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Cosmic-string properties are studied in the framework of the minimal extension of the standard
e1ectroweak theory with an extra U(1) symmetry. Provided certain critical minimum values are
exceeded, currents can be trapped in a 8'-boson condensate within the vortex core, giving a behavior
qualitatively similar to that in the simplified U(1) x U(1) Witten model.
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INTRODUCTION

There has been considerable interest in cosmic
strings [1] which could have formed as topological vor-
tex defects in the early Universe, since strings are almost
the only possible defects that do not lead to a cosmo-
logical catastrophe [2] as happens for domain walls and
monopoles. Various scenarios have been proposed to ex-
plain the observed large-scale structure of the Universe [3]
and the formation of galaxies: models using both the
gravitational wakes produced by strings together with
dark matter succeeded in explaining the sheetlike struc-
ture [4], whereas superconducting string loops were the
basis for an explosive model [5] that reproduced the large
voids between sheets of galaxies.

The strings that were involved in these models had to
be formed at a grand unified theory (GUT) energy scale
in order to give correct orders of magnitude for the char-
acteristic lengths of the large-scale structure. However,
at such scales, the scenarios involving superconducting
strings were more recently shown to be untenable [6—8]
due to the survival of centrifugally supported relic loops
that would be responsible for a premature collapse of
the Universe. However, it has been argued [9] that low-
mass (as opposed to GUT energy scale) current-carrying
cosmic-string loops could be a dark-matter candidate,
the cosmic closure condition 0 = 1 yielding a mass per
unit string length of order (10 TeV), while GUT string
formation would have yielded a remnant energy density
corresponding to 0 ~ 10~e [7, 9] (0 growing slightly more
slowly than the square of the symmetry-breaking energy
scale).

It is therefore of interest to consider the possibility of
a field theory in which cosmic strings are generated at
an energy scale which could be comparable to that of the
standard electroweak symmetry breaking. Since the the-
ory of Glashow, Salam, and Weinberg [10] is such that the
vacuum manifold is simply connected, being isomorphic
to the three-sphere 8, topologically stable vortex defects
are not present after the phase transition (even though
stringlike solutions exist in this framework, as introduced
by Nambu [ll]). In order to satisfy the closure condition
by means of current-supported string loops [7, 8], keep-

ing in mind that electroweak-scale rings [12] would not

be sufficient for this purpose, it is necessary to extend
the electroweak model, the simplest possibility being the
symmetry breaking of an extra U(l) invariance.

Such extensions have been considered in the litera-
ture for various motivations connected with supersym-
metry or with GUT's. The supersymmetric extension
of the standard model requires at least two Higgs dou-
blets [13]; it is possible [14], in such a theory, to gauge
an extra U(l) symmetry and to break it at an a pri-
ori arbitrary energy scale, thereby obtaining the for-
mation of cosmic strings whose energy per unit length
is not constrained. The conclusion is similar in the
case of GUT's: many proposed Lie groups such as
SO(10), Es, or Es have been shown to yield cosmic
string formation [15] in which fermionic as well as bosonic
charged and neutral currents should be conserved [16].
[This is the case, in particular, within the schemes

[17] SO(10)~SU(5) x U(1)-+SU(3)x SU(2) x U(1) xU(l)
or from the superstring-inspired model [18]
Es -+SU(3) xSU(2) xU(1) xU(l) xU(1) in which at least
one new massive gauge boson has to be introduced. ] Spe-
cial emphasis on the phenomenological aspects [14, 19]
revealed that experimental data [20] do not conffict [21]
with these models provided the mass Mz of the new

gauge boson exceeds approximately 300—500 GeV, de-

pending on the couplings [22]. These considerations, to-
gether with the cosmological requirement stated above,
imply that the corresponding cosmic-string vortices, the
subject of the present work, should not be more massive

than roughly 1 g cm . The purpose of this article is con-

sequently to investigate the microscopic structure of the
strings arising in these models, so as to provide a basis for
further work concerned with macroscopic and cosmologi-
cal effects. We show that the strings under consideration
admit the formation of a W condensate (somehow sim-

ilar to that examined in Ref. [23]) that will support a
superconducting current of bosonic type, and we derive

an effective action for describing their dynamics.

I. EXTENDED ELECTROWEAK MODEL

At a symmetry-breaking phase transition G —+ H, a
Higgs field 4 acquires a nonzero vacuum expectation

