . It is not clear whether this kind of string state
will be stable anyway because the system is on a local
maximum and it might well be possible to find a mecha-

/
/

I

0.98-

0.96—

0.94 '
0.94 0.96 0.98

FIG. 10. The effective equation of state: the tension T is
plotted vs the energy per unit length U, both of them being nor-
malized to the Kibble case.
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It is found that, contrary to previous claims [26], the
dynamical properties of the Kaluza-Klein string models
are not consistent with those of the Witten-like vortices
whose equations of state are systematically above the in-
tegrable one (64).

Another widely used form of the equation of state is
shown in Fig. 11 where U and T are plotted as functions
of the total current. Discrepancies with the standard ap-
proximation U = Uo+constC and T = Uo

—constC are
illustrated in this figure, this approximation being plotted
as a dot-dashed curve. This indicates that an expansion
in powers of 8 is likely not to converge quickly so that a
complete numerical solution seems to be necessary in or-
der to get a correct description of a current-carrying vor-
tex.

To conclude this section, we wish to emphasize that
the effects of an electromagnetic coupling in electrically
charged timelike current-carrying cosmic strings are, for
most of the "physically reasonable" configurations, far
more important than those found in spacelike current-
carrying cosmic strings. The discrepancy between the
neutral limit and the fully coupled version of the model
would be mathematically divergent as soon as v & 0 and
physically divergent for a finite value of the cutoff A
when v~ v, . The actual definition of the phase-
frequency threshold is moved as a function of the cou-
pling strength and the local-vortex approximation ceases
to be valid beyond this threshold so that the parameter
space available is considerably reduced. However, the
qualitative behavior for small negative v is much the
same as for the neutral limit, mainly due to the fact that
Taylor expansion around v=0 is still physically defined
as long as a finite regularization parameter A is used. It
turns out that although differences due to charge cou-

pling never exceed a few percent on the magnetic side, on
the other hand, the electric side shows increasing
differences which are not limited.

B. Stability

In order to evaluate the cosmological importance of su-
perconducting cosmic strings of the kind considered here,
it has to be shown that the solutions described above may
yield stable macroscopic configurations. In the following
paragraphs, we list what we consider to be the two most
important problems in this respect, the first one involving
electric as well as magnetic strings, whereas the second
problem is specific to charged strings.

and

cL = — (longitudinal),2= dT

(65)

which are shown in Figs. 12 and 13, respectively, as func-
tions of v. As discussed above, we obtain the largest
discrepancies with respect to the neutral limit in the elec-
tric regime but the behaviors are seen to be qualitatively
similar. In particular, the ratio cL /cr (shown in Fig. 14)
is found to be less than unity, this effect being unchanged
by the introduction of the charge coupling constant.
This provides another difference with the Nielsen-Olesen
[26] vortex for which this ratio is strictly found to be uni-

1. Mechanical stability and radiative instability

Using the equation of state that we obtained numeri-
cally above, it is possible to compute the characteristic-
perturbation velocities given by [4]

Uc =—(transverse}T T

0.98

0.96

0.94
0.5

FIG. 11. U and T as functions of the current (for magnetic
configurations) or the charge (electric). Dot-dashed curves

represent the parabolic approximation.

I

I

I

I

~ I

I

0.98 -'
I

I

I

I
(

096 -. (I

I (

I(
I(

0 9~ -0.02 0.02 0.04

FIG. 12. Transverse-perturbation propagation speed eT(&).



