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I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation.
While not rigorous, the method is based on physically reasonable assumptions, which can be tested by
numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are
no chiral logarithms in quenched f,, for m, =my, (b) the chiral logarithms in Bk and related kaon B pa-
rameters are, for m, =m;, the same in the quenched approximation as in the full theory, and (c) for m .
and the condensate there are extra chiral logarithms due to loops containing the 7', which lead to a
peculiar nonanalytic dependence of these quantities on the bare quark mass. Following the work of
Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with
each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities
the expected volume dependence is smaller than the errors, but for B, and B, there is an observed

dependence which is consistent with the predictions.

PACS number(s): 12.38.Gc, 11.10.Ef, 14.40.Aq

I. INTRODUCTION

The approximate chiral symmetry of QCD provides
strong constraints on the form of amplitudes involving
pseudo Goldstone bosons. A classic example is that the
pion scattering amplitudes at threshold are related to the
pion decay constant [1]

2

fi
The ¢, are known numerical constants that depend on the
isospin I of the pion pair. The corrections of O (m?) fall
into two classes:! those that are analytic in m2, coming
from nonleading terms in the chiral Lagrangian [2]; and
the nonanalytic “chiral logarithms™? proportional to
m? In(m ). These logarithms come from infrared diver-
gences in pion loops [3,4]. They have the important
property that they are proportional to the lowest-order
term in the chiral expansion. For example, in the limit
m,=m,=0, f_ has the expansion [4,2]

T™(s =4mx,t=u=0)=c;— +0(m?}). (1)

f,,=f[l—%L(mK)+cm,7g], (2)
where the chiral logarithm is
2 2
m m
L = | m_
(m) anf A2 (3)

*Permanent address: Physics Department, FM-15, University
of Washington, Seattle, WA 98195.

'Here and in the following I often use “pion” to refer generi-
cally to all of the pseudo Goldstone bosons, i.e., the pions,
kaons, and 7’s. In the present example, O(m?) includes the
possibility of O (m2m2).

2For baryon properties some of the nonanalytic terms are not
logarithms, but are proportional to (m2)*/? [4]. I do not con-
sider baryon properties here.

(I use the normalization such that £, =93 MeV.) Chiral
symmetry alone does not determine f, A, or ¢ (in fact ¢
can be absorbed into A), but does fix the coefficient of the
chiral logarithm L.

In the continuum, chiral logarithms are useful as a
guide to the size of the corrections to the leading-order
chiral behavior. If the logarithms are large when one
takes a reasonable scale A~m,,, then there is reason to
worry about the reliability of leading-order chiral predic-
tions. This approach has been taken for example in Refs.
[4] and [5].

On the lattice, chiral logarithms are potentially of
greater importance, because they allow one to test wheth-
er the contribution of pion loops is being correctly de-
scribed. These loops give rise not only to chiral loga-
rithms, but also to the pion cloud surrounding hadrons.
This cloud is an important part of the structure of had-
rons, affecting charge radii and other form factors. The
obvious way to search for the chiral logarithm, by study-
ing the dependence of amplitudes on m?2 or m %, is not
very useful, for it is difficult to disentangle a logarithm
from a power series. It is better to study the volume
dependence of the amplitude. As explained by Gasser
and Leutwyler [6], associated with each chiral log is a
known volume-dependent correction. For the particular
case of the masses, the correction can also be obtained
from a general formula given by Liischer 7].

Chiral logarithmic corrections have been calculated for
a number of quantities in QCD. Those that are of in-
terest here are the pseudo-Goldstone-boson masses and
decay constants, the condensate, and Bg. I have extend-
ed these calculations to B, and B 4. These results can be
converted into predictions of finite volume dependence
for lattice simulations of full QCD, and I give some ex-
amples below. At present, however, most lattice calcula-
tions of these quantities use the so-called “quenched” ap-
proximation, in which internal quark loops are not in-
cluded. The lack of internal quark loops means that
many, though not all, of the pion loops present in full
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QCD are absent in the quenched approximation. The
main focus of this article is to understand how to adapt
the calculation of chiral logarithms in full QCD to the
quenched approximation. This is done here for the quan-
tities just mentioned, but the method can be extended to
many other quantities. These results allow one to predict
the finite volume dependence of quenched matrix ele-
ments.

In addition to their diagnostic power, chiral logarithms
provide an estimate of the size of the error introduced by
the quenched approximation. In most quantities the
chiral logarithms have a different coefficient in quenched
and full theories. For example, it is shown below that
there are no leading-order chiral logarithms in f_ in the
quenched approximation,® in contrast with the result for
full QCD, Eq. (2). Taking A=m,, the chiral logarithm
in full QCD gives a 6% contribution to f . This suggests
that the absence of chiral logarithms in the quenched ap-
proximation should have an effect on f . of this size. This
is a suggestion, and not a calculation, because the quanti-
ties f and ¢ need not be the same in full and quenched
QCD. Nevertheless, even a rough guide is useful since
we have so few tools for studying the effect of quenching.

The idea of calculating chiral logarithms in the
quenched approximation was first suggested by Morel [8],
who was inspired by numerical evidence of nonanalytic
terms in m,zr/mq [9]. In order to study the quenched ap-
proximation, he introduced scalar-quark ghost fields
which, upon functional integration, produce a deter-
minant which cancels that from the integration over
quarks. He showed how to calculate chiral logarithms in
the combined strong coupling, large dimension limit,
both for color gauge groups SU(2) and SU(3). In Ref.
[10] I corrected errors in Morel’s result, finding that, for
three colors, there were no quenched chiral logarithms in
f» or m_ in the large d, strong-coupling limit.* More im-
portantly, I showed how the presence or absence of chiral
logarithms could be understood by studying quark dia-
grams. It is the extension of this ‘“diagrammatic
method” that I use in this paper.

As will become clear in the following, this method is
neither rigorous nor systematic. The lack of rigor is com-
mon to all calculations of quenched chiral logarithms.

3Strictly speaking this is only true if m,=m,, as discussed
below.

4The reader may be confused by two points upon consulting
Ref. [10]. (1) A class of diagrams involving 5’ loops, which are
discussed at length in this article, were overlooked in Ref. [10].
This does not affect the main calculation of that reference, be-
cause these diagrams are not present in the large d, strong cou-
pling limit [8]. It does, however, mean that the conclusion
drawn in that paper, namely, that there are no leading-order
chiral logarithms in quenched f, and m, in general, is false.
This error is rectified here. (2) There are chiral logarithms in f,
and m., for color SU(2), even in the large d, strong coupling lim-
it. These may explain the numerical results of Ref. [9]. SU(2) is
special, however, since there are Goldstone baryons as well as

Goldstone pions. In this paper I consider only three or more
colors.
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Such calculations use chiral perturbation theory, the va-
lidity of which is predicated on the existence of a well-
defined underlying field theory. Quenched QCD is not a
well-defined field theory. In particular, quenched ampli-
tudes are neither unitary nor analytic. Nevertheless, as I
discuss in Secs. IT and III, it is reasonable to assume both
that chiral logarithms are present and that they can be
calculated using an adaptation of chiral perturbation
theory.

The diagrammatic method is also not systematic. It
amounts to a set of rules for discarding some of the chiral
perturbation theory diagrams and for changing the
masses of the pions that appear in some of the loops of
the diagrams that are kept. These rules are developed in
an ad hoc way, quantity by quantity. I do not know how
to write them down in general. Bernard and Golterman
[11] have recently outlined a more systematic approach
in which chiral perturbation theory is extended to include
states containing Morel’s scalar ghosts. Their method
appears to give the same answers for the quantities that I
calculate here. I prefer to use the diagrammatic method,
however, because it displays the underlying physics very
clearly. For more complicated calculations Bernard and
Golterman’s method is likely to be superior.

A difficulty with calculations of quenched chiral loga-
rithms stems from the fact that one must treat the flavor
singlet 7’ as a pseudo Goldstone boson. This is in con-
trast with full QCD, where the 7’ is not a pseudo Gold-
stone boson because of the axial anomaly. It turns out
that the contributions of %’ loops do not satisfy the usual
power counting rules of chiral perturbation theory, in
which each new loop brings with it a power of m2. Thus
corrections proportional to powers of In(m,_) are ob-
tained from diagrams with any number of loops. This is
potentially disastrous, for it might undermine the appli-
cation of quenched chiral perturbation theory to all quan-
tities. As a first attempt to understand the issue, I have
summed the leading logarithms and find that they can be
absorbed into a change of definition in the quark mass.
The only observable effects are that m_, (), and relat-
ed quantities should have a weak finite volume depen-
dence. More study of this issue is required.

Fortunately, it turns out that there are a class of “safe”
quantities which are insensitive, at leading order, to 7’
loops. Examples are the decay constants and kaon B pa-
rameters for degenerate quarks. I concentrate on these
quantities for most of this paper.

Bernard and Golterman have suggested a more ambi-
tious approach [11]. They point out that, although %’
loops are not parametrically of higher order in chiral per-
turbation theory, they are nonleading in a combined
chiral and large-N, expansion. Furthermore, their con-
tribution is numerically small. Thus, from a practical
point of view, it may make sense to do a loop expansion,
and they have begun such a program.

