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We construct the periodic classical orbits of the Skyrmion breathing mode by a perturbation ex-
pansion in the amplitude of the vibration. We first examine the lowest-order construction associated
with linear response theory. We find that the monopole response function exhibits a sharp unbound
peak which we identify as the Roper resonance N(1440). A calculation of second-order terms provides
an evaluation of the anharmonic corrections. In a second part, we construct a collective Bohr-type
Hamiltonian using the knowledge of periodic trajectories. This provides a natural requantization
scheme with which we calculate the spectrum of monopole excitations of the Skyrmion. Finally
we apply our results to the calculation of color transparency efFects. We find that anharmonicities
decrease significantly the time taken by a nucleon of small radius to regain its normal size. This
eR'ect should diminish the importance of the color transparency phenomenon.

PACS number(s): 11.10.Lm, 11.10.Ef, 14.20.Gk

INTRODUCTION
The Skyrme model [1] is an effective Lagrangian for

QCD at low energies and large number of colors N, [2].
At the classical level, the model produces stable localized
objects, solitons, which are identified with baryons. It
has been used to predict the static properties of baryons
[3] (nucleon, b„.. .). The model is reasonably successful:
energy difFerences are rather well reproduced [4—7], the
most visible discrepancy being only an overall shift which
can be explained as a Casimir energy of the Skyrmion [8].

The model has also been used to investigate the sim-
plest vibrational excitation of the Skyrmion: the breath-
ing mode. Some authors use simple scaling approxima-
tion [9—12). More elaborate methods have been inves-
tigated by Zahed, Meissner, and Kaulfuss [13] as well
as Breit and Nappi [14] who expand the Lagrangian to
leading order in the semiclassical approximation to find
the phase shifts of the vibrational modes. The energy at
which the phase shift passes through s is then identified
with the mass of a resonance.

In this work, we explore an alternative approach to
describe this low-lying resonance. It exploits a perturba
tive construction of finite amplitude periodic orbits which
we have developed recently [15, 16] in the context of gi-
ant collective resonances in nuclear physics. It allows
one to build solutions of the nonlinear time-dependent
mean-field equations with a given period T. Semiclas-
sical quantization of these solutions yields collective nu-
clear spectra The me.thod is similar in spirit to the work
of Dashen, Hasslacher, and Neveu who performed a semi-
classical quantization of periodic orbits [17] to compute
the particle spectrum of the P4 theory in 1+1dimensions.

An advantage of our expansion method is that it is
simple enough to deal with realistic problems in 3+1 di-
mensions. It thus appears well suited to discuss collec-
tive vibrations of the Skyrmion. We have focused in the
present paper on the special case of monopole oscilla-
tions. Quadrupole modes can be treated as well without
further complications by the same technique.

We wish to emphasize that the perturbation expansion
we use is not an exact scheme for building periodic orbits
of arbitrary nonlinear systems. It is indeed limited by
the possible appearance of well-known resonant terms in
the construction of higher-order terms (as is already the
case for two-dimensional systems with commensurate fre-
quencies) [18—20]. It is however a useful approximation
to describe systems with well-developed collective mo-
tions (e.g. , nuclei), decoupled from other modes, and well
described by efFective one-dimensional collective Hamil-
tonians. In this case, the method is useful to identify the
collective variables and to build perturbatively the first
few anharmonic terms in the collective Hamiltonian.

It is also possible to deal with resonant terms at the
cost of more cumbersome analytical work. This was il-
lustrated in the case of coupled nuclear quadrupole and
monopole oscillations in Ref. [16].