46 3322 1992 The American Physical Society



I.O%'-MASS CURRENT-CARRYING COSMIC STRINGS 3323

value (VEV). In general, C belongs to an N-dimensional
representation of the gauge group G, so that fixing its
magnitude at the phase transition leaves N —1 variables
arbitrary: the vacuum is degenerate, being invariant un-
der the action of G/H (the quotient symmetry-group)
transformations. Cosmic strings appear as a consequence
of symmetry breaking whenever the vacuum degeneracy
group is not simply connected, i.e. , when its first homo-
topy group z'q is nontrivial: for instance, in the simplest
possibility U(1) -+ (0} [with mq(G/H) zi [U(1)] 2],
where the Higgs field VEV is (4)0 oc e'n&*v&, it is only
possible to remove the phase o,(x„)on scales smaller than
the correlation length so that loops exceeding this size
along which a varies by 2zn, with n an integer winding
number, might exist and are unshrinkable; these loops
surround vortex tubes in the core of which (C)s = 0,
i.e., cosmic strings. However, in the standard elec-
troweak symmetry-breaking scheme, SU(2) x U(1)~U(1),
this phenomenon does not occur since, in this case,
G/H SU(2), which is isomorphic to the three-sphere Ss
and therefore simply connected. In practice, this means
that it is possible to perform a gauge transformation (the
unitary gauge) which removes the Higgs field phases ev-
erywhere in space. (In this work, we shall disregard the
possibility of the so-called "semilocal" strings of the stan-
dard model [24] which have been shown [25] to be unsta-
ble for the parameter values measured at LEP.)

In order to generate cosmic strings, the simplest way is
to gauge an extra U(1) symmetry, thereby introducing a
gauge vector C~, and to require this symmetry to be bro-
ken by means of a (string-forming) Higgs field hereafter
denoted by Z. The model we shall work with belongs
to a more general family of models [14] which is now
well understood phenomenologically, so that this section

has been essentially included in order to fix the nota-
tion that is used throughout the rest of this work. The
new hypercharge introduced will be noted Ii, so that we
shall refer to the new invariance group as U(1)v. For
simplicity, we shall consider that the standard Glashow-
Salam-Weinberg fields, namely, the usual Higgs boson
[the SU(2)~ doublet] y, the SU(2)L xU(1)„gauge vec-
tors A", , B", and the fermionic fields Q, are coupled to
the new fields Z and C" by means of the "minimal exten-
sion" requirement: Z is invariant under SU(2)L, xU(1)~,
and symmetrically (contrary to most of the previous
models), y is invariant under the U(1)s transformations
(i.e., E~ = 0). Because of this choice of vanishing E&,
the new hypercharge has to be a linear combination of
the baryonic and leptonic numbers B and L, respec-
tively (this being necessary to gauge the Yukawa cou-
pling terms between &p and the fermions [14]). The sim-
plest possibility to cancel anomalies is to introduce a
"right-handed" neutrino field v„which transforms triv-
ially under SU(2)~xU(1)„, so that, in general, a Dirac
mass term for the neutrino is allowed (see, e.g. , Ref. [26]
for massive neutrino constraints and related dark-matter
candidates) .

Consequently, with a suitable normalization choice, it
may be shown that the F hypercharge coincides with B
L for the fermionic fields (although B Lmay b—e seen to
be still conserved), and one can set the new hypercharge
of the extra U(1) singlet to unity. The Lagrangian is thus
chosen to be

+ = ~w + ~s' + ~fermions&

with Z~ the bosonic part of the standard electroweak
Lagrangian, given by

Z~ = —-F„„F""—-G„„G""—(D„y)~(D"y) —A~(pt p —v~/2), (2)

the extra bosonic term given by

-H„„H""—(—D„Z)*(D"Z)—A~(~Z~ —v /2) —f((p (p —v~/2)((Z~ —v /2)

and the fermionic Lagrangian being the usual standard
model one with

. rII"D = V —igT A —ig —B —ig —CP P 2 P 2 P~ (4)

(p+
y =

~

+0 I, I"„'„=V„A'„—V„A'„+gs'~"A~&A"„, (5)i~ )'
Gpv = VpBv —VvBp, Hpv = V'pCv —7vC~, (6)

and v& 246 GeV.
We shall no longer be concerned with the fermionic

sector of the theory and postpone its examination for fu-

ture work, assuming here that the most important eEects
of currents generated in strings are those due to the W+
and Z bosons to which we now turn.

II. FIELD EQUATIONS IN THE UNITARY
GAUGE

As already mentioned in the Introduction, the new
gauge boson C& should be more massive than roughly
500 GeV, while the mass of the Higgs field Z should be
of order 10 TeV. Assuming the coupling constants to be
at most of order unity, this leads to the requirement that
the VEV of the Z field v is significantly larger than that
of &p, vs, . Therefore, we expect the phase transition where
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Z develops a nonzero VEV and may eventually condense
into cosmic strings to occur prior to the usual electroweak
symmetry breaking. For describing a vortex defect at a
classical level, we need to solve the Geld equations Chat
arise from variations of the Lagrangian (1); this requires
that we fix the gauges.

Consider first the U(l) I; fields. In general, we can write
the Higgs field Z as

z(~~) = ~(*~)e &*"&,

an integral winding number. Therefore, we use a gauge
in which a is identified with n8, with 8 the polar angle
in cylindrical coordinates.