The work presented here was inspired by numerical re-
sults showing volume dependence in By and B 4 [12]. It
turns out that these results are described reasonably well
by predictions given here. Present calculations of other
quantities are not yet accurate enough to test the predic-
tions.
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The outline of this paper is as follows. In the next sec-
tion, I recall some useful facts about the chiral Lagrang-
ian, and discuss its extension to the quenched approxima-
tion. In Sec. III, I introduce the method of calculating
chiral logarithms in the quenched approximation using
the example of decay constants. Section IV extends this
method to By and the related parameters By, and B ,. In
Sec. V, I discuss the contribution of %’ loops, and in Sec.
VI, I explain how to predict the leading finite volume
dependence from the results for chiral logarithms. These
predictions are confronted with numerical data in Sec.
VII. Section VIII contains some conclusions.

Brief discussions of some of the results of this paper
have been given previously in Refs. [13,14,12,15].

II. CHIRAL LAGRANGIAN

Chiral logarithms in full QCD are most simply calcu-
lated using the chiral Lagrangian. In this section, I first
collect some standard results, and then explain my as-
sumptions for how these are modified in the quenched ap-
proximation. I use the notation of Ref. [16] and work in
Euclidean space. The Lagrangian is

L=1£2Tr(3,33,5")— LfuTr[M(3+3h)]
+0(p*, Mp2,M?) , 4)

where Z=exp(2im,T,/f), the m, being the pseudo-
Goldstone-boson fields. The group generators T, are
normalized such that Tr(T,T,)=16,,. M is the quark
mass matrix, in terms of which the pion mass matrix is
(m?),, =4u Tr(MT,T,). The form of .L is identical for
any number of flavors. Flavor dependence enters only
through the number of pions [N?—1 for flavor SU(N)],
and through the constants f and u.

In QCD the mass matrix is diag(m,,my,m). I will as-
sume that m, =mg,, which is a good approximation for
the amplitudes I discuss, as the terms that I drop are
suppressed by (m, —m,)/m; compared to those that I
keep. In this isospin symmetric limit the flavor-off-
diagonal eigenstates are the 7, with m 2 =2um, and the
kaons K*,K°,K° with mZ=u(m +m,), while the
flavor-diagonal eigenstates are the 7° (T, =T),), which is
degenerate with the =%, and the n (T,=T;), with
m2=1lu(4m, +2m,).

The left- and right-handed quark currents can be writ-
ten in terms of 2 fields

Lu‘,:(jTay#%(lﬁ-‘ys)q—»%szr( TaEBpET) ’ (3)
Rua =‘7Ta7’u%( 1—=vs)q _’%szr( TGETBME) : 6)

The Euclidean space Dirac matrices are Hermitian and
satisfy {v,,v,}=8,,. The expansion of L, in terms of
the pion field is

L =

pa=—if |Te(T,0,m)— %Tr( T,[d,mm])

——2—Tr(Ta[7r[7T,a“1r]])+O(1T4) ) (7

3f?
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R, has the same expansion except that m— —m. The
pion decay constant is defined by

(OquHYpYSq'#b>=<O‘Lpa__Rpaiﬂb):pyffréab . (8)

Comparing with Eq. (7) we see that f = f at lowest order
in chiral perturbation theory.

The chiral Lagrangian can be extended to include the
flavor-singlet pseudoscalar meson [2]. Throughout this
paper I refer to this meson as the 7', despite the fact that
the physical %’ is not exactly a flavor singlet. I use the la-
bel “pion” to refer to the nonsinglet pseudo Goldstone
bosons, not including the n’. To include the %’ in the
chiral Lagrangian one begins by defining a U(N) matrix

U=3e'™ ¢y=20'/(V2NS), )

in terms of which the extended Lagrangian can be writ-
ten

L=+LfV (") Tr[8,U8,U" 1= Lf2V,(n' )y Tr[MU]
— LT[ MU+ V() + V()3 n'd " .
(10)

(The definition of the potentials differs slightly from those
of Ref. [2].) The potentials are arbitrary aside from the
following conditions: V,, V|, and V5 are real and even
functions of their arguments; V, satisfies V,(7n")*
=V,(—n'); and V,(0)=V¥,(0)=1. The arbitrariness im-
plies that there are very few constraints on the couplings
of the .

This Lagrangian simplifies when N, the number of
colors, is taken to infinity. This limit is of interest here
because it is similar to the quenched approximation.
From the analysis of Ref. [2], it can be seen that, when
N,— x, one can set V,=V,=1, and V,=V;=0. (V,
does contribute a constant term proportional to N2, but
this only affects the vacuum energy.) In other words, the
Lagrangian has the same form as the original chiral La-
grangian, Eq. (4), except that X is replaced by U. Depen-
dence on N, enters only through the decay constant,
which is proportional to 1/ N,. The symmetry group has
thus enlarged to U(N), XU(N)g, with the 7’ being the
additional pseudo Goldstone boson. The physical reason
for this simplification is that the terms in Eq. (10) which
differentiate the 1’ from the pions involve intermediate
gluons, and are suppressed by powers of 1/N,.

Expanding the large N, Lagrangian in terms of 2 and
7’ one finds

LN, o)=L+ L, (1
Ly=1f? Tr[ayzaﬂz*]jh%a#n'aun' : (12)

L,,=—1fu{cos(¢,)Tr[M(2+32"]
+i sin(¢o) Tr(M (=—3)} . (13)
Three features of this result are important in the follow-
ing.
(1) The ' couples to pions through the mass term .L,,,
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but does not couple through the derivative term L. This
is not true at finite N, because the potential ¥, will con-
tain even powers of the 7’ field.

(i) The masses of the pseudo Goldstone pions differ in
general from those at N.=3. Diagonalizing the mass
matrix, one finds that the %', 7, and 7° mix. The eigen-
states have flavor compositions 5s, dd, and @u, with
masses 2umg, 2umgy, and 2um,, respectively. For
my=m, one can use the usual 7° and 7 linear combina-
tions, since they are degenerate. Only if all three quarks
are degenerate, however, is the flavor singlet ' an eigen-
state.

(iii) The nonsinglet chiral currents that follow from the
Lagrangian are the same as those of Egs. (5) and (6), ex-
cept that = is replaced by U. It is simple to see, however,
that the n’' drops out of the expressions, so that the
currents are in fact unchanged. This can be seen explicit-
ly in the expansion of L ,,, Eq. (7). The first term van-
ishes for the 7’ because of the flavor trace, and all subse-
quent terms involve commutators, which are zero for the

The fundamental assumption of this paper is that the
“nonhairpin” interactions involving pions and 7"’s are
described by a Lagrangian which has, at leading order in
the chiral expansion, the same form as the large N, La-
grangian, Eq. (11). The constants f and p will, however,
differ from those in both full QCD and the N, — o limit.
There are additional “hairpin” interactions involving the
7', and possibly pions, but not involving pions alone.
Hairpin interactions are those in which the quark and an-
tiquark fields in at least one of the external 17’ mesons are
contracted together. Examples appear in Figs. 3(d)-3().
Before discussing these additional interactions, I explain
the justification for the assumption just announced. This
assumption has three parts.

(1) Interactions involving different numbers of nonsin-
glet pions, but no flavor singlet mesons, are related to one
another in the same way as in full QCD. For example,
the pion scattering lengths in the chiral limit can be ex-
pressed in terms of f_ according to the formulas of Wein-
berg [1]. In full QCD the form of the chiral Lagrangian
follows from three inputs [17]: (a) Ward identities be-
tween correlation functions; (b) pion domination of low
momentum amplitudes; and (c) analyticity and unitarity
of the amplitudes. In the quenched approximation one
has only the first two ingredients: the Ward identities in
the quenched approximation are the same as in full
theories, at least in lattice regularized theories [18,19],
and pion dominance is a good approximation in practice.
But the amplitudes are neither analytic nor unitary. In
fact, it is only analyticity that is important for the O (p?)
terms in the Lagrangian; the amplitudes from these terms
are not themselves unitary. What is required is that mul-
tipion amplitudes have a polynomial dependence on the
kinematic invariants. This is the real assumption being
made concerning the quenched approximation. For stag-
gered fermions, it is supported by numerical evidence for
amplitudes involving up to four pions [20]. This is actu-
ally sufficient for the chiral logarithms discussed here,
which require only the two- and four-point vertices from
the O (p?) terms in the Lagrangian.

(2) Non-hairpin interactions of %’ mesons with pions
come entirely from .L,,, and are related to interactions of
pions with each other by flavor factors. In the large-N,
limit this result follows because the quark diagrams are
the same with or without 7’ mesons. This equivalence of
diagrams is also true in the quenched approximation. In
particular, there are no internal quark loops in either the
large-N, limit or the quenched approximation. Interac-
tions involving intermediate gluons, which vanish when
N_.— 0, involve hairpins and are discussed below. This
distinction is useful because it turns out that, for some
quantities, such hairpin interactions do not contribute at
leading order. This will become clearer in the following
sections. Thus I assume that the form of the effective La-
grangian describing the pion-7’ interactions is the same
in the quenched and N, — o« theories. The coefficients in
the Lagrangians will differ, however, because the gluon
interactions are different.