The present article is organized as follows. Section I
presents a brief summary of Skyrme's model and defines
our notation. In Sec. II we review the expansion method
of Refs. [15,16] to build periodic orbits and specialize to
the case of the time-dependent Skyrme model. In Sec.
III we discuss the first-order equations which are equiva-
lent to the linearized evolution equations and therefore to
linear response theory. We investigate in detail the case
of an external time-dependent monopole field with a fre-
quency 0 and determine the response function by looking
at the evolution of the Skyrmion root mean square radius.
This function is found to have a pronounced peak which
we identify to the Roper resonance. In Sec. IV we con-
struct a collective Bohr-type Hamiltonian by identifying
periodic orbits in this Hamiltonian to the ones built in
Sec. II. From the knowledge of periodic orbits up to sec-
ond order in the elongation we are able to construct cubic
terms in the collective potential. Quantizing this Hamil-
tonian by means of the Pauli prescription provides the
spectrum of collective states and allows one to evaluate
the importance of anharmonic terms. Section V contains
an application to the calculation of color transparency
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while Sec. VI contains a discussion of our main results
and a critical comparison with earlier approaches.

I. THE SKVRME MODEL

The basis of Skyrme's model [1] is a chiral-invariant
nonlinear theory involving only mesonic degrees of free-
dom and from which baryons emerge as topologically sta-
ble solitons (Skyrmions). In this work, we use the sim-
plest Lagrangian density as introduced by Skyrme [1]:

0 2 a

Tr (B„UB"Ut)
iz6

Tr ( [(B„U)Ut, (B„U)Ut] }. (1.1)

Here U is an SU(2) matrix; F = 186 MeV is the pion

decay constant. The last term, which contains the di-
mensionless parameter e, was introduced by Skyrme to
stabilize the soliton. In order to reproduce the axial-
vector coupling constant g~, e is taken to be 4.76 [21].
Following Skyrme, we make the hedgehog ansatz

U = exp [ i F(r, t) r . r], (1 2)

The corresponding classical Euler-Lagrange equation is

w,. being the usual Pauli matrices. With this parametriza-
tion of the field U, the Lagrangian density (1.1) becomes

F~ sin (F)
~2r2

sin (F) & sin (F)
4r2

r +2sin F F + sin(2F) (F)
4

eF z . z eF2 2 '2

4
r +2sin E F + rF'+sin(2F) F

2

(eF ) z . ~ F sin(2F)-r +sin F

Primes and dots indicate radial coordinate differentiations and time differentiations respectively.
The energy of the Skyrmion is defined as M = f dsr 'Pt' where 'N is the Hamiltonian density. Explicitly M reads

r sin (F) z z z sin (F) sin (F) (1.5)

II. PERTURBATIVE CONSTRUCTION OF PERIODIC ORBITS

We look for periodic solutions of the time-dependent equation (1.4) in the form [15, 16]

(
F(r, t) = Fp (r) + Fie~ r, —t

i
+ e Fz

~
r, —t

i
+

& ~p) (2.1)

where Fp(r) is the static Skyrme solution with the boundary conditions Fp(0) = vr and Fp(oo) = 0. The frequency ur

is also expanded into a power series in the amplitude of the vibration e according to the standard procedure [22]:

4) =4)P + 64)y + 6 4)2 +2

In order to ensure that the baryon number is unchanged we impose the conditions

F,(0, t) = F;(oo, t) = 0 for all i = 1, 2, . . . .

To first order we obtain the following evolution equation for Fi..

(Bp + A)(gp+i) =0
where the function gp and the operator Ap are, respectively,

(2.2)

(2 3)

gp = -(eE r) +2sin Ep= 1 2 ~ 2

2 II
d gp 1 II

Ap = — + ———
z 2sin(2Fp)Fp + —cos(2Fp) (r Fp + ——

gp ) ——
dr gp gp

0 0 2 0

The solution of Eq. (2.3) with Fi(r, 0) = 0 is

Fi (r, t) = Ri (r) sin(apt)

(2.4)

(2.5)
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with Rq such that

(~0 —Ap) (goRi) = 0 . (2.6)

As in earher studies [13],we find that the operator Ao has no bound states. Note that R ~ oj (u r) + pn ( r)
in the limit r —+ oo, where ji and ni are the usual spherical Bessel functions of order l.

