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Bulk viscosity of strange quark matter, damping of quark star vibration,
and the maximum rotation rate of pulsars
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The bulk viscosity of strange quark matter is calculated in the light of new rate expressions for
the reaction u+ s ~ d+ u. The results are orders of magnitude larger than previously assumed, in
particular, in the limit of high amplitude perturbations. This has important consequences for the
vibration and rotation properties of strange stars and neutron stars vrith quark cores, implying rapid
damping of stellar vibrations and suppression of nonaxisymmetric instabilities for rapidly spinning
pulsars, probably decreasing the minimum rotation period to the Keplerian limit of 0.6 ms.

PACS number(s): 97.60.Gb, 12.38.Mh, 97.60.Jd

I. INTRODUCTION

Quark matter composed of comparable numbers of u,
d, and s quarks may be stable at zero pressure and tem-
perature [1—3], in which case some or all neutron stars
can turn out to be so-called strange stars [1,4, 5, 3]. If
strong interaction parameters are such that strange mat-
ter is only metastable, the high pressure in the central
regions of neutron stars may lead to formation of hybrid
stars, having strange matter cores.

Observationally it is not easy to distinguish strange,
hybrid, and ordinary neutron stars (see [3] for reviews
and references). In the observed mass region near 1.4MO
the stars have rather similar radii, since at these masses
they are bound mainly by gravity, not by strong in-
teractions. Neutrino cooling may be more efficient in
stars with quark cores, but recent revival of the ordinary
URCA process in neutron stars [6] has reduced the im-

portance of this potential "smoking gun. " Another dis-
criminant could be the seismic "glitch events" in pulsars,
but it is not yet clear whether strange stars may be able
to explain glitches under certain circumstances.

Perhaps the best test for the existence of hybrid or
strange stars will turn out to be studies of phenomena
related to stellar vibration or rotation. A decisive issue
here is the time scale for damping of the vibrations, and
of the gravitational radiation reaction instability limiting
the maximum rotation rat" the former perhaps related
to p-burst events, the latter to millisecond pulsars.

Both of these mechanisms are strongly influenced by
the bulk viscosity of strange quark matter, which again
depends on the rate of the nonleptonic interaction:

tl+I~ s+v.
This reaction changes the concentrations of down and
strange quarks in response to the density changes in-
volved in vibration or rotational instabilities, thereby
causing dissipation. This dissipation is most efBcient if
the rate of reaction (1) is comparable to the frequency
of the density change. If the weak rate is very small, the
quark concentrations keep their original values in spite of

a periodic density fluctuation, whereas a very high weak
rate means that the matter immediately adjusts to fol-

low the true equilibrium values reversibly. But in the
intermediate range dissipation is important.

The importance of dissipation due to Eq. (1) was first
stressed by Wang and Lu [7] in the case of neutron stars
with quark cores. These authors made a numerical study
of the evolution of the vibrational energy of a neutron
star with an 0.2MO quark core, governed by the en-

ergy dissipation due to Eq. (1). Sawyer [8] expressed
the damping in terms of the bulk viscosity, a function
of temperature and oscillation frequency, which he tabu-
lated for a range of densities and strange quark masses.
Sawyer's tabulation was later used in studies of quark
star vibration [9] and of the gravitational radiation reac-
tion instability determining the maximum rotation rate
of pulsars [10]. The latter study concluded that the bulk

viscosity is large enough to be important for tempera-
tures exceeding 0.01 MeV, but that it should be a few

orders of magnitude larger to generally dominate the sta-
bility properties.