(3) The interaction of the 1’ with itself, through both
the kinetic and mass terms, is related to the self-
interactions of pions by flavor factors. This applies only
to nonhairpin interactions resulting from diagrams in
which the %’ does not annihilate into gluons. The
justification for this assumption is as for the previous one:
the result is true in the large-N, limit, and the quenched
diagrams involving 7’ mesons are related to those involv-
ing pions by the same flavor factors as in the large-N,
limit. In particular, the mass eigenstates are the same as
in that limit.

An important consequence of the assumption that the
quenched Lagrangian has the same form as that for
L(N,—> ) is that the nonsinglet chiral currents are also
the same. As explained above, this means that the %’
does not couple to these currents.

Although the form of the quenched Lagrangian is simi-
lar to that for full QCD, the calculation of loop correc-
tions using chiral perturbation theory involves additional
rules. According to these rules certain loop diagrams are
kept, while others are discarded. The chiral perturbation
theory diagrams kept are those corresponding to quark
diagrams that do not contain internal quark loops. The
method by which one determines the correspondence be-
tween pion and quark diagrams is best explained by ex-
ample, and is the subject of the following section.

I now return to the additional hairspin interactions in-
volving the 7. It is here that the quenched and large-N,
theories differ: such diagrams exist for the quenched ap-
proximation, but vanish in the N, — o limit. For exam-
ple, there is a “disconnected” contribution to the 7’ two-
point function in which the quarks annihilate into gluons.
It is this diagram, and it iterates including any number of
quark bubbles, that gives the 7’ its additional mass in full
QCD. More generally, such diagrams give rise to the 7’
dependence in the potentials V,, V,, V,, and Vs, and
thus convert the Lagrangian .£,+.£L,, into one with the
form of Eq. (10).

In quenched calculations one must include the contri-
bution from %’ loops since the 7’ is light. This means
that the additional vertices coming from the V; may be
needed. Thus the coefficients of chiral logarithms due to
7’ loops are not, in general, predicted in terms of the
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leading-order coefficients.” They depend on new parame-
ters which even in full QCD are either poorly constrained
by phenomenology, or not known at all. It turns out,
however, that there is a class of quantities for which the
7’ does not enter at one-loop order, so that the addition-
al 7’ interactions are not needed. This class includes f_
and the kaon B parameters, in the limit that all quarks
are degenerate. These “safe” quantities are the main
focus of this article.

For the remaining quantities one must include 1’ loops.
As I explain in Sec. V, these loops do not obey usual
power counting rules of chiral perturbation theory, ac-
cording to which each loop brings an additional power of
m2. Instead, the leading-order chiral logarithms are not
suppressed by m2, and come from diagrams with any
number of 7’ loops. These diagrams are of a simple form,
however, and require only the additional 7'’ interac-

tions.® These can be parametrized as
2

A—1. ., myd |

"Lﬂ,: 2 8177 axn + 77 2 > (14)

where the first term comes from Vy, the second from V.
The most important feature of £, is that m, is a fixed
scale, of O(Aqcp), and does not vanish in the chiral limit.
The parametrization of Eq. (14) is chosen so that, if this
vertex could be iterated as in full QCD, the n' would get a
mass
m%,=m8+2Lm . (15)
A
In the approximation that 4 =1, the experimental 5 and
7' masses imply that m;=0.9 GeV. I use these values
when making estimates of the quantitative importance of
7’ loops.

III. CHIRAL LOGARITHMS IN £, AND fy

I begin by summarizing the calculation of the chiral
logarithmic corrections to the decay constant in a theory
with N light flavors, with quark loops included. In chiral
perturbation theory there are two one-loop diagrams, and
they are shown, along with the leading-order diagram, in
Fig. 1. The circle represents the four-pion vertex ob-
tained by expanding Eq. (4). The square represents the

axial-vector current 1(L R,,), the expansion of

pa Dpah

SIn full QCD this problem does not arise because the 7’ is
heavy, and does not give rise to chiral logarithms. The uncer-
tainties only enter through the O(p*) terms in the chiral La-
grangian.

6Strictly speaking there are also two terms involving ¥, which
contribute. (1) A mass term proportional to V3 (0)n'*Tr(M).
Using arguments similar to those of the following section, one
finds that the Tr(M) corresponds to an additional quark loop.
Since this loop is absent in the quenched approximation, this
term should not be included. (2) A vertex proportional to
V5(0)n'Tr(Mn'm?). This vertex actually appears in Fig. 3(f),
and does contribute to mass renormalization. By redefining the
U field, however, one can absorb ¥5(0) into the constant 4 [11].
Thus there is no loss of generality if one excludes this term.
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(a) (b) (c)

FIG. 1. Diagrams contributing to f,: (a) leading order; (b)
wave-function renormalization; (c) vertex renormalization. The
lines represent pseudo Goldstone bosons, the box is the axial-
vector current, and the circle is the vertex coming from L.

which is as in Eq. (7), except that only terms with an odd
number of pions appear. The crucial point about these
vertices is that they are completely determined in terms
of the lowest-order parameters f and p.

As explained in the preceding section, the leading-
order result is f(m;)=f, for all flavors d. The correc-
tions from Figs. 1(b) and 1(c) are multiplicative:

f(m)=f[1+X(Fig. 1(b))+X(Fig. 1(c))+0(m?2)] .
(16)

The nonlogarithmic corrections proportional to m 2 come
from O (p*) terms in the chiral Lagrangian. They do not
give rise to finite volume dependence (see Sec. VI), and I
will drop them from subsequent equations.

Figure 1(b) gives rise to both mass and wave-function
renormalization, but only the latter effects f_. To con-
tribute to wave-function renormalization, the vertex in
Fig. 1(b) must contain derivatives, and thus must come
from L. This is an important observation to which I re-
turn below. The contribution of Fig. 1(b) is

X(Fig. 1(b))=§;2 (T, (7, TIT) [ Gl )

17

where the measure is fk=f[d4k /(27)*], and the in-
tegrand is the pion propagator G(k,m)=1/(k*+m?).
The sum runs over the N?—1 pions, and is to be done in
the mass eigenstate basis, in which the mass of the pion
of flavor T, is labeled m,.

Figure 1(c) renormalizes the vertex; its contribution
turns out to be proportional to the wave-function renor-
malization

X (Fig. 1(c))=—4X(Fig. 1(b)) . (18)
Thus the fractional correction to the decay constant is
Slag)—f

= ST T TN T ) - (19)

Here I have defined one of the standard integrals that ap-
pear at one loop:

_ 1
Il(m)—kaG(k,m). (20

The integral must be regulated, and I use a sharp cutoff,
|k| <A.” The result is

7As is well known, such a momentum cutoff violates chiral
symmetry. This can be corrected by adding a quartically diver-
gent counterterm, but this does not contribute to any of the pro-
cesses considered here [21].
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AZ
(4w f)?

I,(m)= +L(m)+0 |— |, (21

where L(m) is the chiral logarithm defined in Eq. (3).
The quadratic divergence can be absorbed by a
redefinition of f.

For QCD, the general formula gives

fx=fO—=320(m)+I,(m)+I,(m )], (22)
fo=FQ—=1I(mg)+20,(m)]), (23)

in agreement with the Refs. [4,2,22].
quarks the result is

For N degenerate

f-=f

1—%’—11<m,)l , (24)

in agreement with Ref. [6].

I now turn to the quenched theory. The result of the
following discussion is extremely simple: except for 7’
loops, which only contribute if the quarks are not degen-
erate, there are no leading-order chiral logs in decay con-
stants. I explain this conclusion in gory detail, as the in-
sight obtained can be applied directly to more complicat-
ed calculations.

The chiral logarithm comes from the infrared part of
the loop integral, |p| <m. The coefficient of the loga-
rithm is determined by the residue of the pole at
p?=—m? In general this residue is itself determined by
a phys1ca1 on-shell amplitude: for wave-function renor-
malization it is the part of the four-pion scattering ampli-
tude proportional to the kinematic variable ¢, evaluated
at threshold; for vertex renormalization it is part of the
amplitude for the axial-vector current to convert one
pion to two pions. In other words, to calculate the
coefficient of the logarithm one can factorize the loop in
Figs. 1(b) and 1(c) into two pieces: an on-shell pion propa-
gator, and a physical scattering or conversion amplitude.
Since these amplitudes are evaluated for small p, they are
well described by lowest-order chiral perturbation theory,
at least for small enough m. This is why the coefficient of
the logarithm can be calculated in terms of only the
coefficients of the lowest-order Lagrangian.

It is because of this factorization that one can hope to
calculate the coefficient of the logarithm in the quenched
approximation. As discussed in the preceding section, it
is reasonable to assume that the leading-order expressions
for both the scattering amplitudes and the chiral currents
are the same in the quenched approximation as in the full
theory, except for differences in the coefficients f and p.
Thus the coefficient of the chiral logarithms coming from
each diagram is the same function of these coefficients.
In other words, the calculation of individual chiral per-
turbation theory diagrams proceeds by the same method
in both theories. The only differences in the quenched
calculation are that the 7’ can propagate in the loops and
that diagrams which involve internal quark loops should
be discarded.