An expansion of Eq. (1.4) to second order in e gives

2 =2 ~ o j s 2 $ /2 I/

(oo + A)(goF2) sin 2F0 F1F1 Fi + Fi + F1Fi + Fi fo
gp 2 2

+ cos 2Fp (Fi Fo) 2 goFi,
2 I, uy ~ ~

gp
(2 7)

where the function fo(r) is [(eF ) /4 — Fs
+(4sin Fo —z)/r ] and go and Ap are defined in

Eq. (2.4). Since the operator (Bo + Ap) admits Risinuot
as a zero mode, the solution of Eq. (2.7) exists only if the
source term in this equation has no component along this
vector. This is the case for all terms of the type Fi x Fi
(whose time dependences are cos2~0t or 1) but not for
the last term. Therefore the coefficient of this term must
vanish, which yields

ug ——0,

and consequently the time dependence of Fq(r, t) be-
comes

Fz(r, t) = R2(r) cos(2~st) + 2'z(r) . (2.8)

Actually the condition ~i = 0 is not sufficient to elim-
inate all the resonant terms in the right-hand side of
Eq. (2.7). Indeed, since the operator Ao has a contin-
uous spectrum, there is also a zero mode with frequency
2uo. This mode should in principle be included in our
first-order solution (2.5) as described in Ref. [16]. We
have found, however, that its coupling is weak and can
be neglected.

We now apply these equations to a description of the
Roper resonance. In the work of Breit and Nappi [14]
the location of this resonance was determined by looking

at the phase shift of the solution of the first-order radial
equation (2.6). In the next section, we propose an al-
ternative procedure inspired from the standard methods
developed for giant resonances in nuclear physics.

III. LINEAR RESPONSE

8;„~ ——eF r B (r, t) c sin(At) exp(rit),

where Bo(r, t) is baryonic current [3],

(3.1)

1 sin (F) BF
27l' r2 BT

and g a vanishingly small positive number. Adding this
interaction term (3.1) to the Lagrangian density (1.3),
the new corresponding Euler-Lagrange equation reads

As a starting point, we consider the response func-
tion of the Skyrmion to an external monopole field with
a frequency 0 and examine the resonant structures of
this function. Within our approximation scheme, this is
the most natural procedure since the first-order equation
(2.3) corresponds to the linearized equations of motion
which are at the basis of linear response theory [23].

An external time-dependent monopole field corre-
sponds to the addition of the following term to the La-
grangian density (1.3):

eF r + 2 sin F F + sin(2F) (F)
(eF) 2 . z eF)2 2 '2

4
r +2sin F F + rF'+ sin(2F) F

2

r + sin F + e 2 sin (F) sin(At) exp(qt) .

(3.2)

This last equation is to be solved with the boundary con-
ditions F(t = —oo, r) = Fo(r) and F(t = —oo, r) = 0
where Fo(r) is the static Skyrme solution.

Because the field (3.1) is weak (in the domain

[
—oo, 0] ), it introduces small changes of the Skyrme so-

lution which we can treat in a linear approximation. To
first order in e, F(r, t) has the form

F(r, t) = Fo(r)+6F(r, t) +6F'(r, t), '

where
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spectively. It can be seen that the function R2 has the
same asymptotic behavior as Rq, but with an argument
2cupr while T2 decays algebraically at large distance.

At this stage, it is worthwhile introducing a word of
caution about the above procedure of identi6cation of
the Roper resonance. Our Skyrmion is in fact a super-
position of the nucleon and delta resonance whereas the
Roper resonance refers to the nucleon only. However,
as emphasized by Zahed, Meissner, and Kaulfuss [13],
there also exists a delta-Roper resonance at 1670 MeV.
It is therefore plausible that a proper projection of our
breathing mode would generate both the Roper and the
delta-Roper resonance. This statement is further sup-
ported by the fact that the coupling between rotations of
the Skyrmion and its vibrations is of order e, i.e. , 1/N,
[11], so that it appears possible to calculate vibrations
first and perform a projection afterwards on states with
proper spin and isospin.