However, as has been pointed out in [ll], the bulk

viscosities calculated by Sawyer depend on the assump-

tion that the rate of Eq. (1) can be expanded to first

order in by, = p, s
—pg, where p; are the quark chemical

potentials. ~ This assumption is not correct at low tem-

peratures (2+T (( bit), where the dominating term in the
rate is proportional to 6p . Furthermore, Sawyer's rate
is too small by an overall factor of 3, and, as discussed

below, a discrepancy of 2—3 orders of magnitude, perhaps
due to unit conversions, appears as well. Taken together,
these effects lead to an upward correction of the bulk

viscosity by several orders of magnitude. The nonlinear-

ity of the rate also means that the bulk viscosity is no

longer independent of the amplitude of the density vari-

ations. But all effects increase the viscosity, and thereby
the importance for the astrophysical applications.

In equilibrium p,, —235 MeV(p/p„„, ) ~, with nuclear mat-

ter density p „=2.8 x 10 gem
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II. DERIVATION OF THE BULK VISCOSITY

In this section we derive the bulk viscosity of strange
quark matter using a strategy similar to that taken by
Wang and Lu [7] and by Sawyer [8]; in spite of quite dif-
ferent notation, those two treatments lead to almost iden-
tical expressions for the bulk viscosity. We shall adopt a
notation close to that of Ref. [7].

Assume that the volume per unit mass, v, changes pe-
riodically in time according to the relation

QJ 1
P(t)—dt.

dt ) „ r p dt (3)

Here P(t) is the pressure, which can be expanded near
the equilibrium value Pp according to

v(t) = vp + hv sin
~ r)'

where vp is the equilibrium volume, hv is the pertur-
oation amplitude, and r is the period. The mean dis-
sipation rate of energy per unit mass can be expressed
as

bp bp f bp

E Bv ) p (Bng) p (Bn~) p

m~ bv 2pg+ 2m~ dna
I4 = dt.

3pg v 3pgng p dt (12)

This is the same as Eq. (12) in [7], except for the factor
z~ rather than —1 on m2, which comes from expanding

(y42 —m2) ~~2 for m, && p, . Equation (12) is equivalent
to

86' m2 2x b,v (2xtl 2y2q+ —,'m', dna
cos

Bt 3pg r vp ( r ) 3pgn4 dt
(13)

(Note that bp = 0 in equilibrium. ) This can be evaluated
using the zero-temperature relations

psv (y2 —m2)2~2v
Ag y A

ir2 ' ' ir2

giving

P(t) = Pp+/
/

bv+/
/

bngg+/
/

bn .
&BP& f' BP & ( BP &

v)p E «)p & n4)p

(4)

n, are quark numbers per unit mass, and bv = v —vp.
The changes in d and s-qu-ark numbers per unit mass

are given by the rate of reaction (1), so that

Defining the bulk viscosity like [8]

(dw/dt) „(uo

)
&

(
~

)
&

we finally get

(14)

dna
bng = bn, = —dt.

p dt

The net rate of u+ s ~ d+u can be well approximated at
low temperatures (T « p;) and s-quark mass (m, « p,,),
and for comparable quark chemical potentials by [11,12]

sGzsin 8~cos Hgp&bp[bp +4m T ]vp,

(6)

A. The linear regime (2mT )) bp)

Simultaneously solving Eqs. (6), (13), and (15) is
not possible analytically. In the high-temperature limit
(2~T )) 6IJ.), where the term in the weak rate propor-
tional to bus can be neglected, the bulk viscosity can be
found analytically, as

with

16
sGzsin Hgcos 8~ = 6.76 x 10 MeV (7).5~5

crT2 2P1/2T2/r
1 —[1 —exp( —P'~ T r))

(16)

BP Bp,,
Bn& Bv (8)

When calculating the energy dissipation according to
Eq. (3), only the third and fourth terms in Eq. (4) con-
tribute. Using the thermodynamical relations

In this expression cu = 2vr/r, and

G'+sin 8~cos 8~m, p,~
64 g g z 43

= 9.39 x 10 m, p& gcm s (17)

one gets the formula for the contributing terms:

m2 td
6P(t) = ' 'dt

3p,ge o dt

[cf. Eqs. (6) and (7) in [7)].
The chemical potential difference can be expanded like

the pressure in Eq. (4), giving

P = —
~

—
~ Gz sin 8~cos H~p~(I + m, /4144)

