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Properties of radiation near the black-hole horizon and the second law of thermodynamics
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By considering a gedanken experiment of adiabatically lowering a box containing matter with rest en-

ergy E and entropy S into a black hole, Bekenstein claimed that the necessary condition for the validity

of the generalized second law of thermodynamics is S/E 2mR, where R is the effective radius of the
box. Unruh and Wald claimed that this condition is not necessary but the acceleration radiation can
guarantee the generalized second law. In this paper, we point out that the Unruh-Wald conclusion does
not hold because Hawking radiation near the horizon is not thermal. Bekenstein's conclusion does not
hold because the thin box approximation is not correct near the horizon. Neither Hawking radiation (or
acceleration radiation) nor S/E & 2m.R can guarantee the second law. We have sufficient reasons to con-
jecture that gravitation can influence the matter equation of state. For radiation, the usual equation of
state p=aT and S= —,aT' does not hold in the strong gravitation field, e.g., near the black-hole hor-

izon. We derive the equation of state for radiation near the horizon and find that it is very different from

the equation in flat spacetime. The second law of thermodynamics can be satisfied if we impose some re-

strictions on one parameter of the equation of state. As a corollary, we get an upper bound on S/E
which resembles Bekenstein's result.

PACS number(s): 97.60.Lf, 05.90.+m

I. INTRODUCTION

In general it is assumed that the entropy of a black
hole is —,

' of the horizon's area (c =fi=G=Kit=1).
When matter interacts with a black hole, the second law
of thermodynamics means that the sum of the entropy of
the matter and —,

' of the horizon's area never decreases
(Bekenstein called it the generalized second law of ther-
modynamics [1]). To test this conjecture, Bekenstein and
Unruh and Wald discussed the following gedanken exper-
iment [2,3]: A box containing matter of rest energy E
and entropy S is lowered adiabatically from infinity to a
Schwarzschild black hole; after opening the box at some
desired position and releasing the contents into the black
hole, the empty box is pulled back to infinity.

In Bekenstein's discussion he did not consider the
effect of Hawking radiation [4]. The box is dropped on
the surface of the horizon; after opening the box and
releasing its contents into the black hole, the empty box
is pulled back to infinity (to cancel the effect of the box's
weight). The increase of the horizon's area is SmER (R is
the effective radius of the box) which is the miniinum [2].
Bekenstein claimed that the necessary condition (also
sufficient for this gedanken experiment) for the validity of
the second law of thermodynamics is

S/E~2~R .
Unruh and Wald pointed out that the box cannot be

dropped on the surface of the horizon if we consider the
effect of Hawking radiation (or acceleration radiation
[5]). There is a fioating point and if we open the box and
release the contents at that point the increase of entropy
of the black hole takes the minimum, which is just the en-

tropy of the thermal radiation with rest energy E and

volume V (the volume of the box). The existence of
Hawking radiation preserves the validity of the general-
ized second law because the thermal radiation is the state
of matter and radiation which maximizes entropy at a
fixed energy and volume [3].

In the argument of Unruh and Wald, they assumed
that the Hawking radiation from infinity to the horizon is
always thermal, so the pressure of radiation approaches
infinity as the box approaches the horizon, and the box
cannot be dropped on the horizon. But in general it is
recognized that the particle concept cannot be used near
the horizon and the most appropriate means to describe
the radiation is the stress tensor [6,7]. From the stress
tensor of black-hole radiation [6] we find that the radia-
tion near the horizon is not thermal; its pressure and en-

ergy density are both finite and not very large on the hor-
izon. So the argument of Unruh and Wald does not hold;
we can drop the box on the horizon as long as the weight
of the box is suSciently large. Hawking radiation cannot
guarantee the generalized second law.