INFLUE CE 0OF THE ELEWPRIC C NGTH IN. . .IC COUPLING STRE 3345

A1.2 I I

I
~ ~

I

0.8-

0.6-

0.4-
I

I

0.2 -I

I
~ ~

I

I t

-0.02 0.02 0.04

FIG. 13. Lon
' ' - e b

V

FI . . ongitudinal pert b
'

ro- e urbation ro- e b
'

propagation spe dee c,(~i.

velocit y to coincide with c .
ether this kind of irmine wh

imp rtant (e g i
'

g string formry
'

ation at the G
pati t efi'ectivel st

i er to the extr
i is, in practice

the domin t bl' ffe ect such

Another mor

as electro-

'liu
more obvious e

' o me
ili o }1

s equilibrium radius w
h' M t}1 tha t e quantity 4 defined

CT

CL

'2 2
3CT —1

3 —cT
(66)

has to be osi
'

poet [2]. Th t t
'll t t d

'

ing paragraph is then
g.

perturbation
'g. which

ing cT=1
e nearly at th

z
= —5 with 5((1 o

o requires
, one finds that th e po-

ty [7]. One is thererefore led to

mode of
h xisymmetric er
guration is am 1 fi

elatively
fied b

rograde
or longitudin 1

lib"u 'f 1oo [7
'

es the rotation

~1.2~ ' I

o

I

I

1
I

I

I

I I

CT
&1—25

CL

so that the corr
satis f 'h' "d'"'""t

correspondin
ia ive stability requireme

(67)

I

I

0.8-
I

I

0.6- I

I

I

I

0.4-
I

I

I

0.2 -
I

I

I

0 . I.
-0.02 -0.01 0.01

O .s - I

I

I

0.6-
Iy
I

I

0.4 - I

I

I

I

0.2—
I

I

0 . I ~

-0.02 -0.01 0.01

FIG. 14. Th
unit.

e ratio cz /cT which
'
is alwways seen to bo e less than

FIG. 15. Thee global mec - a i it f
uir a be positive is s's seen to be fulfil

bil' of h e string.
g out



3346 PATRICK PETER

2. Charge-loss time scale

I'- CKO(ap)g(p) (68)

with the same i~ as before (i.e., with w, = —a3). Inserting
this form into Eq. (15), we obtain the dominant behavior
for g as given by

K 7

where the nearly constant R is defined as

(69)

I et us now consider current-carrier-particle emission
by the string itself. The basic argument that charged
strings emit particles for any m (0 is, of course, related
to the Coulomb repulsive force between the trapped
charged bosons, but the emission itself can also be con-
sidered even in the limiting case of zero coupling if the
phase frequency is beyond the threshold, as we shall see
at the end of this section, but for now, let us first investi-
gate the modification of solution (29) for w ) —m in the
form

radial component of 7 by V, =i[X(X() )' —(X)'X'] and
we use

dCV= = —fV ds,
dt

(74)

where we can replace X by the asymptotic solution (72) if
the surface s is far enough from the core of the string.
Supposing that only the outgoing part of the Aux is physi-
cally meaningful, we see that the effective lifetime is
finite, but the fiux of charge is exponentially damped with
the distance to the core of the string. To obtain a charac-
teristic time corresponding to the emission of charged
particles, we need to use the effective cutoff length A as
given by (38) since it is at this distance that we have to
compute the flux of charge V.

Considering the charge which crosses a cylinder of unit
length located at a distance A, we obtain this flux, ac-
cording to Eqs. (29) and (69), by

V=4in. e ' 1+i (75)

(B lnp+ A ) )0,2
—8ne w

CKi
and since the charge per unit length is70

so that the full solution for X may be written as

(71)

2m
C =2m& w. —

A. M
(76)

where
we obtain the characteristic lifetime of the timelike
current-carrying configuration ~ as

m C
( )

i(cut+rcp 5+)

i( rot+«p—+5)
Ou( ~— o "pe

(72) ~ 2aA
B

4M C

CO

m 2m.e (B lnp, + A )

1/2

(77)

with 5 an arbitrary constant phase.
The two terms in this equation can be interpreted as in-

going and outgoing waves, respectively, so that in order
for such a configuration to be stationary there should ex-
ist a X source at infinity to take into account the ingoing
wave. Since no such extra source would be expected to
occur in natural circumstances, physically realistic solu-
tions would not be strictly stationary but would be
characterizable by a finite lifetime r= —C/(dC/—dt),
where d C'/dt is the charge-loss rate computed from the
outgoing contribution X,„,. (It should be remarked that,
for spacelike currents for which m is positive, Pc would
be negative so no emission process could take place. )