To determine what these differences mean in practice it
is necessary to find the quark diagrams which correspond
to the diagrams of chiral perturbation theory. Figure 2

— =

FIG. 2. Quark diagram corresponding to Fig. 1(a). The lines
represent quark propagators, as described in the text. The box
is the axial current. The apex where the propagators meet is the
operator used to create the pion.

shows the quark diagram corresponding to Fig. 1(a). The
quark lines are to be interpreted as follows. If one were
doing a lattice (or any other nonperturbative) calculation
of f . one would calculate the diagram of Fig. 2, with the
lines corresponding to quark propagators in a back-
ground gauge field. The result would then be averaged
over all the background fields, using either the full mea-
sure including quark loops, or the quenched measure.
The resulting value of £, would be correct to all orders in
mf, and, in particular, would include the chiral loga-
rithms. In fact, the lines in Fig. 2 are almost the full
propagators, except that the propagation is restricted so
that there is no long-distance pion contribution. If the
full measure is used, this restriction applies also to the
quark loops contained in the background field. With this
restriction, the diagram does not produce chiral loga-
rithms. It does contribute terms of all orders in mf,, but
we are interested only in the lowest-order contribution.

This provides a definition of the meaning of the lines in
quark diagrams that is both vague and difficult to imple-
ment. These shortcomings are not important, however,
because the diagrams serve only as a method for tracing
the flow of the flavors of the quark and antiquark. This
aspect of the diagrams is completely well defined.

The quark diagrams contributing to wave-function re-
normalization [i.e., Fig. 1(b)] are shown in Fig. 3. These
diagrams are obtained as follows. First, draw all possible
quark diagrams for the pion scattering amplitude in
which at least two of the pions have the flavor under con-
sideration. One of these two is the external pion, the oth-
er couples to the axial-vector current. Next, join the
remaining two pions from the scattering amplitude with a
pion, or an 71, propagator. Figure 3 shows the topologies
of the diagrams that result. They represent the different
ways in which flavor can flow in the two step process of
pion scattering followed by pion propagation. It is only
because the coefficient of the chiral logarithm is deter-

L2
QQ,
O

(@ ()
FIG. 3. Quark diagrams corresponding to Fig. 1(b).
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mined by this factorized limit that the flavor flow is well
defined.

Having understood the meaning of the diagrams in
Fig. 3, I now analyze them in turn. The results of this
analysis are summarized in Table I. The conclusion is
that, in the full theory, only Fig. 3(a) gives leading-order
chiral logarithms in wave-function renormalization. This
means that it alone must correspond to the chiral pertur-
bation theory diagram, Fig. 1(b). In the quenched ap-
proximation, however, this diagram is absent. Further-
more, if the quarks are degenerate, none of the other dia-
grams contribute leading-order quenched chiral loga-
rithms. Thus wave-function renormalization does not
contain leading-order chiral logarithms in the quenched
approximation.

I begin by analyzing the diagrams in full QCD. It
turns out that Figs. 3(d)-3(i) do not contribute leading-
order chiral logarithms. This is because they all contain
one or more mesons annihilating into gluons. This can
only occur if the meson is the 7', because at leading order
the gluonic amplitude is flavor symmetric. But in full
QCD the 1’ is massive and its loops do not give chiral
logarithms. The only possible contributions are thus
from Figs. 3(a)-3(c). As I now explain, however, Figs.
3(b) and 3(c) give rise only to nonleading chiral logarithm
proportional to m*In(m ).

The extra power of m2 comes from the four-pion ver-
tex. The two types of diagram that contribute to pion
scattering are shown in Fig. 4: diagram (a) is required for
Fig. 3(a), while diagram (b) is required for Figs. 3(b) and
3(c). I claim that the amplitude from (a) is O (p?), while
that from (b) is O (p*). (Here I am using p? loosely to
refer to both p? and m2.) This is true both for the vertex
coming from the derivative term in the chiral Lagrangian
(which is that required for wave-function renormaliza-
tion) and for the vertex from the mass term.

For a theory with four or more flavors this can be seen
as follows. One can choose the flavors of the external
pions such that only Fig. 4(b) contributes, e.g., #d, du, 5c,
and c¢s. For these flavors the vertices from the leading-
order chiral Lagrangian give no contribution, because the
flavor trace vanishes. Only terms with two flavor traces
contribute, e.g., Tr(GHEBuET)z, but these contributions
are of O(p*). For general external flavors, there will be
contributions to the scattering amplitude from both Figs.
4(a) and 4(b). Those from the disconnected diagram (b)
will, however, be of O(p“), because the quark diagram is
not affected if we simply change the flavor labels.® Thus
the only contributions of O(p2) can be from Fig. 4(a).
That this diagram does contribute at O (p?) can be seen

80ne might worry about the validity of this argument for non-
degenerate quarks, for then changing the flavor labels also
means changing the quark masses. This is not a problem, how-
ever, because there is always a theory in which, for external
flavors chosen so that only the disconnected diagram contrib-
utes, the masses of the quarks are the same as those in the dia-
gram under consideration. In all such theories the disconnected
components are O (p*).

TABLE I. Contributions of the diagrams of Fig. 3 to chiral
logarithms in wave-function renormalization. “Leading” indi-
cates a term proportional to mZ2ln(m ), “nonleading” a term
proportional to m*In(m ).

Diagram Full theory (N =4) Quenched approximation
(a) Leading Absent (no loop)

(b) Nonleading Nonleading

(c) Nonleading Absent (no loop)
(d),(e) Absent (no 7" «dm,

) Absent (no 1) Absent
(g),(h),(1) Absent (no 7’) Absent (no loop)

by choosing flavors such that it is the only contribution,
e.g., ud, ds, ¢, and ¢u. The O (pz) terms in the chiral La-
grangian do give a vertex with these flavors, because they
can be connected together in a single flavor trace.

This argument requires only that the leading-order in-
teractions are described by the chiral Lagrangian. Given
the fundamental assumption of this paper, namely that
the Lagrangian for quenched interactions has the same
form as in the full theory, the argument of the preceding
paragraph applies also to the quenched theory. In fact, it
applies also if the external particles are flavor singlets.
Since the background configurations in the quenched ap-
proximation are by construction independent of the num-
ber of flavors of the full theory one starts with, the argu-
ment also applies to quenched QCD.

An interesting question is whether Figs. 3(b) and 3(c)
give rise to leading-order chiral logarithms in full QCD.
Since QCD has only three light flavors, the argument
given above does not work: none of the possible external
flavors selects Fig. 4(b) alone. This means that the ques-
tion cannot be asked in terms of correlation functions of
operators, but only in terms of individual contractions.
Thus one must have a nonperturbative regulator, such as
the lattice. Although I do not know of a proof, I think it
likely that the N >4 result carries over to N =3, for the
following reasons. First, with staggered fermions, one
can show, given certain assumptions, that Fig. 4(b) is
O(p*) irrespective of the number of dynamical quarks
[20]. Second, the contribution of wave-function renor-
malization in a theory with N degenerate quarks, Eq.
(17), comes with an explicit factor of N for N 22. This
suggests that Fig. 3(a) alone is contributing, because there
are N flavors of quark running in the loop. This is not
conclusive, however, because there could be hidden N
dependence in f and p. Finally, the claim that only Fig.
3(a) contributes is consistent with the N,— co limit, in
which both the vertex from the leading-order chiral La-
grangian and that from Fig. 3(a) are of O(1/N,), while

(a) (b)

FIG. 4. Quark diagrams contributing to pion scattering.
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those from Figs. 3(b) and 3(c) are of O (1/N?).

I now turn to the analysis of the quark diagrams in the
quenched approximation. Of the first three diagrams,
only Fig. 3(b) is present in the quenched approximation,
as the other two involve quark loops. As I have just ar-
gued, however, Fig. 3(b) gives nonleading chiral loga-
rithms not only in the full theory (with N =4), but also in
the quenched approximation. Thus these three diagrams
do not contribute leading-order chiral logarithms to
quenched f .

The remaining diagrams involve 7’ propagation. Of
these, Figs. 3(g)-3(i) require internal quark loops, and so
are not present in the quenched approximation. Figures
3(d)-3(f), however, do give potential contributions of a
type unrelated to those in full QCD. Fortunately, if the
quarks are degenerate, this contribution vanishes at lead-
ing order. This is because, as explained in Sec. II, the 7’
does not appear in the four-pion vertex containing
derivatives. (Recall that for wave-function renormaliza-
tion the vertex must contain derivatives.) For degenerate
quarks, one can use the usual basis of 7y, 1, and 7', and
since the 7’ does not couple, Figs. 3(d)-3(f) simply van-
ish. There will, however, be contributions at higher-
order chiral in perturbation theory.

In fact, Fig. 3(f) does not contribute leading-order
chiral logarithms to f_ even for nondegenerate quarks.
This is because only the V, term in the full chiral La-
grangian, Eq. (10), has the correct flavor structure to cor-
respond to the vertex in Fig. 3(f). Since this term has no

derivatives, however, it cannot contribute to wave-
function renormalization irrespective of the quark
masses.