Now, since Z is invariant under SU(2) I.xU(l)„ trans-
formations, we have not lost any freedom in the choice
of the latter gauge. Since the purpose here is to describe
classical fields (i.e., VEV's), it is convenient (for subse-
quent interpretation) to work in the SU(2)L, x U(1)„uni-
tary gauge in which only observable fields appear. This
transforms the SU(2)L, doublet y into

where the phase a, being undefined on the vortex line, is
impossible to remove by means of a smooth U(1)„trans-
formation. Instead, we make use of the definition of the
vortex as a topological defect: along any closed path sur-
rounding the string, the phase a. varies by 2mn, n being

v. + n(~)
E ~2 )

(8)

so that setting D„WP = [8„+ig(sA„+ cZ„)]WP, we
are left with the special form of the Lagrangian (1):

(D„—W—„—D„W„)(D"W+' —D"W+") — A„A"—" ——Z„„Z""—-H„„H""

II
—(8 o)2 —os

~

8 a+ —C
~

—-(8 rl)s —igW "W+"(sA„„+cZ„„)
IA ( IA 2 V)

(n +2v~n) -&
I

~ ——
I

——
I

~ ——
I (n +2v~n)

4

2 2 2

(v~+g) W+ W — s(v~+g) Z„——[(W+ W )s —W+sW s], (9)

where

1
(Ai„p iAs„), (10)

(Z„(
I

c 8 —sin8 '( l(As@ l
( A„) (, sin8M, cos8gr ) ( B„)'

the weak angle 8 is defined by tan 8~ = g'/g, and s—:sin 8, c = cos 8
The Euler-Lagrange equations arising from the variations of the Lagrangian (9) can then be derived to yield the

equations of motion of the extra U(1)~ fields:

( g"8"H„„=2o2
~
B,a+ —C„~,

)

8" (r
~
B„a+—C„j =0,

II

cia = o
~
B„a+—C„~ +2A (o —v /2)+ —(rP+2qv~)

)
(14)

and those of the standard" fields
2 2

Cri = (v~+rl) —W+ W + Z„+A~(rl +2v~(rl)+ f(o —v /2)

where the vectors A„, Z„, and WP satisfy

gsAs +sgsgs(W rsWs ~'( =Igs(W+W W W )+ s (W+As W +W As W+
)
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a„Z~" + igu„(W ~~W+"i) = igc(W+W-" —W-W+" )

2 + + —A +~— + +cl + + 2gv (17)

8"W„„—ig8"(As(„W„))= igAs(W„„—igAsi„W„)) +igW "A„~
2

+ '(w+ w-w- —w-'w+)+g—(~ + )'~- (18)

We shall investigate the solutions of these equations
in the next sections in order to show that the standard
electroweak vacuum is unstable around the vortices un-
der consideration: the Higgs boson rl as well as the gauge
vectors W+ and Zs are trapped in the string core, gener-
ating, as we shall show, many nontrivial currents so as to
yield a far more richer (and complicated) structure than
in the original Witten [16] superconducting cosmic string
model.

III. KIBBLE-TYPE VORTEX SOLUTION

In a vacuum where the U(1)~ singlet has its nominal
VEV v, the y-doublet VEV is measured as +2(~y[)p =
v~ 246 GeV. In a vortex line, however, where the
singlet VEV vanishes, we shall see that there is a cor-
responding shift in (~y~)s which turns out to exceed its
vacuum value, a result which can be interpreted as a
Higgs-doublet trapping within the string. In particular,
this implies that fermion masses, being directly related
to this latter VEV, are increased in the vortex core. This
is to be contrasted with the Witten model for which
fermionic fields, being coupled with the string-forming
Higgs field only, had vanishing masses in the vortex and
were possibly trapped in the form of zero modes.

We now turn more specifically to vortexlike solutions.
We shall consider a straight and stationary string gen-
erated by arbitrary choices of the phase of Z: since we
are looking at the microscopic structure of the string, it is
possible to neglect its curvature and to postulate axisym-
metry. In terms of the usual cylindrical coordinates, we
therefore seek a solution having the special form for (7),

Z = 0 (r)e'" ,
s

which implies, according to Eqs. (12) and (13), that the
only nonzero component of C" is Cs. The efFective vortex
background of the theory can then be described by means
of the functions a(r) and Q(r) defined by

Q(r)—:n + —Cs,g
2 (20)

an expression which is seen to vanish for r ~ oo: in-
tegrating Eq. (13) over an arbitrary surface 8 crossing
the string, and using the Stockes theorem, one finds the
usual relation (with C the three-dimensional part of the
vector C&) T""= Uu"u" —Tv"v", (22)

dE C = 4n—n/g"
as

(i.e. , the quantization of the "magnetic" fiux) indicating
that the magnitude of C behaves as ~C~ 2n—/g"r Th.is
is restated in terms of the field variables that are used
here by Cs ~ 2n/—g" and Cs ~ —2n/g"r2 because of
the cylindrical metric.

Let us first ask whether the background vortex solu-
tion in which E and Q obey the field equations (12)—(14),
and where the "standard" fields q, W+, Z, and A all be-
ing zero represent a solution to the equations of motions.
This is certainly the case for W+ = Z = A = 0 ev-
erywhere since these fields, according to the "minimal
extension" postulate, are coupled to neither Z nor C~.
This statement is no longer true for the Higgs field rl:
the SU(2)L, xU(1)„vacuum solution g = 0 is consistent
only with the U(1)~ vacuum solution o = v /~2. How-
ever, in the vicinity of the vortex core, one has o = 0.
This implies a corresponding shift in the p's VEV, or
stated differently, a nontrivial solution for g as a func-
tion of the distance to the core. The discussion on the
structure of the vortex in the presence of the real Higgs
boson rl proceeds in two steps: we exhibit a full solution
of the field equations (still restricting ourselves to the
case where W+ = Z = A = 0), and we show (numer-
ically) that the corresponding configuration is stable, a
conclusion which is necessary for the extension described
by the Lagrangian (1) to be reliable but otherwise far
from being obvious.