In order to compute this characteristic decay time, we
first look at the solution (71) at a distance sufficiently
large so that the charge carrier X behaves like an ordi-
nary free Klein-Gordon field and the four-current (12)
may be written as

5'„=i [X*()7„X)—( V„X*)X],

and it is conserved, i.e., V"Y„=O. We transform this lo-

cal conservation law into a global one by integration: the
flux of charge per unit length crossing a cylindrical sur-
face surrounding the string is equal to minus the deriva-
tive of the total charge per unit length in the cylinder
with respect to time. More specifically, we compute the

m C
[

i(+cut+«p+5)]

QX ap
(78)

the corresponding lifetime expressible as wo —= —C o

/(d Co/dt) with Co computed by Eq. (27).
To compute this neutral-limit time, we again look at

solution (29) and w (—a3 far away from the core of the

string, and perform the same operations as in the charge
coupled case. This yields the outgoing current

(79)

so that the flux of charge can be estimated as

C2= —4~m
a

and finally the characteristic decay time becomes

which turns out to be of the same order of magnitude as
p„according to the specification (38) of the cutoff A.
This expression may be used to plot r ' for v(0 (Fig. 3).

As a final remark before concluding, let us notice that
in the neutral-limit situation the previously obtained life-
time is infinite for w ) —m . However, for w & —m, al-

though Pc=0, Eq. (29) indicates that the field X may also
be written as a sum (71), with
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W B .
2M C

(81)

This lifetime essentially depends on the mass of the
Higgs field M so that, assuming the integral B and the
constant C to be of order unity, which we verified numer-
ically, and since for practical situations the parameter
&—w is of order the mass of the charge carrier m, then
it is possible to give a rough estimate of the lifetime of
such configurations as

ro=m /M 2 (82)

Consequently, if the Higgs particle becomes massive at
the GUT symmetry breakdown, i.e., m —10' GeV, and
if the charge carrier is a "standard" particle (m —100
GeV), then the lifetime which is obtained ( —10 s)
turns out to be much less than even the Planck time
(tz —10 s) and so it may be conjectured that quantum
gravitational effects may act upon these configurations in
an unpredictable way. This time is greatly enhanced in
case the symmetry breakdown occurs at a much smaller
energy scale, but then, experimental constraints (e.g.,
neutrino counting [29] at the CERN e+e collider LEP)
yield a limit on this scale, i.e., M 300 GeV and there-
fore a lifetime already less than 10 s so these string
states remain irrelevant for cosmological or astrophysical
purposes.

It may be observed that the finite value that is obtained
from Eq. (77) for co= —m is a direct consequence of the
behavior of the zeroth-order charge density (30), so that
this behavior turns out to be essential for matching ~ and

~0 in a monotonic way. This gives another justification
for having the constant C in (29) independent of a..

CONCLUSIONS AND DISCUSSION

The most radically new result that is obtained in this
paper can be summarized in a few words: the
transverse-perturbation speed generically exceeds the
longitudinal-perturbation speed so that superconducting
cosmic-string loops are, in principle, radiatively unstable.
The result holds for the parameter values chosen here,
but it seems to be a quite generic result. Investigation in
the parameter space is in progress and is postponed for
future work [22].

The conclusions concerning the inQuence of the elec-
tromagnetic coupling constant may be summarized as fol-
lows.

As far as the "magnetic" regime is concerned, the
differences between the neutral limit and the fully cou-
pled version of the model is found to be of the order
—10 only for a quite large value of the coupling con-
stant e and for reasonable (with a meaning which would
still need to be defined) values of the a parameters. This
is very interesting since it implies that the macroscopic
formalism [4,6] (which has been found very suitable for
the neutral limit beforehand) should yield the correct
description of "real" superconducting cosmic strings if
they exist.