36 (641' 4 ~ 4 4 s 2 22' &4»
= 7.11 x 10 s p,q(1+ m, /4ljq) . (18)

(The numerical values here and below assume T, m„and
p4 in MeV, ~ and P in s 2)

The bulk viscosity as given by Eq. (16) never deviates
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by more than 16% from the prefactor

(19)

dominates the second (it will be shown below that this
is the case for most of an oscillation cycle in certain pa-
rameter ranges). Then an integration gives

This has the same form as Eq. (16) in [8], except that a =
3o.s and P = 81Ps, where as and Ps are the expressions
derived by Sawyer. The factor 3 on o. and a factor of 9
on P can be traced back to the factor of 3 discrepancy in
the weak rate. It has not been possible to trace the last
factor of 9 on P. Nor has it been possible to explain why
the numerical values for cx quoted in [8] and later used
in [9, 10] are too low by roughly 3 orders of magnitude,
rather than a factor of 3.

B.The general solution

In general Eqs. (6), (13), and (15) must be solved nu-
merically. Results of such calculations are shown in Figs.
1 and 2. One notices that the behavior of ( as a function
of hv/vo is divided into three regimes. For low values
of b,v/vo, the bulk viscosity is constant (other parame-
ters fixed). Then there is a branch where t', oc (b,u/vo),
followed by a bendover or even decline at high b,v/vo.
These trends can be understood by exploring Eq. (13).

Assume for the moment that the first term in Eq. (13)

)
m2 b,v . (2xt)
3Pdvo (& j (20)

This admits an analytical integration of Eqs. (6) and (15),
leading to

16
sGF sin Hc cos Ht. m, y~~ s

2

4 (3Pa 'Uo )
This is simply

(- aTs/~s

when the Ts term dominates, or

(- pm, pg(Av/vo) /~,

(22)

with p = 1.98 x 10so gem ~s ~ when the perturbation
amplitude term dominates. The division between the two
regimes is at b,v/uo - 6mTyg/ms.
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FIG. 1. Bulk viscosity as function of relative volume per-
turbation amplitude for yg = 235 MeV, m, = 80 MeV (dotted
curves), rn, = 200 MeV (full curves). For both sets of curves
7 = 10 s, and the temperatures are 10,10 4, 10,10
1, and 10 MeV, respectively, from bottom to top on the Hat
part of the curves.
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FIG. 2. Bulk viscosity as function of relative volume per-
turbation amplitude for ~ = 10 s, m, = 80 MeV, p,g = 235
MeV (dotted curves), pq = 470 MeV (full curves). For
p,g ——235 MeV the order of the curves are as in Fig. 1. For
pq = 470 MeV curves from bottom to top (fiat part) corre-
spond to temperatures of 10,10,10, 1, 10,and 10 '
MeV.
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III. ASTROPHYSICAL APPLI
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FIG. 4. Damping time for a 1.4MO strange star of density
4x10 gcm, assumingm, = 100MeV, ~ = 10 s. Curves
from bottom to top correspond to perturbation amplitudes
10, 1, 10,10,etc. , ending at 10
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FIG. 5. Evolution of amplitude for damped strange stars
with initial amplitudes ranging from 10 —10 . The oscil-
lation period was fixed at v = 10 s, and the initial temper-
ature set to 10 MeV.

7~ =30 pR g (26)

Figure 4 shows the damping time for a typical strange
star with M = 1.4MO, p = 4 x 10i4 gcm s, and
A = 1.06 x 10s cm, which has ~D = 1.5 x 10zs(—i s,
with ( in cgs units. The oscillation time is taken to
be 10 s, which is typical for the fundamental mode.
Even at very low temperatures, high-amplitude oscilla-
tions are damped in fractions of a second. This flat
part of the curves are given by the limit of Eq. (23),

~ (4t'/vo) . At higher temper
atures ( is roughly given by Eq. (22), with v~
142 s rri, 4p& uPT z. And finally in the high-T limit

[(=n/(PT )], 7.~-1.8x10 srn, T .
Compared to Ref. [8) the new feature is the flat,

amplitude-dependent part in Fig. 4, in addition to an
overall decrease in the damping time scales of some 3 or-
ders of magnitude in the amplitude-independent regime.