Consider a perturbation on the field rI. This transforms
Eq. (15) into

Clrj = v~f(0 —v /2) +g f(o' —v /2)+2A~v

(21)

whose right-hand side contains a term independent of rl:
unlike most of the previous models [16], the configuration
with rI(r) = 0 everywhere is not a solution of the classical
equations of motion. We are therefore led to conclude
that the standard Higgs field rp is trapped in the core
of the string. This fact, however, does not break the
Lorentz invariance along the string because of the real
nature of rl (it cannot be responsible for a current along
the string). Therefore, in a preferred frame in which
the energy-momentum tensor is diagonal and expressible
as [27)
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where a dot represents a derivative with respect to time.
This equation can be written in the form of a Schrodinger
equation

—Eh+ V(r)h = su h,

with the potential V(r) defined by

V(r) = f(o —v /2) + 2A~v + 6A~v~q.

The solution for g can therefore only be stable provided
Eq. (31) does not admit bound-state solutions; i.e., the
eigenvalues should all be positive. This will certainly
be the case if potential (32) is positive definite, so that
a sufficient condition for the stability. of this particular
solution with respect to perturbations in the Higgs scalar
g 1S

q(r) ) (vz/2 —o2)—
6A~v~ 3 '

or equivalently, in terms of dimensionless functions,

The right-hand side of this inequality is shown in Fig. 1
as the dotted curve, and it is seen that the Y field (the
dashed curve on the figure) actually exceeds the combi-
nation e as required. We performed an exploration over
many possible parameter values (ranging between 10 4

up to 10s) and we were always led to the same conclu-
sion: the result presented in Fig. 1 represents a generic
situation. Consequently, the potential V(r) in (32) is
numerically seen to be positive definite so that Eq. (28)
is systematically satisfied: although we do not have a

general proof, it turns out that the strings under consid-
eration are effectively stable as far as the Higgs field g is
concerned.

IV. POSSIBILITY OF A W CONDENSATE

P/ill 2govggtR +'ggo'g
PglX V

Explicitly, this gives

(35)

Since we do not consider fermions, the only possible
current is related with the W intermediate vector, and,
as the squared mass of this vector is positive definite,
the classically stable solution is W = 0: there is a pri
ori no current along the cosmic strings of this model.
However, in the presence of external fields, the situation
changes: there exists a critical magnetic field above which
this configuration becomes unstable, thereby leading to
a W condensate (this phenomenon was originally studied
in the framework of the standard model by Ambjprn and
Olesen [23)). Here, we make this statement more pre-
cise, emphasizing the possibility that the string tunnels
from the initial configuration (without current) to a new
(less energetic) configuration in which charged as well as
neutral vector fields are trapped: this section is essen-
tially devoted to the demonstration that such tunneling
processes can occur at least for some limited regions of
space, while in Sec. V, we complete the proof by showing
that the current-carrying strings are indeed globally less
energetic than the ordinary ones.

The energy associated with a particular configuration
is obtained by means of the energy-momentum tensor
given by variations of the Lagrangian (9) with respect to
the metric g~":

T""= (D"W ~ —D~W ")(D"W+ —D~W~+) + (D"W ~ —D~W ")(D~W+ —D~W+)
2

+2ig(sA&+cZ&)(W "W+~ —W+"W ~) + —(v&+rl) (W+"W "+W+"W ")

+g [W+ W (W+"W "+W+"W ")—W+ W "W "—W W+"W+"]
II II

+A»A" + Z»Z" + H"~H" + 2(8"o)(8"o)+ 2o
~

8"a+—C"
~ ~

8"o:+ —C"
~2 )

2
+(8"g)(8"g)+ (v~+il) Z"Z" +g""8, (36)

with which we can obtain the efFective potential V'+ for the W and Z fields as the time-and-gradients-independent
part of the static energy T~~:

2V'" = -(E'+ B'+K'+ N') + —(v~+ il)'[)W'('+ ~W~']

2
+ (v +il) [(Z ) + Z ]+ig(sE+cK) (W W+ —W+'W )

+ig(sB+cN) (W x W+)+ [W'( )W) + -(W+ x W ),2 1
(37)

where boldface letters represent vectors in the ordinary (thr""-dimensionnal) space, E and B being the electric and
the magnetic fields, with the symmetric definitions for the weak equivalent of the Maxwell fields, namely, K and N,
given by
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BZK =——VZt —,N —= 7' x Z. (38)

To find the minimum of this efFective potential, we look at a configuration having nonzero electric (and K) or
magnetic (and N) fields. Since we seek a particular current-carrying string solution, we shall restrict our attention to
electromagnetoweak fields having the cylindrical symmetry: E and K should be purely radial, and 8 and N should
be orthoradial, i.e. ,