As far as the "electric" regime is concerned, it is possi-
ble to neglect charge loss because the lifetime due to the

ma
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FICi. 16. Qualitative estimated behavior of the mechanical
charge density C and the effective charge number density p, /e
with v (in arbitrary units). This representation takes pair
creation into account to yield a charge saturation for v ap-
proaching the mass of the electron.

Coulomb tunneling effect, being proportional to the ex-
ponential of the inverse of the coupling constant, is found
to be very large (in practical situations in which the
Higgs-boson mass is much larger than the current-carrier
mass). Nevertheless, the effect of charge coupling can be
rather important in the "electric" regime: discrepancies
with the neutral limit can reach 10%%uo or so already for
small v. For large v, the conclusion is even more drastic:
the phase-frequency threshold is moved in such a way
that, depending on an effective cutoff (which can eventu-
ally be the horizon of the universe if no matter is
present), configurations that were stable in the neutral-
limit case find themselves to have finite lifetime with a
numerical density of charge, an energy per unit length,
and a tension which are all divergent (therefore
undefined). The inverse-square asymptotic behavior (for
v~v, ) for these quantities is no longer valid, but con-
clusions concerning perturbation speed as well as all oth-
er macroscopic quantities are (qualitatively) not affected
at all by the effect of charge coupling.

It once again has to be emphasized that the value used
for e has been taken to be much higher than would be
realistic so that discrepancies between the neutral limit
and the fully coupled version, as large as they may be, are
actually not quantitatively significant: the neutral-limit
model compared with a realistic coupling yield results in
(nearly) perfect agreement, and the physics of both sys-
tems is very well described by the Carter formalism.

Let us finish by discussing the extent to which the
"toy-model" results presented here concerning charged
strings may be valid when one considers a more realistic
theory describing, among the various fields that might be
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Charge deHsitv

O (/m. ~ ]., rn,

F&G 17. Quahtative form of the charge density profile around a partly screened c gd char ed cosmic strin (scales are arbitrary).g

—27rme /e IEIP-(eE) e (83)

per unit volume and unit time, so that the typical time ~,
h racterizing the screening of one unit o c arge, assum-

ing the characteristic distance between the string and e
bound electron to be of the order of the Compton wave-

conceivable, the usual particles that are known to exist.
Indeed, although there is no possibility to neutralize iden-
tically the internal conserved current C because of the

h omenon of localized absence [30] (due to the conical
~

1nature of space-time a cylindrical mode of any partic e
other than 4 and X goes to zero at the vortex), most of
the microscopic electric configurations we have been
studying here need corrections in order to be exactly real-
istic as far as the corresponding electric field is concerned
since the existence of light charged particles (specifically
the electrons) tends to screen the total effective charge:
for an electric string state, the electric field surrounding
the vortex is generally sufticient for pair creation so that
the structure around a charged cosmic string is that of a
cylindrical capacitor consisting of a hollow cylinder made
of light charged particles, and a central straight core.
This yields a maximum value for the effective total
charge per unit length depending only on the mass of the
electron and (in principle} on the age of the universe.

Indeed, if E is the electric field surrounding the string,
then it is well known [31] that the probability of creating
an electron-positron pair goes like

length of the electron -1/m„ is given by [32]
4

2mm /eC
es 4@3

(84)

p, -em, , (85)

11 t ted in Fig. 16. This shows that the actual
configuration would be that of a cylindrical s e o e ec-
trons (or positrons, depending on the initial sign of the
c arge ensi y

'
h d sity inside the core of the string} surrounding

inFi. 17, itan oppositely charged core. As presented in ig. , i

may be argued [33—35] that the typical distance at which
electrons or positrons may remain in bounded annular
states is their Compton wavelength, namely, 1/m, . T is
well-defined picture of the electromagnetic structure
around a cosmic string has the advantage of being quite
universal since it depends only on the mass of the elec-
tron.
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Thus, stationarity is recovered over a cosmologica time
scale if v-1/H, where 1/H is the age of the Universe.
This gives an order of magnitude of the maximum
amount of the effective charge (and the most probable
since the initial distribution gives values of order m ) as
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