This is not true of Figs. 3(d) and 3(e). For nondegen-
erate quarks, the neutral eigenstates have flavors 3s, dd,
and #u, and each of these individually does couple to the
derivative term in the Lagrangian. It is simple to see that
the contribution to wave-function renormalization van-
ishes for degenerate quarks because of a cancellation be-
tween the two diagrams. For nondegenerate quarks, this
cancellation does not occur because the neutral eigen-
states are different. Thus there are extra contributions
proportional to the difference in mass of the two quarks
making up the pion. For example, this extra contribution
is proportional to m, —m,, for the physical f_. These ex-
tra terms are discussed in Ref. [11], and I do not consider
them further here.

For mass renormalization, Figs. 3(d)-3(f) all contribute
even if the quarks are degenerate, as discussed further in
Sec. V.

Finally, I turn to vertex renormalization, Fig. 1(c).
The quark diagrams are in one-to-one correspondence
with those in Fig. 3, and the analysis is almost identical.
The result is that the summary of Table I applies both to
vertex and wave-function renormalization. In Fig. 5, I
show the diagrams analogous to Figs. 3(a)-3(f). I do not
show those corresponding to Figs. 3(g)-3(i), since they
contribute neither to full nor to quenched theories. Fig-
ure 5(a) is the only diagram contributing leading-order
chiral logarithms in the full theory, but is absent in the
quenched approximation. The three pion vertex in Figs.
5(b) and 5(c) is absent in leading order because it requires
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(a)
(d)
FIG. 5. Quark diagrams corresponding to Fig. 1(c).

two flavor traces, whereas the axial current contains a
single flavor trace [Eq. (7)]. Thus these diagrams contrib-
ute only nonleading chiral logarithms. This is true also
in the quenched theory, for which only diagram (b) is
present. The remaining three diagrams require an 7%’ in
the loop, and are thus absent in the full theory. They are
present in general in the quenched theory, but vanish for
degenerate quark masses because, as explained in Sec. II,
the 7’ does not couple to the leading-order representation
of the axial current.

In summary, the leading-order chiral logarithms in de-
cay constants, which are present in full QCD, are absent
in the quenched approximation. There are additional
chiral logarithms from 7’ loops, which depend on param-
eters other than f and u, but these are only present for
nondegenerate quarks. These extra logarithms are dis-
cussed in Ref. [11].

IV. CHIRAL LOGARITHMS IN B PARAMETERS

A. By with dynamical quarks

To set the stage for the calculation of the chiral loga-
rithms in By in the quenched approximation, I review
the calculation in theories with dynamical quarks. The
discussion will apply to theories with a d quark, an s
quark, and any number of other light quarks.

The kaon B parameter is defined as a ratio of matrix
elements:

k={(K°Og|K°Y=BgM,,., (25)
O =15,7,(1+y5)d, 1[5y, (1+y5)d,)], (26)
M, =3(K °|[5,7,(1+75)d,]|0)

X0[[(5,7,(1+75)d,) K, 27)

where a and b are color indices. The subscript “vac” in-
dicates that this is the result for M, in vacuum satura-
tion approximation. The definition can be written in the
more familiar form

My =B, fim} . (28)

The calculation of chiral logarithms is clearer using the
definition in Eq. (25). What is required is the logarithms
in both Mg and M ,..

I begin with the latter. The matrix element Ji,,_ is the
product of two matrix elements of the axial current, the
corrections to which are discussed in the previous sec-
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tion. The result can be read off from Egs. (8) and (16):
Moo= fPpe-px {1+2X[Fig. 1(b)]
+2X[Fig. 1(c)]+0(m})} . (29)

The O (mg) term comes from nonleading operators, and
does not contain chiral logarithms. As in the previous
section, I will drop such terms henceforth. In the formu-
la for X [Eq. (17)], one should use the flavor matrix ap-
propriate to the kaon, T, =(1/V2)(T¢—iT,). The mo-
menta are both incoming, so that p,?-pk:-p,%:m,%,
where my is the physical mass including one-loop correc-
tions. The corrections in Eq. (29) are precisely those re-

quired to change f2 to the one-loop corrected f FE
Moo= fRmk . (30)

The chiral logarithmic corrections to My in full QCD
were first calculated in Ref. [5], and related results are
given in Ref. [23]. I have checked these calculations, and
in the following I present a slight generalization of the re-
sults. The AS =2 operator @y transforms as part of a
(27,1) under SU(3); XSU(3)g. In chiral perturbation
theory it is represented by a sum of all operators having
the same transformation property, with unknown
coefficients. There are no such operators at O (1), and
only one at O (p*,m,) [5]:

Ox —0%=4Bf*%39,3"),,(39,3"), , 31)

where the subscripts indicate the dsth element of the ma-
trix. I have chosen the coefficients so that, at tree level,
By =B, as can be seen by combining the tree-level result

Mg =2Bf*m} (32)

with that for M, from Eq. (29). Chiral perturbation
theory does not determine the value of B, which is anoth-
er parameter like f and pu.

Chiral logarithms in MMy come from the five types of
diagrams shown in Fig. 6. I have represented the opera-
tor by two squares, each corresponding to a left-handed
current, because it can be written as

Ok = %B (Lo =L Lyg—iL,) 63)

This factorization, which plays an important role in the
calculation, is only true at leading order in the chiral ex-
pansion. The result from these diagrams is a multiplica-
tive correction

My =2Bf’m¢ {1+ X[Fig. 6(a)]+X[Fig. 6(b)]
+ X [Figs. 6(c)-6(e)]} . (34)

O 0w & L
(@) (b) (© (d) (O]

FIG. 6. Chiral perturbation theory diagrams for /M. The
pair of squares represents the operator O}, while the circle is
the vertex from the chiral Lagrangian.
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Here my is the one-loop-corrected kaon mass. Strictly
speaking, some of the results from Figs. 6(c)-6(e) are pro-
portional to the tree-level value of m} (or other tree-level
meson masses squared). But since these are correction
terms, one is justified in replacing mg (tree) with my (1
loop).

The calculation of Figs. 6(a) and 6(b) is identical to that
of Figs. 1(b) and 1(c) respectively, except for an overall
factor of 2 since there are two left-handed currents in
O%:

X[Fig. 6(a)]=2X[Fig. 1(b)],
X[Fig. 6(b)]=2X[Fig. 1(c)] .

(35)

This part of the correction to My is the same as the com-
plete correction to M., Eq. (29), and so cancels in the
ratio which defines Bg. In other words, the corrections
from Figs. 6(a) and 6(b) are precisely those needed to con-
vert the factor of f? in Eq. (34) to the one-loop value f2,
and thus do not affect Bg. This is true for any number of
flavors in addition to the s and d quarks.

The only new work is that required to calculate Figs.
6(c)—6(e). The result can be written in a form which is
valid for any number of flavors:

X [Fig. 6(c)-6(e)]

2
ma
:IZ(mK)—E 1+ 2 Il(ma )[(Ta )ddu(Ta )ss]z 5
a mg
(36)
where I, is the standard integral
2
—m 2
12<m)—7;fkc(k,m) (37
2
— m 2 /A2
=— - |— + A)]. 8
L(m) anf [1+0(m~/A%)] (38)

This integral results from Figs. 6(c) and 6(d), both of
which have a K° in the loop. In Fig. 6(e) there are only
flavor-diagonal pions in the loop. This diagram gives rise
to the second term in X, in which the sum is over flavor-
diagonal pions in the mass eigenstate basis.’

An important consistency check on this result is that
divergent parts can be absorbed into B. This requires
that there be no quartic divergences, for these would im-
ply that M g « A*, while chiral symmetry dictates that the
leading term is proportional to m2. All three diagrams
do contain quartic divergences, but they cancel in the
sum. There are quadratic divergences in Eq. (36) because
I, < A? at leading order. These can be absorbed into B as
long as they do not depend on the quark masses. The
factor of m?/m} multiplying I,(m,) suggests that this
may not be true, but in fact the mass dependence cancels
because of the result

91n fact, the sum can be extended to all pions, because the last
factor is nonzero only for flavor-diagonal pions. The same is
true in Eq. (40) below.
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S m2(T,)ga— (T, )y P=m} . (39)

Here again the sum is in the mass eigenstate basis, and
only flavor-diagonal states contribute. This result holds
for any number of flavors.

Combining Egs. (30), (34), (35) and (36), the corrected
By is

By=B |1+1,(mg)
m} )
—E l+—n’¥ Il(ma)[(Ta)dd_(Ta):s]
(40)
In QCD (with m, =m) this gives
_ 3|, ma
BK—-B 1+12(m,()—z 1+—E Il(m,,)
I PULLE P (41)
T, 1 m.
4 mlz(

In the limit m, =m,;—0 the chiral logarithmic part is

3my;+m

By (quenched)=B W

1+Iz(mk)—

where X (n') comes from 7’ loops. In the limit m;=m;
the result is identical to that in the full theory, Eq. (44).

To begin the quenched calculation, the operator O
must be written in terms of pion fields. As before, I as-
sume that the form of the operator is the same as for the
full theory, Eq. (31), except that the constant B can differ.
In other words, I assume that the amplitudes for the
operator to create two and four pions are related in the
same way as in the full theory. In the continuum, these
relations are derived from the chiral Ward identities.
With staggered fermions, analogous Ward identities hold
in both full and quenched theories [19,15]. With Wilson
fermions, the Ward identities are regained in the continu-
um limit of both full and quenched theories [18].
Dynamical fermions play no role in the derivations.