The damping time as such is not the whole story, how-

ever. As pointed out by Wang and Lu [7] the temperature
of the star increases due to the heat released by viscous
dissipation. Except for T & 0.1 Mev this can speed up
the damping of vibrations. Crudely assuming that the
decrease in oscillation energy goes to a uniform increase
in thermal energy3 ET the star heats up to a temperature
given from

If the heating takes the star from the flat to the declin-
ing part of the damping time curves in Fig. 4, the heating
can significantly speed up the damping. This is only a
marginal effect in the example of Fig. 4, but for lower
frequencies the effect can be sizable. Figure 5 shows the
damping in terms of the amplitude evolution for a range
of initial values. Significant dissipative heating occurred
for the highest amplitudes, but as 7~ is insensitive to T
for high amplitudes (cf. Fig. 4) this had no major effect
on the damping.

The discussion above was based on rather crude esti-
mates. A detailed, general relativistic, numerical treat-
ment along the lines of Ref. [9] is clearly needed.

B. Maximum rotation rate of pulsars

Viscosity plays an important role in setting the maxi-

mum rotation rate of pulsars. Gravitational radiation re-

action instabilities (as opposed to "Keplerian mass shed-

ding") is supposed to set the rotation rate limit, but the
larger the damping by shear and bulk viscosity is, the
closer the rate can get to the Keplerian limit.

The relative importance of bulk viscosity depends on
the ratio of bulk-to-shear viscosity, where the latter is

normally taken to be [13]

FT 2.5 x 10 ergcm T . (27) r) =5.2x 10's
( ~

( ~

T gcm„f0.15 '~' t' p &
'~'

(~S l (Pnucp

When ra ( ~ the use of ( for determining the damping is
questionabl=- -a detailed treatment at the microscopic level
seems required.

Neutrino cooling is not eKcient on the damping time scales
of interest here.

Here o,g is the strong fine structure constant. Investi-

Recent calculations [14] lead to a slightly different expres-

sion, g(x n p
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gations by Colpi and Miller [10] indicated that the bulk
viscosity dominates over shear viscosity for temperatures
exceeding 0.01 MeV, when it comes to calculate the maxi-
mum rotation frequency of a strange star (or neutron star
with a large quark core), but the new bulk viscosities de-
rived above are decisive at much lower temperatures.

Choosing the parameters of Fig. 1, the bulk viscosity
exceeds the shear viscosity for low-amplitude perturba-
tions when T ) 10 4 MeV, whereas for high amplitudes
bulk viscosity dominates even for very low T. Thus bulk
viscosity is decisive for most parameters. Furthermore
the value of the viscosity is several orders of magnitude
larger than assumed in [10]. It therefore seems reasonable
to expect that nonaxisymmetric instabilities will be sup-
pressed, and the maximum rotation frequency of strange
stars will be given by the Keplerian limit (see [15] for
a review). Detailed numerical calculations like those in

[10], including the new viscosities and effects of dissipa-
tive heating, are required to settle the issue.

IV. CONCLUSIONS

The bulk viscosity of strange quark matter has been
calculated for a range of parameters. Three different
regimes were recognized as a function of the perturbation
amplitude, and analytical approximations were shown
to fit this behavior. The viscosities derived are orders
of magnitude larger than previously assumed. Conse-
quences hereof are rapid damping of strange star pulsa-
tions, and suppression of nonaxisymmetric instabilities
in rapidly rotating strange stars. The latter probably
changes the minimum rotation period of pulsars from 1
to 0.6 ms (the Keplerian limit). More detailed, general
relativistic calculations should be performed.
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