The argument of Bekenstein is tenable only in the
thin-box approximation a dx /dy «x where x =Q —

goo
is the redshift factor, y is the proper distance from the
box to the horizon and a is the side length of box in the
radial direction of the black hole. The minimum increase
of the horizon's area is [1] 8mEY, where Y is the proper
distance from the box's center of mass to the horizon
when the box is on the horizon; only in the thin-box ap-
proximation do we have Y=a/2=R, and Bekenstein's
argument holds. But near the horizon
a dx /dy =a /4M =x (M is the mass of the black hole) so
the thin-box approximation is not correct. The gravita-
tional field near the horizon is so strong that the distribu-
tion of matter in the box is not homogeneous. The distri-
bution depends on the equation of state of the matter. If
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the contents of the box is thermal radiation and from
infinity to the horizon the equation of state is always

p=aT, s =—', aT, a=const, (2)

II. ORDINARY EQUATION OF STATE OF RADIATION
AND THE SECOND LMV OF THERMODYNAMICS

A. The gedanken experiment

A Schwarzschild black hole (SBH) with mass M is put
in the center of a spherical thin cavity with suSciently

where p is the energy density, s is the entropy density and
T is the local temperature, then we can prove that Y~O
as the box approaches the horizon. Hence Bekenstein's
claim does not hold; even if Eq. (1) is correct, it cannot
guarantee the validity of the generalized second law.

Hawking radiation near the horizon is not thermal,
which leads us to conjecture that the gravitational field
can influence the equation of state of matter, so Eq. (2}
might not be correct when the box is near the horizon.
In fact this is necessary because we can reasonably
demand that the entropy and rest energy of the radiation
are constants as the box is slowly lowering, and this is in-
consistent with Eq. (2) (the proof is left in Sec. III). In
this paper we study the equation of state of radiation near
the horizon and find that it is very different from Eq. (2).
The second law of thermodynamics can be satisfied if we
impose some restrictions on one parameter of the equa-
tion of state.

In Sec. II we first point out that the work done by the
weight of radiation in the box on the outside is equal to
its rest energy as the box is adiabatically lowered onto the
horizon from infinity if Eq. (2) is also correct near the
horizon; i.e., the radiation in the box takes an infinite red-
shift and its energy seen at infinity is zero. Second, the
work to overcome the pressure of Hawking radiation is
finite and not very large, so Hawking radiation cannot
prevent the box from lowering onto the horizon. After
the radiation in the box is released into the black hole,
the above conclusions lead to the result that the increase
of entropy of the black-hole and Hawking radiation is
smaller than the entropy of radiation in the box; this
violates the second law of thermodynamics. There are
only two alternatives: one is that Eq. (2) is correct and
the box cannot be dropped onto the horizon's surface;
i.e., there is a minimum distance from the bottom of the
box to the horizon which is not zero; the other is that the
box can be dropped onto the horizon and Eq. (2) is not
correct near the horizon.

In Sec. III for suScient reasons we suggest that the or-
dinary equation of state of radiation is not correct near
the horizon, which means that gravitation can in6uence
the equation of state of matter. We have derived the
equation of state of radiation near the horizon which is
very different from Eq. (2). We find that if the parameter
Ko of the equation of state satisfies some condition, the
box can be dropped on the horizon and the second law of
thermodynamics is satisfied. As a corollary we get an
upper bound on S/E similar to Eq. (1).

We summarize and conclude in Sec. IV.

e=E,—8'„, (3)

where W„ is the work done at infinity and E„ is the rest
energy of the radiation in the box:

E,=aT„aA, a=const . (4)

By virtue of the no-hair theorem (NHT) the increase of
entropy of the cold sink is

b,S=a/Ta„.
Proof. E and S are the energy and entropy of the cold

sink; then NHT leads to

E=E(M, ro), S=S(M,ro),

or

E=E(S,ro)

so

and

5E= BE 5S= TaH5S
BS ro =const

bS=e/TaH (ES=5S, e=5E) . 0
The second law of thermodynamics demands that

hS ~S„

where S„ is the entropy of the radiation in the box:

S,=4aT„aA .

W„can be written as

W = $V) —8"2,

where W& is the work done by the weight of the radiation
in the box and W2 is the work to overcome the buoyancy
of HR.

B. Calculation of $V&

Let the proper distance form the bottom of the box to
the horizon be I; then the work done by the weight of the
radiation in the box on the outside is [3]

large radius ro, negligible mass, and perfect re6ectability.
Now let the SBH be in thermal equilibrium with the
Hawking radiation in the cavity. We fill a small box of
volume a A (a is the height of the box and A is its bottom
area} with thermal radiation of temperature T„at infinity
(the box is adiabatic), slowly lower the box through a
small hole on the cavity to the black hole, and open the
door at the bottom of the box to release the radiation
when the proper distance from the bottom of box to the
horizon is I, then slowly draw back the box (with the door
open) to infinity and a cycle is completed.