IV. COLLECTIVE HAMILTONIAN

be the collective variable. Inserting Eq. (2.1), truncated
at second order, into Eq. (4.1) we find that X has the
time dependence

X(t) = txy sin(ldpt) + c [xz cos(2ldpt) + xzf] (4.2)

The constants xq, xq, and x2f appearing in the last equa-
tion are

4 oo

xg —— — r sin (Fp)Rg dr,

From the knowledge of periodic orbits the prescription
used frequently to construct energy spectra is to perform
a semiclassical quantization of these orbits [13,15, 16,24].
In the present case however this procedure is not ade-
quate because we are dealing with resonances embedded
in a continuum. For this reason we have used a differ-
ent approach: We construct a collective Hamiltonian by
requiring that periodic orbits of this Hamiltonian repro-
duce those obtained in Sec. II. First we must choose an
adequate collective variable, i.e., an observable that suit-
ably describes the collective motion. In the present case,
the mean square radius already encountered in the pre-
ceding section appears as the most natural choice. Let
X,
X(t) = (r ) —(r )p

OO

r sin (F)F' —sin (Fp)Fp dr, (4.1)

H = —M(X)X'+ V(X),
1

(4.4)

we proceed as follows. We erst calculate the periodic or-
bits in this Hamiltonian up to second order in the elon-
gation and require the resulting expression to be identi-
cal to Eq. (4.2). The identification is possible only if H
parametrizes as

H = M,)+ —(m, +m'X)X + —rruupX + AXs,
2 2

(4.5)

where M, ~ is the classical Skyrmion mass [3]. The peri-
odic orbits in this Hamiltonian up to second order in the
amplitude rl are given by [22]

( A

rnid

X(t) = ri sin(u)pt) + rl
~

—
z +

~
cos(2(apt)

2rmup 4m)
3A m'

+
2m')p2 4m

(4.6)

By identifying Eqs. (4.6) and (4.2) we obtain the values
of the constants rn'/rn and A/m in terms of the x's:

m'/rn = (6xz, —2xzy)/x~,

A/m = ~p (x&, —xzZ)/x',
(4 7)

The value of the mass parameter m can be easily found by
expanding the kinetic (or potential) energy up to second
order in the elongation in Eq. (1.5). The result is

4'm= 2e xy
dr (gpRg) . (4 8)

One can see that the quantities rn, rn', and A appearing in
Eqs. (4.7) and (4.8) are independent of the normalization
of Rg,

Let us now perform a numerical calculation of the pa-
rameters in the collective Hamiltonian. For the Roper
resonance the appropriate value of up is 0.36eE as was
found in the preceding section. Using the above formulas
we obtain for the dimensionless parameters rn, rn', and
A defined as

rn = eFs m, m'= (eF )zrn m', A = (eF ) rn~p A

(4.9)

the values

4 oo

X2Q T
jr

sin (Fp)Rz ——R& sin(2Fp) dr,
~ 2 1 2.

x2f — r sin (Fp)T& + —R~ sin(2Fp) dr,
4 1 2

7t p 4

(4.3)

where the functions I'p, Rq, Rq, and T2 are de6ned in
Sec. II.

In order to build a collective Bohr-type Hamiltonian

m = 29, m' = —0.4, A = —0.13.

The graph of the collective potential is given in Fig. 4.
It can be seen that the potential exhibits a barrier whose
maximum is at about 0.18 in units of eF while the un-
perturbed value of the Roper resonance is 0.36. The
unbound state character of the Roper resonance is thus
manifest.

The procedure we have used has allowed the unam-
biguous determination of the cubic terms in the collective
potential only. The determination of quartic and higher-
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order terms can be achieved by considering further terms
in the expansion (2.1).