Es = Ks = 0, E, = K, = 0, B„=N„= 0, B, = N, = 0. (39)

Let us first consider the so-called "electric" situation for which sE2+ cK2 ) sB2+ cN2. Then there exists a
preferred frame in which the "magnetic" fields B and N can be set to zero everywhere. In this frame, we can write
the potential given by Eq. (37) under assumptions (39) as

&'"(W) = -(E,'+ K,') +
4 (vp+ t7)'[lw'I'+ lw" I'+ lw'I'+ &'lw'I'I

2

+8, (v, + q)'[(z')'+ Iz"I'+ Iz'I'+ r'Iz'I'I

+ig(sE„+ cK„)(W 'W+" —W+'W ') + IW'I IWI + -(W+ x W ),2 1

which we minimize with respect to the various fields, assuming E„and K„ to be fixed. As the coefficients of W and
Ws are positive definite, we immediately obtain a minimum potential requirement as

W+' = W+'=0,

and we are left with the following system for W+t and W+":

2—(v~+tl) w ' —ig(sE„+ cK„)w "+2g w 'Iw"I2 —g2(w ")2w+t = 0,

(4I)

(42)

2—(v~+ tl) W "+ig(sE„+cK„)W '+2g W 'IW'I —g (W ') W+" = 0. (43)

Assuming W+" and W+' to both be nonzero, we can
restate the previous system as [multiplying Eq. (42) by
W+' and Eq. (43) by W+"]

2
V'"(W) = —(v~ + rl) 6 2g(sE„+cK„) IWI2

+2g IWI, (48)
2 2—(vy+n)'lw'I' =(, —(v, +n)'IW"I' =(*, (44) whose minimum is nonzero provided

g(v~ + t7) 6 4(sE„+cK„)( 0. (49)
where

( = —2g IW'I IW'I +ig(sE„+cK„)W+"W '

2(w+rW t)2- (45)

Since the right-hand side of Eq. (44) is real, we obtain

( = (*,which yields IW"I = IW I
and

2[(W
—I')2(W+t)2 (W+1')2(W —t)2I

ig(sE„+cK„)(W—"W+'+ W+"W ), (46)

which is only consistent with W "W+~ + W+"W ~ = 0,
so we finally obtain

W+" =+iW+',

which implies that the potential has the famous "Mexican
hat" form

Since the W field itself can be considered as the source of
this electric field, there exists a nonzero probability for
the vortex to tunnel locally from the ordinary configura-
tion to a charged one.

It should be remarked that the + or —sign in Eq. (47)
can be interpreted in terms of the electric field (without
considering K) as follows (assuming the coupling con-
stant g to be positive): for the choice W+" = +iW ",
it is necessary in order to have a W condensate, i.e., to
satisfy condition (49), that E„be positive, so the electric
field should be directed outward. This corresponds to a
positive electric charge per unit length. Conversely, for
the solution W+" = —iW ", the electric 6eld should be
directed inward, so that a negative electric charge per
unit length is trapped along the string.

Consider now the so-called "magnetic" situation where
sE2+ cK2 ( sB2+ cN2. As in the previous situation, it
is possible to select a preferred frame in which E and K
are zero everywhere so that Eq. (37), with the cylindrical
symmetry assumption (39), transforms to
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v' (w) = 2(Bs+ Ns) +
4 (v, + q)'[Iw'I'+ Iw"I'+ Iw'I'+ r'Iw'I']

+ (v. + ~)'[(z')'+ Iz"I'+ Iz'I'+ "Iz'I']

+ig(sBs+cNs)(W *W+' —W+*W ")+ IW'I IWI + -(W+ x W ) .1
(50)

The same arguments as in the previous "electric" sit-
uation show that, in this case, the minimum of the po-
tential (50) is given by

W+' = W+' =0 (51)

w+" = +iw+'. (52)

The effective potential for a "magnetic" configuration can
therefore be written as

2
V' (W) = —(vy + g) 6 2g(sBs + cNs) IWI. 2

+2g IWI4,

and we find a nonzero minimum in this case for

(53)

g(v~ + g) + 4(sBs + cNs) ( 0, (54)

with the same interpretation for the 6 sign as before.
The structure around a cosmic vortex is consequently

seen to generate local instabilities of the electromagnetic
vacuum. More precisely, since external electric or mag-
netic fields can be responsible for a change in the W mass
term, and since the W boson itself can be the source of
such electromagnetic fields, large Quctuations (i.e., hav-
ing a low, but nonzero, probability to occur) can be sta
bilized around the string, leading to local condensates.
Therefore, the W = 0 configuration represents only a lo-
cal, i.e., nonglobal, minimum of the potential, and thus a
metastable state. We shall now discuss the global proper
ties of the fiuctuations to conclude that current-carrying
strings are efFectively stable, whereas ordinary vortices
are only metastable.

