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Bag constant and deconfinement phase transition in a nontopological soliton model
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By calculating the effective potential of the nontopological soliton model at finite temperature and

density, the temperature and the chemical potential dependence of the bag constant is obtained. The

feature of deconfinement phase transition is analyzed. It turns out that, in this model, the deconfinement

phase transition is of first order; the analysis of the phase transition feature suggests the coexistence of a
deconfinement phase and a confinement phase.

PACS number(s): 12.38.Mh, 12.40.Aa

Because of the complications of the QCD vacuum,
when investigating the thermal properties of QCD a com-
mon treatment is to assume that the thermodynamic po-
tential of QCD is the summation of the thertnodynamic
potential resulting from perturbative QCD and the bag
constant (which is independent of the temperature and
chemical potential) representing the nonperturbative
effects of QCD. Under the above assumption, some au-
thors obtained many valuable results [1]. It must, howev-

er, be pointed out that there exists an obvious defect to
consider: the bag constant is independent of the tempera-
ture and chemical potential. For example, when we cal-
culate some important thermodynamic quantities such as
entropy, the contribution of the nonperturbative effects
(bag constant) is not contained in the calculation because
of the derivation with respect to the temperature or
chemical potential. The thermal influence of the nonper-
turbative effects is mainly embodied in the temperature
and the chemical-potential dependence of the bag con-
stant B=B(T,p).

Recently, at finite temperature and density the
research of the nontopological soliton model, initiated by
Friedberg and Lee (FL) [2], has received a great deal of
attention [3]. We notice that in the FL model the bag
constant is connected with the difference between the
effective potential at the perturbative vacuum state and
the effective potential at the physical vacuum state, so it
is more convenient to investigate the behavior of the bag
constant at finite temperature and density in detail. This
may lead to some new results.

The Lagrangian of the FL model has the form [2]

X=%'(i y „t)" go )4+ ——,' t)„o t)"o.—U( o ),
U(o)= —o +—o +—o +B,a 2 b 3 c 4

2l 3l 4l
(lb)

Permanent address: Jinzhou Teacher's College, Jinzhou
121003, Liaoning, China.
tPermanent address: Jingzhou Teacher's College, Jiangling

434100, Hubei, China.

where %' is the quark field, 0. is the phenomenological
scalar field, U(0 ) is the potential function, and g, a, b, c
are four model parameters.

U(0 ) has the two minima and a local maximum. The
local minimum corresponding to a perturbative vacuum
state and the absolute minimum corresponding to a phys-
ical vacuum state are located at

0.0=0,
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respectively. The difference in potential of the two vacu-
um states is the bag constant B, which measures the pres-
sure of the physical vacuum on the perturbative vacuum.
If we take U(o„)=0, then the bag constant can be ex-

pressed as
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Table I lists the values of B for eight sets of parameters.
By solving the equation of motion, the numerical cal-

culation indicates that the 0. field has a soliton solution
which is of a spherical cavitylike structure, 0.~0.0=0 in-
side the cavity and cryo. „outside, and the quarks are
confined inside the cavity.

In order to investigate the temperature and the
chemical-potential dependence of the bag constant and
the features of the deconfinement phase transition, we
first calculate the effective potential at finite temperature
and density. The effective potential of the FL model at
finite temperature and density may be expressed as

V(o, T,p)= U(o )+ Vs(cr, T)+ V~(o, T,p), (4)

where U(o ) is the classical potential at zero temperature,
Vs(o, T) is the effective potential of the scalar o field at
finite temperature, and VF(o, T,p) is the contribution of
the fermion field on the effective potential at finite tem-
perature and density. As pointed out by Lee in Ref. [2],
since o. is only a phenomenological field describing the
long-range collective effects of QCD, its short-wave com-
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TABLE I. Values of T, 1, T,& and p, &,p, ~ for eight sets of model parameters.

a (fm )

69.73
188.86
11.60
17.70
45.21
6.734

10.25
26.12

—b (fm ')

2112.6
7774.0

834.4
1457.4
5208.5
778.48

1358.4
4848.4

20000
100000
10000
20000

100000
10000
20000

100000

12.416
15.333
10.957
12.16
16.379
10.963
12.211
16.537

8 (Me V/fm )

21.7
31.8
44.2
51.4
67.1

48.0
55.7
72.3

T„(MeV)

83.7
92.8

102.2
106.9
116.2
104.8
109.6
119.0

T 2 (MeV)

135.4
144.8
126.0
130.0
135.9
126.0
129.8
138.4

p„(MeV)

216.2
237.6
258.4
268.3
286.7
263.9
273.7
292.2

540
496
450
467
442
462
439
437

ponents do not exist in reality; as an approximation, all cr

quantum loop diagrams may be ignored, so it is unneces-
sary to consider the quantum correction of the cr field in
Eq. (4}for such a phenomenological model.