The temperature of Hawking radiation (HR) is
Ta„=1/Sm M. We assume that T„»TaH and call
HR+SBH the cold sink. The increase of the cold sink's
energy in the above cycle is
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8'1 =E„—E,
pyx ydy,

I
(10)

T(y)x (y ) =const = To( 1 ) . (13)

Assuming the usual state equation (2) is always correct,
we insert Eq. (13) into (2):

where y is the proper distance from the point in the box
to the horizon, p(y) is the energy density of radiation in
the box, and x(y) is the redshift factor

x (y) =Q —g„(y)= [1—2M/r(y) ]'~

where r(y} is the coordinate distance corresponding to
the proper distance y.

The entropy of the radiation in the box is invariant as
the box is lowering because the process is adiabotic:

A f s(y)dy =S„, (12)

where S(y) is the entropy density. Thermal equilibrium
requires that [8]

C. Calculation of S'&

When the distance from the bottom of the box to the
horizon is l, the work done on the cold sink on the out-
side to overcome the buoyance of HR is [3]

L
W2= A f (P,x, P2—x2)dl, (23)

where x, and P1 are the redshift factor and the pressure
of HR at the bottom of the box, respectively, x2 and P2
are the redshift factor and the pressure of HR at the top
of the box, respectively, and L is the proper distance from
the wall of the cavity to the horizon. Through a simple
variable transformation, Eq. (23) can be written as

W —A Pyxydy (24)

which means that 8'2 depends only on the values of Px in
l —l+a. When the box approaches the horizon W2 de-
pends only on the values of Px near the horizon.

Unruh and Wald believed that HR near the horizon is
thermal [3]; then

p(y)=aTO/x (y),

s(y)= —43aTO/x (y) .

From Eqs. (12) and (15) we get

From Eqs. (10) and (14) we obtain

E=aT4A
x

Then from (16) and (17) we have

E= 4TOS

(14)

(15)

(16)

(17}

(18)

P(y)= —,'aT (y)= —,'aTBH/x (y)

T', = —3PO(f —h),
T"„=Po(f+h),
T',=T&~=P,f,

(25)

and on the horizon (y =0) we have x(0)=0 and
P(0)—+DO. Inserting it into Eq. (24) it is found that
W2~0C as l~O which means that the box cannot be
dropped on the horizon and there is a floating point out-
side the horizon. But as mentioned above the best
method to describe the radiation near the horizon is the
stress tensor from which we will see that HR near the
horizon is not thermal. For the SBH the stress tensor (of
a conformal coupled scalar field) is [6]

x(y) =y/4M . (19)

Inserting (19) into (16) we get (1 «a « rH )

where To(l ) is determined by Eq. (16). When

y &&rH =2M We have
where Po= —,'aTqH and

(r)= 1 (4 6M Ir) (2M —Ir)—
(1 —2M /r)

h(r}=24
r

(26)

(27)

Sp 3
a To A 32M l

From this and Eq. (7),
1/3 2/3

From this we find that the radiation near the horizon
(r ~2M) is not thermal and its radial pressure is

To(1)= a I

32M " M
(20) P(r) =T'„= 36PO (28)

Inserting (20) into (18) and (9) we obtain
' 1/3

E(1)=E„
32M

(21)

which is finite and not very large. So in the situation

T, &&TzH the box can be dropped on the horizon; i.e.,
there is no Boating point outside the horizon. From Eqs.
(28}and (24) we have

8' =E„1—
1 r

1

32

1/3
1

M
a 1 1 «a «r . (22)H

W2 ——AP(2M) f x(y)dy(1~0)

We find that E~0 and W, ~E„as 1~0 (i.e., the box is

on the horizon). =aT~&Ha A (3a +61)/2M (1 &&a &&rH ) (29)
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1~0
= —,'aTBHaA =12~aT&Ha A . (30) AaT0 f x dy-1 f y dy

I I

Comparing Eqs. (22) and (29) we find that W2 « W, if
T, » T&H and I &(a &(rH.