V. EFPECTIVE ACTION, STABLE STATES

The dynamics of the vortices under consideration here
are conveniently described by means of an efFective ac-
tion [27] which is, in principle, identified with the energy
per unit length U or the tension T depending on whether
the string is "magnetic" or "electric." In both of these
situations, the W boson behaves as a scalar field in the
transverse plane, so we can express its longitudinal com-
ponents in the form

y( ) +i/(t or z)
t or z — wrJ~ (55)

where the purely radial dependence of the amplitude is
a consequence of Eq. (15). This form, together with as-
sumptions (39), once inserted in the energy-momentum
tensor, yield the desired efFective action: it is shown that
the corresponding field equations reproduce Eqs. (12)—
(18) under the same assumptions. This effective action,
in turn, is used to demonstrate that the stable string
solution is that for which W g G.

In order to describe the macroscopic dynamical behav-
ior of the strings we have been considering thus far, we
need to compute the equation of state, i.e., the energy
per unit length U and the tension T defined by

(r = 2v J r dr T", T = —2v f r dr T", (56)

in the preferred frame where Ti'" is diagonal, as well as
the various conserved currents defined below (see next
section).

In order to show that these quantities are suitable
as efFective actions for describing spacelike or timelike
current-carrying vortices, we first consider an "electric"
situation: one can set W+ = T(r)e'"~~l [we shall now
consider the + sign in Eqs. (47) and (52)] to obtain, still
in the preferred frame in which the only nonzero compo-
nents of A and Z are Ag and ZZ,

lz 0.2 z z

l
= Vfr2dvr~ T' +v' + —q' + —A( + —Z( + „v v+ v + (vv+g) Z& +V (T, At, Z&)+V(v, g) ~

(57)

T =2m r r T +0' +-g —— t —-Zt + + — v~+g Zt +V, Tt t&Zt +V +~/
( dz, z l,z l,z l,z Q' 0 Q g & z +
l 2 2 ' 2 ' g" r r 8c

(58)
where the potentials are defined by
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2

VP(T)Ag, Zg) =2g T y T2 (BggygsAg ~gcZ)) y —(v~ ~@) +2g(sA', ycZ,') (59)

V = —A~(rj +2v~rl) yA (o —v /2) y —(g ~2v~rl)(cr —v /2).

It sufBces to vary the tension T with respect to the various Gelds involved to Gnd

o"+r 'o' = oQ /r +2A cr(o —v /2) + —o(g +2v~q),

which is equivalent to Eq. (14),

Qn —1QI 112 2Q

which is Eq. (12),
W 2

rl" + r 'rl' = (v~ + rl) g T —
2 Z, y A~(rI y 2v~rl) y f(o —v /2)

(6O)

(61)

(63)

i.e., Eq. (15) under assumption (47),
2

T"yr 'T'=4g T ~ —(v~~g) y2g(sA,'ycZ, ') y(Bgg+gsAg+g Zcg) T, (64)

which can be seen to be equivalent to Eq. (18) for v = t, assuming (41) to hold, and finally the equations corresponding
to Eqs. (16) and (17), also for v = t,

A", + r i
A~ = — —(rT ) + 2gsT (Bqg+ gsAq + gcZq),r dr (65)

2

Z,
"p r 'Z,' = — (rT )—+ 2gcT (Bqg + gsAq + gcZq) + (v~ + rl) Zgr dr 4' (66)

The corresponding expressions in the "magnetic" configuration are found, using in this case only the z component
of the fields A and Z and W+ = T(r)e'&&'~, as

I2 ~2 2 2
V=2~ rdr

~

T"+~"+-rl" +-A", y-Z,'s+ „, , +, +,(v, +ri)'Z2+V+(T, A„Z,)+V(~, rl)
~

(67)

and

T=2m r r +o +-g ——,—-Z, + +& Is a 1a 1 ls 1 Is Q" o'Q'
l 2 2 2 g T f'

2

(v +rl)'Z,'+V (T, A„Z,) yV(o, il) i,

(68)

with the potential V~+ expressible as

2

V+(T, A„Z,) = 2g'T' y T' (O,y + gsA, + gcZ, )' y g—(v~ + rI)' + 2g(sA', + cZ,') .

Variations of the energy per unit length yield the same equations as in the previous case, with the substitution
t ~ z, except for Eqs. (63) and (64) which transform according to the original equations (15) and (18), as

2
g" +r g' = (v~+g) g T + 2Z, +A~(rl +2v~g)+ f(o —v /2)

W

(7o)

2
T"+ r 'T' = 4g T + —(v~ ~ g) —2g(sA,' y cZ,') —(8,@~ gsA, y gcZ, ) T.
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Performing a Lorentz boost along the string for both
"magnetic" and "electric" states, i.e., in the computation
of the energy per unit length and the tension, yields equa-
tions for A& and Zi in a "magnetic" situation (A, and Z,
in an "electric" one) that are equivalent to Eqs. (65) and
(66) and linear in Aq, Z&, A„and Z, . Since regularity at
r = 0 requires that the derivatives of these fields should
vanish at the origin, we can define a new function P, by
means of

[8tg+ gsAi+ gcZt](t) = [8tg+ gsAt + gcZi](0)P, (r),
(72)