Given this assumption, the calculation proceeds as in
the continuum, except for the usual two complications.
First, one must keep only those diagrams in Fig. 6 which
correspond to quark diagrams without internal loops.
Second, one must determine whether there are extra con-
tributions from 7’ mesons propagating in the loops.

For Figs. 6(a) and 6(b) the analysis from the preceding
section can be used, because the operator @} is a product
of two factors of L,. The calculation of Figs. 6(a) and
6(b) is identical to that of Figs. 1(b) and 1(c). This means
that, just as in the full theory, any chiral logarithms from
Figs. 6(a) and 6(b) cancel in a ratio that defines Bx. In

)™ g am,
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By —B[1—4L(my)], (42)

where the quadratic divergences have been absorbed into
B. 1t is also useful to expand about m; =my,, in terms of
8=(m,—my)/(m;+my)*:

Bx=B[1—L(mg)3+18)+0(8%)], 43)

a result previously quoted in Ref. [15]. Finally, for N de-
generate flavors one finds

By =B[1+1,(m)—2I,(m)]

=B[1—3L(m)+ - ]. (44)

Unlike the correction to f, this result has no explicit
dependence on N.

B. By in the quenched approximation

I now turn to the calculation of the chiral logarithms
in quenched By. The conclusion of the following analysis
is simple: the result for By is unchanged from the full
theory except that (1) there are contributions from 7%’
loops when m;7#m,, and (2) in the formula Eq. (40) the
mass eigenstates are 35 and dd (with masses m  =2um,
and m,; =2um,, respectively). Thus the quenched result
is

my+3m;

I(my)+(m,—m)X(n') |, (45)

[

fact, as shown in the preceding section, the chiral loga-
rithms in quenched fy differ from those in the full
theory. In particular there are no logarithms in fj for
mg=my, and there are extra logarithms from 7’ loops if
m 7#my. But these differences are irrelevant for B.

Just as in the full theory, then, the logarithms for By
come entirely from Figs. 6(c)-6(e). The quark diagrams
corresponding to these are shown in Fig. 7. The operator
Ok is shown as two squares, each representing a left-
handed current. Each diagram actually represents two
contractions, one in which the color indices are contract-
ed within each current, the other having the indices con-
tracted between currents. The pairings of quark and an-
tiquark propagators into bilinears can be interchanged by
a Fierz transformation. I have chosen the pairing so that
each bilinear couples only to one of the mesons in the
loop. This makes it easier to see the correspondences
with pion diagrams.

None of the diagrams in Fig. 7 contain internal quark
loops. Thus all are present in both quenched and full
theories. The correspondences between quark and pion
diagrams is as follows. Figures 7(a) and 7(b) correspond
to Fig. 6(c), since both have a four pion scattering ampli-
tude. Figure 7(c) corresponds to Fig. 6(d), since the parti-
cle in the loop is a kaon. And, finally, Figs. 7(d) and 7(e)
correspond to Fig. 6(e), in which the mesons in the loop
have flavors 55 and dd.
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FIG. 7. Quark diagrams corresponding to Figs. 6(c)-6(e).

Since Figs. 7(a)-7(c) are the same in both full and
quenched theories, and since the particles in the loops are
flavor off diagonal, the result from the chiral perturbation
theory diagrams Figs. 6(c) and 6(d) is identical in full and
quenched theories. This is the first example in which
there are chiral logarithms in a quenched quantity com-
ing from the same diagrams as those in the full theory.
In fact, Fig. 7(b) does not contribute at leading order be-
cause the four-pion vertex is O (p*).

The quenched approximation can, however, affect the
evaluation of Fig. 6(e), because the loop contains flavor-
diagonal mass eigenstates, which, in general, are different
in quenched and full QCD. There are also potential 7'-
loop contributions in the quenched theory not present in
the full theory, for example that of Fig. 7(e). The effect of
these differences is that, in the expression for X [Figs.
6(c)-6(e)], Eq. (36), the sum in the quenched theory runs
over both the pions and the %', while in full QCD the 7’
is excluded. The difference between these two sums van-
ishes, however, for degenerate quarks. This is for two
reasons. First, the nonsinglet pion mass eigenstates are
the same in quenched and full theories, so that the contri-
bution to the sums from these pions agree. Second, the 1’
is a mass eigenstate, and its extra contribution to
quenched sum vanishes, because Ty, — T, =0 for a flavor
singlet. Another way of seeing this is to recall that the n’
does not couple to L, so the extra diagram 7(e) vanishes.

It follows from this discussion that Eq. (45) describes
the leading-order chiral logarithms in quenched By .

C. By and B ,

The matrix element M picks out the positive-parity
part of O, which consists of a sum of eight different
terms: four “vector-vector” (y,'y,) and four “axial-
vector—axial-vector” (y,¥sv,¥s). There are two
different color contractions for each of these eight terms,
with one or two traces over color indices. When doing a
numerical calculation one calculates all sixteen terms sep-
arately, so it is interesting to predict their chiral behavior
and finite volume dependence. In this subsection I calcu-
late the leading-order chiral logarithms for the four
Lorentz-invariant combinations in which the index p is
summed.

The precise definition of the breakup of My into six-
teen pieces is the following.

(1) Write down all contractions (i.e., products of quark

propagators).

(2) Fierz transform the operator such that both exter-
nal kaons are connected to one or other bilinear. All
terms will thus have two traces over spinor indices, and
either one or two traces over color indices.

(3) Break up each of the resulting terms into the eight
vector-vector and axial-vector—axial-vector pieces.
Clearly, this definition applies at the level of contractions.
In order to use chiral perturbation theory, however, one
must have a definition in terms of matrix elements of
operators. For three or less flavors it is not possible to
write down operators whose matrix element give each of
the sixteen terms separately. As I show shortly, to do
this requires at least four valence flavors. In quenched
QCD, this presents no problem, for one has already
decoupled the number of valence and dynamical flavors.
It does mean that the results derived below are not
directly applicable to full QCD. They should, however,
be as valid for full QCD as they are for quenched QCD.

Consider, then, a theory with N =4 light flavors: an s
and an s’, both of mass m,; a d and a d’, both of mass
my; and N —4 other quarks with arbitrary (though small)
masses. Let the K be the ds pion, and the K’ be the cor-
responding state made out of primed quarks. Define J
and By in this theory exactly as in QCD:

My =(K|[5,7,(1+y9d, )[(5,7,1+75d,)]IK?)  (46)
=18, fEm} . 47)

Then, by comparing contractions, we can write M g as

Mg =2(My+M ), 48)
My=My + My, , (49)
M=+ M g, (50)
My = (K |[5,7,4, 57,4 1K) (51)
My, =K "|[5,7,d: 57,4, 1K), (52)
M =K N[5 7,745 15,7,y sda 11K (53)
M 4= (K I[5 7,754, 157, ¥ sdp 11K ) (54)

The point of the extra flavors is to restrict contractions;
each of the matrix elements in the last four lines has only
one contraction. The factor of 2 on the first line appears
because the two bilinears in My are identical, and so
there are twice as many contractions as in /M, and M ,.
The subscripts 1 and 2 indicate the number of traces over
color indices.
The corresponding B parameters are defined by

'/M‘Vlz%flz(ml%BVl’ J’/Ln:%féml?éBVz , (55)

and identical equations with ¥ — 4. These definitions
are such that

By =B, +B,=B,,+By,+B+B,, . (56)

It is straightforward to show that in vacuum saturation
approximation B ,,=0.25, B 4,=0.75, and thus B, =1,
while B, =B,,;=B,,=0. The numerical results, shown
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in Sec. VII, do not, in fact, agree with these predictions.

I calculate the chiral logarithms in these B parameters
in the full theory, and then argue that the results apply
with only minor changes in the quenched approximation.
The first step is to transcribe the problem into the
language of chiral perturbation theory. As explained in
Sec. II, the chiral Lagrangian itself takes the same form
for any number of flavors. To transcribe the operators,
however, is more complicated. It turns out that, at the
order I am working, one needs the set

0,=%328,3"),,(29,2N,, , 57)
0,=f439,2",,(23,3",, , (58)
0= =2 2 2he (59
0,=f%8,24,)9,2}) (60)
0s=1%33,3",,(273,%),, . 61)

The overall factors are chosen for later convenience.

To transcribe the quark operators, they must be writ-
ten in terms of representations of the SU(N); XSU(N)g
chiral group. The first step is to rewrite the operators in
terms of left- and right-handed bilinears

[(V'V]=WIL'LY+[L'R])+0O",

where i =1,2 labels the number of color traces. The
negative-parity operators @~ and @'~ do not contribute
to the matrix elements under study and can be ignored. I
am using the compact notation

VVLi=[5.7,d:1[5:7,da] (63)
[4'A)=[5,v,7sd, 157 u¥sdal (64)
[L'L], =[5 v, (1+ys)dy 1[5y, (1+ys)d, ], (65)
[L'R]=[5,7,(1+y5)d 1[57,(1—vs)d, ], (66)

with similar definitions for operators with two color
traces.