With the aid of the method [4] for calculating loop
corrections in imaginary-time temperature field theory,
the effective potential to one-loop correction may be ex-
pressed as

V(o, T,p) = —,(o —o, }+—,(o cr,—)+—(o —o, )—a 2 2 b 3 3 C 4 4 1 X dX

Qx +P m [exp(Qx +P m )—1]

Qx +P m [exp(Qx +P m +Pp, )+1]

+ 00 X dX

Qx +P m~[exp(Qx +P mq Pp)+—1]
(5)

where P= 1/T and y =2(spin) X2(flavor) X 3(color) is
the total degeneracy factor for a quark. m and m are
the effective mass of the quark field and the cr field, re-
spectively:

m =go(T),

m =a+her(T)+ —o (T) .C
CT 2

(6a)

(6b)

80

With the help of the method proposed in Ref. [5], we fix

m by taking its value at the physical vacuum state.

When the chemical potential is fixed, the effective po-
tential at different temperatures is illustrated in Fig. 1.
Figure 2 shows the effective potential at different chemi-
cal potentials when fixing temperature. From these
figures, we can see clearly that the difference between the
effective potential at the perturbative vacuum state and
the effective potential at the physical vacuum state de-
creases continuously with increasing temperature (or
chemical potential). At a certain temperature T„(or
chemical potential p„), the eff'ective potentials at the two
vacuum states are equal; i.e., the bag constant becomes
zero, which is the limiting case in which the soliton solu-
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FIG. 1. Effective potential at different temperatures when
fixing the chemical potential p at 150 MeV. A: T=10 MeV, 8:
T=60 MeV, C: T=T,1=82 MeV, D: T=T,2=112 MeV. The
following set of model parameters are taken: a=17.70 fm
b= —1457.4 fm ', c=2X10,g=12.16.

FIG. 2. Effective potential at different chemical potentials
when fixing temperature T at 80 MeV. A: @=50 MeV, B:
@=100MeV, C: p=p„=180 MeV, D: p=p, ~=280 MeV. The
same model parameters as in Fig. 1 are taken.
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FIG. 3. Bag constant vs temperature at different chemical
potentials. A: @=0, B: p=150 MeV, C: p=200 MeV, D:
p=250 MeV.

FIG. 4. Bag constant vs chemical potential at different tem-
peratures. A: T=2 MeV, B: T=50 MeV, C: T=90 MeV.

tion of the original nontopological type still exists [3j.
When T) T„(or p) p„), the soliton solution above
disappears; the deconfinement phase transition begins to
occur. As the temperature (or chemical potential) ap-
proaches another higher temperature T,z (or chemical
potential p, 2), the original physical vacuum state cr„(T)
disappears, and the effective potential has a unique
minimum which corresponds to the stable perturbative
vacuum state o.0,

' such a potential no longer ensures the
existence of the soliton bag, and the confinement of the
quarks is removed completely. When T, &

& T & T,z (or
p„&p &@,,z), the original perturbative vacuum state era

becomes a stable state and the original physical vacuum
state o.„becomes a metastable one. If the quark is at the
stable state above, from Eq. (6a) its effective mass is zero,
which indicates that it is situated in the deconfinement
state. Otherwise, if the quark is at the metastable state,
its effective mass is very large, so that it is in the
confinement state. The coexistence of the stable state as a
perturbative vacuum state and the metastable state as an
original physical vacuum state shows the coexistence of
the deconfinement phase and the confinement phase,
which also tells us that the phase transition above is of
first order.

For eight sets of parameters fitting the static properties
of the hadrons, Table I lists the values of T„,T,2 when
the chemical potential is taken as zero and the values of
p, &,p, 2 at zero temperature.

From the effective potential above, it is convenient to
investigate the temperature and the chemical-potential
dependence of the bag constant. The bag constant in the
FL model is defined as the difference between the
effective potential at the perturbative vacuum state and
the effective potential at the physical vacuum state; i.e.,

B(T,p) = V(oo, T,p, ) V(tr„, T,p) . —

From effective potential (5) the temperature depen-
dence of the bag constant is illustrated in Fig. 3 when the
chemical potential is fixed. We can see clearly that the
bag constant decreases continuously with increasing tem-
perature. At temperature T„, B(T„)=0 and the
deconfinement phase transition begins to occur. Accord-
ing to the curve for p=0 in Fig. 3, the analytical formula
of the bag constant as a function of temperature can be
simulated by

B(T)=B aT 5T— — (8)

where 8 is the bag constant at zero temperature,
a=3.016, and 5=46.039 MeV . Obviously, the second
term in Eq. (8) corresponds to the contribution of the per-
fect gas, and the third term corresponds to the correction
of the imperfect gas.

The bag constant versus chemical potential at different
temperatures is shown in Fig. 4. Similarly to Fig. 3, we
can see the deconfinement phase transition begin to take
place at the chemical potential p„. In the limiting case
for low temperatures and high density (@IT))1) the
thermal excitation of the 0. field can be ignored, the
effective potential V(o„)=0 at the physical vacuum
state, and the bag constant, from Eqs. (5) and (7), can be
deduced as

B(p, T)= U(ere)+ VF(era, T,p)
T

2
4+ T2 2+ K T4

4 2P 2 P 20
(9)
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