[8,$+ gsA, + gcZ, ](r) = [8,$+ gsA, + gcZ, ](0)P,(r),

which allows one to define the fundamental parameter of
the current-carrying vortex ts as

[8~@+ gsA& + gcZ&]~ —[8,@+ gsA, + gcZ, ]s = ts&~,

(73)

/2f „ o'
Tp=2vr r r ~' +-g + + +V

2 gu2r2 r2

(74)

whereas the perturbed one yields

this parameter being the only entirely free parameter
needed to describe any particular configuration [27, 30,
31], and whose positive (negative) sign reflects the "mag-
netic" ("electric" ) nature of the vortex since it determines
the spacelike (timelike) character of the Ncether currents
j„', j„, and j~+ defined in Sec. VI. It should be em-
phasized that, unlike what occurs in the original model
of Witten, the knowledge of the function P„ is not suffi-
cient to determine the complete structure of the vortex
since it depends on both A and Z which are not subject
to the same equations. However, fixing ur allows, in prin-
ciple, computation of this structure without ambiguity,
so this parameter is indeed the fundamental one.

In order to know whether or not charged configurations
actually exist as solutions of the equations of motion, we
consider an "electric" situation (results being similar in
case a "magnetic" configuration is studied) for which the
effective tension, seen as a functional over the field func-
tions T, At, Z&, 0, tl, and Q, should be minimized with
respect to these fields. As we have seen in the previous
section, there exists a solution to the equations of mo-
tion for which T = Aq ——Zz ——0. This solution would
be strictly stable if it led to an absolute minimum of the
functional T. We now consider a perturbation of this
solution, having nonzero electromagnetoweak fields, to
argue that there exists a current-carrying configuration
for which T is less than for an ordinary configuration;
provided the action is bounded from below, this implies
that W g 0 states are absolutely stable (at least in the
short-wavelength limit to which the present analysis is
restricted) .

Indeed, the unperturbed solution yields a tension Tp
given by

Ti ——Tp+2x r r ——,+Z,
2

2

(ti +tl) Z, +V,+ ~.

Current-carrying solutions exist if there exist electromag-
netoweak field functions such that Ti ( To, and subject
to the boundary conditions

T'(0) = 0, T(oo) = 0,

A', (0) = 0, Aq(t') oc ln(r) for r ~ oo,

Zq(0) = 0, Zt, (oo) = 0.

(76)

rn2CC vortex

0

Vv itten model Modified electroweak model

FIG. 2. Comparison between allowed ranges (filled sr
rays) of the variation of the phase gradient m of the charge
carrier in the Witten model (left) snd in the modified version
of the electrowesk theory (right) as functions of the couphng
constant g (sud g' in the latter case). This qualitative sketch
shows that, contrary to the Witten model, the coupling con-
stants g and g' cannot be set simultaneously to zero so that
the global limit is trivial. In this figure, the straight dashed
lines represent the limiting values m = —mc~ ~«„m, the
mass of the current carrier in vacuum, and tU f7Lgt
the e6ective mass of the current carrier in the core of the
vortex.

The existence of such solutions may be seen to be only
dependent on the amplitude of At, i.e., on ts, since this
field gives the leading terms in the integral Ti due to the
logarithmic divergence. Therefore, the uncharged state
is only locally stable, having a nonzero probability to
tunnel to a current-carrying state having a fundamental
parameter ts exceeding in magnitude the critical one that
leads to Ti = To, smaller values leading to Ti ) To.

One important difFerence can already be noticed with
the original model of Witten [16]: as shown in Fig. 2,
the available range for the parameter ts is much more re-
stricted here than in the Witten situation. Indeed, there
exists a gap between the possible electric and magnetic
states which does not exist in the version of Witten:
bosonic-current properties of the strings of the present
model are restricted to those having large electric or mag-
netic fields. This is to be contrasted with the original
model of Witten in which the coupling constant e, being
arbitrary, could be set to zero, allowing a global limit [30,
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32]. In the present model, however, this limit does not
exist (at least as far as bosonic currents are concerned)
since the various currents, arising from a nonzero value
of the Beld W, can only be nontrivially zero in case the
coupling constants g and g' are both nonzero.

grangian. Since it is invariant under changes in the phase
of W, there exists a conserved No.'ther current,

6Z + 6'l:

b(ByW ) -b(ByW+)'
whose internal components (i.e. , lying along the axis of
the string) are, with a Latin a index to denote z or t,

VI. STRING CURRENTS j™= eT[B Q+ g(sA, + cZ )], (78)

We showed that local large-amplitude Buctuations
yield instabilities so that the vacuum surrounding a cos-
mic string can be abolutely stabilized through the break-
ing of the electromagnetic symmetry: the W field ac-
quires a nonzero VEV. Equations (16) and (17) [or,
equivalently, (65) and (66)] consequently imply that A
and Z are both nonzero. This corresponds to nontriv-
ial electromagnetic, charged, and neutral currents [i.e.,
the four SU(2) ~ x U(l) „phase invariances] which we shall
now investigate.