The left-handed bilinears L and L’ transform as
[(N2—1),1), i.e., as adjoints under SU(N), and singlets
under SU(N)g. Under SU(N), [L'L] lies in the sym-
metric product of two adjoints,

(N2 =D®(N* = D]ypmn=1+(N2=1)+8+A . (67)

The representations & and A are both traceless, and are
respectively symmetric and antisymmetric under inter-
change of quark indices. They have dimensions
(N —1)N*N +3)/4 and (N —3)NXN +1) /4 respective-
ly. Since L' and L have no flavors in common, their

(62) product must be a combination of & and A. The com-
[4'A),=H[L'L],—[L'R])+0O", binations belonging to one or other representation are
J
) S
(L'LLE[L'L]=[5,7, (1 +y$5)d, 1[5 7, (1+7v5)d, £ [5 v (1+75)d, 5y (1 +75)dy | € A (68)

In chiral perturbation theory the lowest dimension operators transforming in these representations are

$1): 05=0,10,,
(A,1): O=0,—0,.

Thus the transcription of the continuum operators is
[L’'L],+[L'L],=as0s+0(p*) ,
[L'L),—[L'Ll,=a,0,4+0(p*),

(69)
(70)

where ag and a 4, are new, unknown coefficients. One can estimate their values by taking matrix elements between a K
and a K ', using the vacuum saturation approximation for the left-hand side (LHS), and tree-level chiral perturbation
theory for the RHS. The resulting estimates are a5 =4 and a 4, =2. The same results are obtained using external d’s
and 5 'd kaons.

The [L'R ] operators transform as [(N2—1),(N2—1)]. They can thus be written as linear combinations of the three
operators (J;_s, which also transform in this way

[L'R);=B;03+7,0,+8,0s+0(p*) . (71)

There are six unknown coefficients, three for each color contraction. To estimate their size I first take the matrix ele-
ment between a K and a K ’. At tree level, only @5 has a nonvanishing matrix element. Using vacuum saturation for
the matrix element of [L'R]; yields the estimates §, =1, §,= 1.

To estimate the 3;, I take the matrix element between d 's and 5 'd kaons. In chiral perturbation theory, one finds, at
tree level,

(K(d's)I[[L'R};|IK(5'd))=—4B,u*f2+0(y,m}) . (72)

To use the vacuum saturation approximation I first Fierz transform the operators, e.g.,
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[L'R1,==2[5,(1—y5)d, ][5,(1+y5)d}], (73)
and then use

(0I5, ysd) |K(5'd))=ipV2fy , (74)
to give

(K(d's)I[L'R),|K(5'd)),,.=—4u’f?, (75)

(K(d's)|[L'RLIK(5'd)) 0= —4u’f? . (76)

The resulting estimates are 3;=1 and 3,=1. This method gives no estimate for the y,.

In summary, each quark operator can be written as 3 ;¢;O; with corrections of O ( p*). The coefficients are collected
in Table II, where I use the definitions

ay=Hagta,) . an

In vacuum saturation approximation these are @, =1and a_=1.
All four operators in Egs. (51)~(54) contain “left-left” and “left-right” parts. Equation (72) shows that the matrix
elements of “left-right” operators are generically of order 1, unlike those of “left-left” operators which are of O (p?).
Nevertheless, at tree level, and for the external flavors K and K’, all four operators have matrix elements of O ( pz). The
choice of external flavors has removed the order-1 contributions. As we will see, however, these contributions do have
an effect when loops are included.
The calculation of the chiral logarithms parallels that for By. The same diagrams contribute and the general result is

<1'<7’|cj@,|1<°>:(c1 —cs2mifi+e,fA2mil,(mg)—(mi+m2)I (m ) —(mE+m2)I,(my)]
o320’ fI (m )+ 11 (mgy) =20, (mg ) —21,(my)]

+eo fAAmEIL (mg)—2mEI,(mg)—(mE+m2)I (m)—(mE+m2)I (my)] . (78)

I have simplified the result using m,.=m, and mgz=my,.
Only the operators @, and @5 contribute to Figs. 6(a) and
6(b), and the corrections simply convert f 2 into the 1-
loop result f2. The general expression for f at 1-loop is
given in Sec. III. These are the only contributions of O,
and @Os. The remaining three operators contribute only
to Figs. 6(c)—-6(e). The pions in the loops in these dia-
grams always consist of a primed quark and an unprimed
antiquark (or vice versa). These states are automatically
mass eigenstates, for any number of flavors, so the result
is valid for all N = 4.

There are no quartic divergences in Eq. (78). The only
quadratic divergences at this order are proportional to
c,m# A% These can be absorbed into the coefficient c;,
and correspond to mixing between @, and @,. The quad-
ratic divergences proportional to c; cancel; this is essen-
tial, because they are not proportional to m2, and could
not be absorbed by a redefinition of the coefficients. The
quadratic divergences proportional to ¢, cancel because
2mEi=mZ2+m2, This is not required by chiral symme-
try, however, as a divergence could have been absorbed
into c¢s. Finally, there are also quadratic divergences hid-
den in fZ, which can be absorbed into f, as discussed
previously.

I now collect the results for the B parameters, using
the general formula Eq. (78), the decompositions given in
Table II, and the definitions Eqs. (48)—(55). I present the
results for m; =my, since it turns out that these also ap-
ply in the quenched approximation. The generalizations

I

to nondegenerate quarks are easy to obtain from the
above. For the vector B parameters I find

2

By =3(a_—8)+2a (I,—2I, )—%Bl—mLZIl—%y]Iz ,
K

(79)

2
BVZZ%(a+_82)+%a,(IZ—'21])—%ﬁzmz 12—%7/212 .
K

(80)

Since myg =my =my,, the arguments of the I; are all the
same, and I have dropped them. The results for B , are
the same except that terms proportional to f3;, ¥;, and §;
have the opposite sign. A check on these results is that
they combine to give the same result for
By=B, +B,,+B,,+B,, as found previously [Eq.
(44)],

TABLE II. Decomposition of quark operators into chiral
operators Y, ;c;0;.

Operator cy c, c; Cy Cs
2[V'V], a_ ay By Y1 &
2[V'V1, a, a- B, Y2 &,
2[4’ 4], a a, —B ~7 -5
2[4’ A], a, a_ —B ) —5,
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providing one identifies B =3aj.

The corrections to B, and B, include a term of the
form I,/m2 which is proportional to In(mg). This is
enhanced by a factor of u?/m}2 over the usual chiral log-
arithms. The general possibility of enhanced chiral loga-
rithms was noticed long ago by Pagels and Langacker [4].
The enhanced logarithm here is the remnant of the fact
that @, is of order 1 in the chiral expansion, rather than
of O(p?). For small enough my the enhanced logarithm
dominates over the “leading-order” terms, and it diverges
in the chiral limit. The vector-vector and axial-
vector—axial-vector matrix elements do not themselves
diverge, but contain a chiral logarithm proportional to
m2in(my), rather than the usual mgin(my). The un-
known scale in the logarithm can be absorbed into §;, and
corresponds to mixing between @5 and Os.

These results can be adapted to the quenched approxi-
mation with the by now standard procedure. The reason-
ing is identical to that for By, because the quark dia-
grams are the same. The only diagrams containing inter-
nal quark loops are those that change f? to f2, and these
cancel in B parameters. The other diagrams, those of
Fig. 7, are included in the quenched approximation.
There are only two possible differences between quenched
and full theories. The first come from the fact that the
mass eigenstates are not the same for flavor diagonal
states. This is not relevant here, however, since all pions
in the loops are flavor off diagonal. The second comes
from 7’ loops, which do not contribute to the full theory,
but might be present in the quenched approximation.
The quark diagram is that shown in Fig. 7(e). As for By,
however, this diagram does not contribute if m,=m,.
For O,, O,, and O, this is because the ' does not couple
to these operators. For O, and O,, it is because the 7', al-
though it couples to the operators, cannot appear in a
loop such as in Fig. 7(a) because the flavor indices are
wrong. The %’ does appear in two loop diagrams. The
conclusion is that, for m;=m,, the results of Egs.
(78)-(80) apply without change to the quenched approxi-
mation. For m,#m,, however, there will be additional
contributions from Fig. 7(e).

There is one complication in the numerical calculation
of the B parameters which arises if one uses staggered fer-
mions. I describe this briefly here; for more details see,
for example, Refs. [19,15]. Each lattice staggered fer-
mion represents four continuum flavors, so the quark
fields have an additional flavor index. The bilinears that
are actually used have these extra indices contracted as in

i'ypdﬁilyﬂdl+§27/#d2_§3'}/#d3 "§4'y#d4 > (82)

where the color indices are implicit. This particular
flavor is that of the lattice Goldstone pion, and in numer-
ical calculations the external kaons have this flavor. The
analysis given above is valid for any number of flavors,
and thus applies directly to these generalized operators.
One simply has to break each matrix element up into
parts, each of which is like those in Egs. (51)-(54). Keep-
ing track of flavor factors, one finds that the form of the
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final result is unchanged. The only difference is that most
of the pions in the loops have flavors such as ¥ id,, and
thus are not Goldstone pions. In fact, it is straightfor-
ward to show that only one out of sixteen pions is a Gold-
stone pion. This is important at finite lattice spacing, be-
cause non-Goldstone pions are slightly more massive
than the Goldstone pion, and one must use the appropri-
ate mass in the loop integrals. In addition, the vertices of
the non-Goldstone pions will differ from those of the
Goldstone pions by terms of O (a). The effect of this is to
make the replacement

Iz(mK)/mlz(—>1—'612(mG)/mg; +—:%RN(;12(mNG)/m%qG ,
(83)

where mg and myg are, respectively, the mass of the
Goldstone and non-Goldstone pions, and Ryg is the ra-
tio of non-Goldstone to Goldstone coefficients. (I am as-
suming here that all the non-Goldstone pions are degen-
erate, which, numerically, is a good approximation.)
Similar replacements should be made in all the loop in-
tegrals in Egs. (79) and (80).