D. h,S and the second law of thermodynamics

Insert (22) and (29) into (8) and (3) we obtain
(1 «a «rH)

' 1/3

E M 'a' I +—'aT aA (31)
32

1~0
~ 8/3I —3

~
—1/3

The right-hand side of (35) is E„, so they conflict with
each other. G

These two reasons sufficiently indicate that gravitation
can affect the equation of state of matter, and near the
horizon the equation of state of radiation in the box is not
(34). Let us now investigate the equation of state of radi-
ation near the horizon.

We assume that s and p of the radiation in the box
satisfy the equation for any l:

as 1~0
s =Cpx, (37)

e~ aTB—Ha A/M .4 2

2
(32)

By (5) and (32), the increase of entropy of the cold sink is

hS= aTBHa—A/M «S„(1=0)3
(33)

which violates the second law of thermodynamics. This
indicates whether the box cannot be dropped on the hor-
izon; i.e., there is a positive minimum of 1, or the equa-
tion of state (2) is not correct for the radiation in the box
near the horizon. From the above arguments we know
that the pressure of HR is finite and not very large every-
where from infinity to the horizon; i.e., the minimum of 1

is zero. We will see in the next section that we have
sufficient reasons to infer that Eq. (2) is not correct when
the box is near the horizon.

d(xp) dx
dJP

The thermal equilibrium indicates

Tx = To, To = To( l ) .
Insert (37) and (40) into (38) we get

(39)

(40)

where x =x(y) is the redshift factor and C =C(l) is a pa-
rameter depending on the position of the box and is con-
stant through the box. Later we will see that Eq. (37) re-
turns to the usual relation of s and p for the radiation in
flat spacetime when the box is far from the horizon. By
virtue of the law of thermodynamics and fluid mechanics
we have [3]

(38)

III. EQUATION OF STATE OF RADIATION
NEAR THE HORIZON AND THE

SECOND LAW OF THERMODYNAMICS

p=(CT0 —1)p .

From (39}and (41) we have

p —pox

po po(1) 0 P 1) CTO/(1 CTO)

(41)

(42)
In Sec. II, we have assumed that the radiation in the

box is always described by the equation of state

p=aT, s=4aT (34)

which results in b,S &S„as the box is dropped on the
horizon, so the second law of thermodynamics is violat-
ed. This probably means that Eq. (34) is not correct
when the box is near the horizon. There are two reasons
to support this point.

(i) Hawking radiation near the horizon is not thermal,
which enlightens us that gravitation can a6'ect the equa-
tion of state of matter.

(ii} As the box is slowly lowering to the horizon we can
reasonably require that the rest energy and entropy of ra-
diation in the box be invariant,

A f pdy=E„, (35)

A f sdy=S„, (36)

and (35), (36), and (34) are inconsistent near the horizon.
Proof. (34}, (36) and T= To/x lead to To-1 i~ (1~0).

The left-hand side of (35) is

so

C(l~ ~ )=S„/E„=',/T„— (43)

which is just C in flat spacetime. It is not difficult to
prove that (34) is a good approximation of the equation of
state of radiation when I »rH.

Let us look again at the situation 1~0. Inserting (42)
and (37) into (35) and using x(y)=y/4M (y «rH) we
find

1 a
(+I 4M

/+2 4M

which is correct for any 1; po and g are determined by the
constraints (35) and (36).

Now let us show that Eq. (37) returns to the usual rela-
tion in flat spacetime 1~~. Insert (42) and (37) into (35)
and (36) we find that [x( 00 )~1]

E, =poaA, S,=CpoaA
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from which we get To(l) = TzH only if l =0 .

where

2 —CTBH y (1~0),
CTBH y —1

This is because

E aE a(~S)

and

y =yCTBH

Define

y =—KQT„

aT4

(y' —1)(a /4M)(2 —y') /(y' —1)

(45)

(46)

(47}

this means that ES takes the minimum as 1=0. If
To(1 =0) & TaH and To(l ~ Oo ) ) TaH, there must exist a
position I =10)0 where To(io)=TaH, and this means
that the process of opening the box to release the radia-
tion at lo is reversible and bS(1 =lo) is the minimum,
which is in conflict with the above conclusion. So
Tp TBH. Although it has been proved only in the case
1~0, it is very easy to verify that (55) holds for any 1.