To start with, let us consider form (9) of the La-

( .g .g' l &(p+~
'

p ~

2 " 2 )&'p)
which we write as

(79)

which define the electromagnetic part of the total current

(e = gs is the usual electromagnetic coupling constant)
since it is directly (i.e. , at the tree order) coupled with

the photon A.
We shall now consider the Higgs-doublet kinetic term

iC in the Lagrangian (1) given by

.g (cos2ew + g + p g pK= — B„—i-
~2 ( c Zy+2SAy

~
(p —1 W (p — By+'i—Zy &p

—i . W tpy (8o)

This term allows us to compute a charge-coupled and
a weak neutral current associated (via the Ncsther the-
orem) with the required invariance of the initial La
grangian (1) under whatever changes in the SU(2)~
phases of y+ and yp: this yields a current coupled with
the W boson j+ expressible in the unitary gauge as

W+(v~ + g), (81)

as well as a Z-coupled current j„",again in the unitary
gauge

j,"= Z (v~+g)z.
cos ew

(82)

As stated before, these currents are both nonzero accord-

ing to Eqs. (18) and (17) if W g 0.
One can define a total current g, as the set

{j', j+,j ), the four components of which are related,
as mentioned above, in such a way that the knowledge of
the fundamental parameter ur is sufficient to their overall
determination. Therefore, in the simplest possible ex-
tension of the standard electroweak model, we find that
the cosmic strings which form at the symmetry-breaking
phase transition can be either of the (metsstable) Kib-
ble kind, or (stable) Witten kind. In the latter case,
however, the total current Bowing along the string al-
ways has not only one electromagnetic-coupled compo-
nent, but also two charged and one neutral components.
The vortex structure is therefore describable by means
of four difFerent (though related) currents which cannot
vanish separately.

CONCLUSION

The microscopic structure of cosmic strings arising at
the symmetry-breaking phase transition of the minimal

extension of the standard electroweak theory is investi-

gated in detail. This reveals that such strings are en-

dowed with current-carrying properties that produce a
much more complicated internal structure than in the
original superconducting cosmic-string model proposed

by Witten [16]. However, they can conveniently be de-

scribed by this latter model as an approximation in which

neutral currents as well as (more generally) any currents

not coupled to the photon at the tree order have been

neglected.
It is found that a "minimally coupled" (i.e. , only

through scalar-scalar interaction) topological vortex de-

fect modifies locally the standard electroweak vacuum

structure in such a way that the usual Higgs boson gets

trapped in the core of the strings, the corresponding field

configuration being shown to be stable against pertur-
bation modes of the Higgs-field VEV. Owing to the fact
that the baryon and lepton masses are related to this lat-

ter VEV, we believe that an examination of the potential

cosmological infiuence of such strings deserves theoretical

attention in the near future.
An important characteristic feature of the strings that

are produced by the model of Witten is that electro-

magnetic gauge symmetry is spontaneously broken in

their core by means of a charged scalar Beld acquiring a
nonzero VEV due to its coupling with the string-forming

field. This phenomenon is independent of the actual
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value of the electromagnetic coupling constant e, so that
the latter is arbitrary, allowing for a global limit e = 0.
In the present model, however, the symmetry is not bro-

ken by means of a hypothetical scalar field but by the W
vectorial field. It is shown that this implies that such a
global limit cannot be defined here: electromagnetic sym-

metry breaking on the vortex core achieved by a charged
vector requires the effective squared mass of this vector
to become negative. As this mass is calculated via the
Higgs-boson VEV (a quantity which is positive definite)
and the electromagnetic fields through the coupling con-

stant, the latter should not vanish for any local instability
to be present, a condition which is necessary for current
possibilities.

Furthermore, the electromagnetic symmetry breaking
is not induced by the Higgs mechanism; i.e., it is not an
instantaneous process, but rather by a quantum tunnel-

ing process: it is only locally that the energy per unit

length is minimized for vanishing currents, so the cor-

responding state is found to be metastable. Globally,
however, a new (absolute) minimum is found for current-
carrying configurations. Thus, it is only through the fiuc-

tuations of the W field that the string may reach a stable
state, a process which requires much more time (due to
the low probability) than the usual Higgs mechanism.
An interesting cosmological consequence of this conclu-
sion is that electromagnetic effects of such strings should

probably be disregarded during the very early epoch of
the Universe (e.g. , before the quark-hadron phase tran-
sition).

The present analysis is restricted to the bosonic part
of the model but its conclusions may not be drastically
changed by the inclusion of fermionic fields. Indeed, if
fermions are trapped along the vortex (presumably not
in the form of the zero modes used by Witten [16] since
their masses do not vanish), the most important effect
(regarding the bosonic configuration) should be in an en-
hancement of the tunneling probability: if fermions were
responsible for the generation of an electromagnetic cur-
rent, they would increase the background amplitude of
the vector potential A, and finally the tunneling probe
bility discussed above. Further work is, however, needed
to conclude as to the existence of fermionic condensate
in this model.

It should again be remarked that even though the
strings described here are gravitationally insignificant,
having a negligible mass (per unit length) compared with
the characteristic GUT energy scale, they might still be
cosmologically relevant for various applications such as
primordial inhomogeneous nucleosynthesis or dark mat-
ter.
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