Having obtained a Bohr Hamiltonian, we now proceed
in the usual way by performing a standard quantization
of this Hamiltonian via the Pauli prescription [25], with
the result

0$

o.ie

1 1 ~ 1H= — P
mX mX

P + ~2X2 + PX30 )

0.0

(4.10)

where P = id/dX. —Note that this Hamiltonian is Her-

mitian with respect to the measure urn(X).
Let us now calculate the eigenvalues of H by treating

the anharmonic terms in rn' and A in second-order per-
turbation theory. The energy of the state with n quanta
1S

-0$
22

(eF„) X

FIG. 4. The collective potential V (in units of eF ) versus
the collective variable X = (r ) —(r )() [in units of 1/(eF ) ].

esFM„—Mn =wo
~

n+ —
~
+ " m' (n +n+1) —23 (11+30n+36n )+2m'3(1+6n, +6n~)}.

2) 16m

The energy of the ground state is equal to

(4.11)

—2
coo e3E~ m'

Mo ——Mcl + —+
2 8m 2

—11' +rn'A (4.12)

Using our numerical results we obtain
m m

Mo ——(36.44) + (0.18) [eE~] —(2.18 x 10 ) e F = 1578.9 MeV .
e

(4.13)

—2m'= mop + n(n + 1)esF —15A'+ 3m'A 4m .

(4.14)

For n = 1, the excitation energy of the first excited state
which we interpret as the Roper resonance is Ey = 300.4

This value represents the mass of the Skyrmion incor-
porating the contribution of the quantum zero-point
monopole fiuctuations.

It is worthwhile examining the relative importance of
the various terms in the previous formula In the li.mit

of a large number of colors N„F increases as N, and e

decreases as N, so that the leading contribution to the
quantized Skyrmion mass Mo is M,~, namely, 36.44F /e
which grows as N, . The next-to-leading contribution is
(0.18)eF~ which is independent of N, in the high-N,
limit. Note that Biedenharn, Dothan, and Tarlini [11]
find this last term to be (0.144)eF . The last contribu-
tion to Mo is 2.18 x 10 e F and decreases as N, . We
thus expect the next correction terms in Eq. (4.13) to be
negligible.

The excitation energies of the Skyrmion are

MeV compared to an unperturbed value of 318.7 MeV.
This small difFerence justifies the perturbative treatment
of the anharmonicities we have adopted. The difFerence
between the mass of the Roper defined as the one-phonon
state and the classical mass of the Skyrmion is found to
be 455.4 MeV.

Let us mention another equivalent derivation of the
collective Hamiltonian. Starting from Eq. (4.2) one can
express the quantities csin(not) and e in terms of X,
Xz, and Xz. Returning to the expression (1.5) of the
Skyrmion mass provides the desired collective Hamilto-
nian. This procedure yields exactly the same formulas
(4.7) and (4.8).

V. APPLICATION TO COLOR TRANSPARENCY

In this section we use the collective Hamiltonian calcu-
lated in the preceding section to discuss the phenomenon
of color transparency. We adopt the model description
presented in Refs. [26, 27], in which the reaction

e+ A ~ e'+ p+ (A —1)

is pictured as follows. The transfer of a momentum Q to
the nucleon selects out of its wave function a component
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with a small radius R(Q) which, in Ref. [26], was chosen
to be

0250 I 1
I

R'(Q) = 1/(Q'+ ~p) (5.1)
0245

with qp = 1/Rp = 0.42 GeV, Rp being the isoscalar root
mean square radius [3]. The probability P for the struck
nucleon to leave the nucleus without further interactions
was calculated in [26, 27] by means of the formulas

C)
0240

P(Q) = exp df, ~—(Q, 5) p (z = t)—
0.235

where m is the nucleon mass, p the nuclear density, and

OZ30
0

~ I I I I

0.5 1

Q (Gev)
1.5

, crp, R(t) ) Rp .

Th t't = 4 fm is the total nucleon-nucleonThe quanti y op
cross section and R(t) is the radius at time t of a nucleon
created at time t = 0 with a radius R(Q).

From this simplified picture, one expects the nucleus
to become transparent at large momentum transfer since
a small object is more likely to cross the nucleus with-
out interacting. As a result the ratio of the cross sec-
tions o (A Q)/Ao (A = 1,Q) should increase and tend to
one when Q increases as supported by some experimenta
data (see the references quoted in [27]).