From (50) and (55) we obtain

k =1/CTaH,

ko —=E(1~0)= 1/TaH C(l +0) . —

Equation (44) can be written as

(48}
ko~ —,'(y+1) .

C. An upper bound on S/E

(56)

2kp —y((l~0)=
y —kp

(49)
According to the condition that p(y~0) is finite we

find

From (42) and (49) we have

Tp(l ~0)—(2ko 1 )TaH

Equations (37), (42}, (44), (46), and (50) have determined
the equation of state of radiation in the box as I ~0 and
kp is a parameter depending on a and T„. Now let us
make some remarks.

A. The second law of thermodynamics

First let us examine whether or not the second law of
thermodynamics is satisfied. From (10), (37), and (36) we
have

g(1=0)~0 .

From (49) and (57) we have

—,'y kp y

and from (56) furthermore

—,'(y+1) & k y;
hence,

—,'(y+1}&y, i.e. , y~ 1 .

From this and (45) and S„/E,= 4, /T„we have

(57)

(58)

(59)

1E= Sr =kp TBHSp (51)

where we have used (48) in the last stage. Inserting (51)
into (3), (5), and (9),

S„/E„&2@ra . (60)

S„/E„&2n.min(a, b, c) . (61)

Assume that the box is a cube; with volume a XbXc,
then

AS=kpS, + W2

BH

The second law of therrnodynarnics demands that

(52} As the thermal radiation is the state of rnatter and radia-
tion which maximizes entropy with a fixed rest energy
and volume [9], for any system of ordinary matter and ra-
diation with rest energy E and volume a Xb Xc we have

hS ~S„. (53) S/E &2m min(a, b, c) (62)

From (52), (53), and W2/TaH «S„(so disregard the
term Wz /TaH ) we have

which is similar to Eq. (1) given by Bekenstein.

kp~1, (54) D. Necessary and suf5cient conditions for hS =S,

which is the condition of the validity of the second law of
thermodynamics.

B. A restriction on the value of ko

In the situation T„&&TBH we have

From the discussion of 2 we know that the necessary
condition for hS=S, is

1 =0 and Tp = TBH

and from (50} and (52) (neglect Wz/TaH) we obtain the
necessary and suScient condition for hS =S„:

and

To(l }~ TaH Vl ~ 0 (55) 1=0, kp=1, and y=1 . (63)
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p+p &0

p+3p 0 .
(64)

(65)

It is easy to see that (64) is obeyed. From (41), (48), and
(50) we get the condition for the validity of (65):

ko —,'y . (66)

Hence the range of ko can be obtained from (58) and (66):

max[ ,'y, —,'(y—+I)](ko(y,
where

(67)

and

.'r —(7'-2»
max[4y, —,'(y+ I)]= '

1( +I)
2

(68)

E. Discussion about the energy condition [9]

It is not difficult to verify that the equation of state ob-
tained above satisfies the weak and the principal energy
conditions. The strong energy condition demands

IV. CONCLUSION

Gravitation can affect the equation of state of matter.
The usual equation of state of radiation
p=aT, s=4, aT is correct only if the gravitation is
weak. It is not correct if the gravitation is strong, e.g.,
when the radiation is near the horizon of a black hole.
We have derived the equation of state of radiation near
the horizon, which is very different from the usual equa-
tion in Bat spacetime, and find that the second law of
thermodynamics is satisfied if we add some restrictions
on the parameter ko.

In our discussion we have not used the conjecture that
the entropy of a black hole is —,

' of the area of its horizon.
We derived the formula ES=e/TaH from the no-hair
theorem, so our claim is more general and also holds if
we consider the corrections of the back reaction of
Hawking radiation to the entropy of black hole [10].

As a corollary we obtain an upper bound on S/E simi-
lar to Bekenstein's, which has been proved in statistical
physics [2,11]. This indicates that our argument is
reasonable.
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