We thus see that an important input in the preceding
discussion of color transparency is the characteristic time
it takes a nucleon created with a small size R(Q) to return
to its normal size Rp. From the collective Hamiltonian
we have built in the preceding section we can extract the
information needed. For a nucleon with an initial radius
R, = R(Q) the time w needed to reach the equilibrium
value is

FIG. 5. The characteristic time ~ (in units of the period
to = 1.3 x 10 sec ), it takes a nucleon created with a sma 11

size R(q) [see Eq. (5.1)] to return to its normal size, as a
function of the square of the transferred momentum Q .

Let us briefly discuss the special case Q =1 GeV2 for2=
which our calculation may still be adequate. In this case
the time needed for a nucleon to return to its normal size
is 0.3 x 10 sec (to be corrected by a Lorentz factor of
the order of 1.3). In contrast the traversal time of the
nucleus is approximately 3 x 10 sec, '

,in Pb, . Unfor-
tunately our model cannot be extented to the region of
interest ( 10 GeVz ) where color transparency has been
experimentaly tested. Indeed the effective character o
the Skyrme model, which is a low energy approximation,
makes it no longer suitable in this domain.

m(X)
2[V(X,) —V(X)]

(5 2)

—~2 runs fromwhere the collective variable X = R —Rp runs from
X = —Q / (Q + qp) to zero. When the collective
potential is assumed to be a harmonic oscillator this time
is 'ust equal to the quarter of the period tp ——2vr/cdp ——is jus
1.3 x 10 sec. It is interesting to see how muchh this
value is affected by anharmonic terms. In terms of the
dimensionless variables defined in (4.9), 7 reads

tp
7 2'

1+m'X, u

1 —u2+2AX (1 —us)
(5.3)

where X, is the dimensionless term (eF )2X,. In Fig.
5 we show the ratio w/tp as a function of the momen-
tum transfer Q. From this figure it can be seen that the
characteristic time ~ is strongly reduced by anharmonic
terms up o moment t momenta of the order of 1 GeV which makes
color transparency less eKcient. Beyond this va ue e
decrease appears to be weaker. However, in this region
the second-order truncation we have made is presumably
no longer sufhcient.

VI. CONCLUSION

In this article we have used a perturbative method
to build the classical periodic orbits of a Skyrmion as
a power series in ethe amplitude of the oscillations. The
method used up to second order has been applied to the
Roper resonance described in terms of monopole vi ra-
tions. In first order already the method provides a con-
venient prescription to identify the location of the reso-
nance. To this order the method is equivalent to linear
response theory and we find that the response function
displays a well-developed peak.

In the second part of this article we have also presented
a powerful method which uses the knowledge of periodic
orbits to construct a collective Bohr-type Hamiltonian.
We have applied it to the case of monopole vibrations
and derived the corresponding first anharmonic terms in
the collective Hamiltonian. Although the cubic terms
do not produce large shifts in the unperturbed harmonic
spectrum, they have important qualitative eKects. In-
deed due to the finite height of the potential barrier, the

t f th collective states becomes unboun . Such
detailed information was not available in the simp i e
approaches using the scaling assumption.
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In the last part of the paper we have also shown that
anharmonic terms affect significantly conclusions regard-
ing color transparency effects associated with electropro-
duction of protons from nuclei. We find that anhar-
monicities significantly decrease the time needed by a
nucleon of small radius to regain its normal size. This
phenomenon should reduce the magnitude of color trans-
parency efFects.

Further improvements and applications of the present
work are now being considered [28]. They include a cal-
culation of quadrupole resonances (already considered by
Mattis and Karliner [29]) and a calculation of the distri-
bution of quadrupole strength. Moreover, it is our opin-
ion that projection on states of good spin and isospin
should also be performed including a determination of
the coupling between rotations and vibrations in order

to achieve an accurate description of the nucleon and b,
resonances within the Skyrme model.
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