V. 7' LOOPS

The major new feature of quenched chiral perturbation
theory is the appearance of the light %’ in loops. Thus far
I have considered only quantities which do not have 7’
contributions at one-loop order. Clearly it would be
preferable to understand such contributions, since this
would increase the number of quantities whose finite
volume dependence could be predicted. In addition, it is
potentially dangerous to leave an unsettled problem in
one part of the theory, as it may feed back at higher loop
order into the quantities I have studied.

I consider the effects of %’ loops in theory with N de-
generate valence quarks. Using degenerate quarks
simplifies the discussion in two ways. First, the %’ can be
chosen as one of the mass eigenstates, which allows the
effects of 7’ loops to be clearly distinguished. Second, as
discussed above, the 17’ only couples to the pions through
the mass term in the chiral Lagrangian, £,,. This means,
in particular, that %’ loops only affect mass renormaliza-
tion, and I focus on this in the following discussion.

In the quenched approximation, the only diagrams that
renormalize the pion mass at leading order are those of
Figs. 3(d)-3(f). Note that only the 1’ appears in these
loops, since nonsinglet states cannot annihilate into
gluons. As discussed at the end of Sec. II, the contribu-
tion from Fig. 3(f), which arises from the vertex
V5(0)n'Tr(My'm?), can be rotated away by a field
redefinition. Its effect appears in a change in the value of
the constant 4 in £, [Eq. (14)]. Thus I need only con-
sider Figs. 3(d) and 3(e). These are represented in chiral
perturbation theory by Fig. 8(a), where the cross is the
gluon annihilation vertex, .L,.. The renormalized mass
at one loop from Fig. 8(a) is

n'

m2=2um {1+ X[Fig. 8(a)]} (84)
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FIG. 8. Diagrams contributing to mass renormalization in
the quenched approximation. The circle represents the vertex
from the mass term in the chiral Lagrangian, the cross an inser-
tion of the gluonic amplitude £,. Lines with a cross are 7’
propagators; the others can be either pion or %’ propagators.

X[Fig. 8(a)]= 12f G (k,m ) Am§+(A4 —1Dk?]
Nf? 7«
s (85)
S 1
=N ;2—’—(A— ) [ 1 (m )
n
1
+ (A= DILmy) (86)

The mass in the loop is m;7, which equals m _ at tree lev-
el. This result agrees with Ref. [11]. The k? term in the
integrand leads to a correction of the usual type: it is
proportional to mffln(mn,), and vanishes in the chiral
limit. The m(z) term, by contrast, leads to a correction
proportional to m(z,ln(mnr) which diverges in the chiral
limit. This enhanced chiral logarithm is similar to those
appearing in B, and B,. The additional dimensionful
parameter m violates the standard power counting rules
of chiral perturbation theory, according to which each
loop comes with a factor of m2, possibly multiplied by
logarithms. For small enough m ., the one-loop correc-
tion proportional to m(z)ln(m,,:) is not small, and one
must sum all such terms.

In practice, as stressed in Ref. [11], this summation
may not be numerically important. This is because in
present lattice calculations the pions are not very light,
m ., =400 MeV. To estimate the size of the correction, 1
extract the leading logarithm

| m3
X[Fig. 8(a)]=—281In | (87)
Here I have introduced the parameter
Am}
b=——"-=0.2, (88)
N4xnf)

where the estimate uses N =3, 4 =1, and m;=900 MeV.
Taking A=m,, the magnitude of the logarithm is rough-
ly unity for m_ =400 MeV. Thus the correction in-
creases mf, by only 20%, and resummation is not re-
quired. Since the logarithm is not large, however, it does
not dominate over constants and power corrections, and
the full expression of Eq. (86) should be used.

Bernard and Golterman have begun a program of cal-
culations, in which they include 1’ loops only at one-loop
order, for the general case of nondegenerate quarks [11].
Their predictions can be compared to numerical results
for various quantities. My interest in this section is not
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phenomenological, but rather to understand the apparent
divergence of the correction in the chiral limit. To ad-
dress this question one must resum the leading loga-
rithms of the form m(z)"ln(mn, )"/f*". This is relatively
straightforward, because the leading logarithms come
only from diagrams in which £, appears on a propaga-
tor both ends of which come from the same vertex. An
example is shown in Fig. 8(b). Diagrams involving 7’
propagators connecting two or more vertices have fewer
logarithms. For example, the diagram of Fig. 8(c) gives a
correction proportional to mgm ,27 /f% with no loga-
rithms at all.

The bubbles exemplified by Figs. 8(a) and 8(b) sum up
to an exponential

m?2=2umexp{X|[Fig. 8(a)]} , (89)
the leading-logarithmic part of which is
, 18
m2=2um A—Z (90)
miy

It is straightforward to show that the same exponential
factor corrects any vertex coming from .£,,, so that the
entire mass term is replaced by

8
A,
— | L
msy

L=

m

(91)

m

with the proviso that no i’ fields coming from this vertex
be joined together by an insertion of L. One corollary
of this result is that the n’ mass itself is corrected in the
same way as m _, so that they remain equal. This means
that Eq. (90) should be interpreted as a self-consistent
equation for the common pion and 7’ mass, with m . on
the right-hand side replaced by m . Solving this equa-
tion yields the final result

m12T:(2'um)1/(l+8)(A2)5/(1+6) . (92)
Solving Eq. (90) self-consistently corresponds to summing
all the diagrams of the form Fig. 9(a), in which each
internal 1’ propagator is decorated with any number of
bubble sums. In terms of quarks, these ‘“‘cactus” dia-
grams look like Fig. 9(b).

The result Eq. (92) seems very odd at first sight. For
one thing, m 2 has a nonanalytic dependence on the quark
mass. For another, it appears to contradict the strong
numerical evidence that m2 <m in quenched as well as
full theories [24]. To investigate further, I substitute Eq.
(92) back into Eq. (91) to give [using also Eq. (13)]

(a) (b)

FIG. 9. An example of a diagram corresponding to self-
consistent leading-logarithm evaluation of m, in the quenched
approximation: (a) in chiral perturbation theory; (b) in terms of
quarks. Notation as in Fig. 8.
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2
L,=— fT(zpm I+ A2)8/1+8) cog( o) Tr[ 2+ 1] +i sin(g) Tr[Z— 2] (93)

This says that, at leading-logarithmic order, the effect of
7' loops amounts to a change in the coefficient multiply-
ing the mass term. The quenched chiral Lagrangian
looks the same as that in the full theory'® as long as one
uses a new mass m':

A2 8(1+8)

(94)

m'=m 2um

Looked at this way, the result is less strange. All the re-
lationships between amplitudes involving different num-
bers of pions remain valid, e.g., the Weinberg scattering
length formulas. These relations involve only the physi-
cal parameters f, and m ., and not the quark masses. In
particular, there is no contradiction with exact lattice
Ward identities that can be derived with staggered fer-
mions [19,20].

Associated with the enhanced chiral logarithms is an
“enhanced” finite volume dependence. The precise form
of this dependence is discussed in Sec. VII. The impor-
tant point for present purposes is that it too is as a func-
tion of physical quantities alone, and not of m (or m').
Thus one cannot use the finite volume behavior to ob-
serve the non-analytic dependence on m.

Is there any way of observing this dependence? The
remaining hope rests with the numerical lattice results
for the quark mass dependence of m2 and the condensate
(J)). The predicted dependence of m2 on m is given in
Eq. (92). That of the condensate may be deduced from
Eq. (93) (or from the formula of Gell-Mann, Oakes, and
Renner):

(Pyp) cm —8/1+D) (95)

These predictions are in apparent conflict with numerical
simulations which find that miZam g and
{(P9)=(PP)o+0(m,), where m, is the bare lattice
quark mass [24]. The results are probably good enough
to rule out 8~0.2, assuming that we identify m, with m.

In full QCD this identification is needed for the follow-
ing reason. The bare quark mass m, is part of a scalar
source s. Functional derivatives with respect to s yield
correlators involving scalar bilinears in the presence of
the source. Setting the source to zero we obtain the
correlators in the massless theory, the condensate being
the simplest example. We expect these correlators to ex-
ist in a regulated theory. For this to be so, the chiral La-
grangian must contain only positive integral powers of s.
This means that, up to an overall constant, and up to
corrections of O (m?), we should identify m, with m.

In quenched QCD, by contrast, one does not have a
Lagrangian framework, and I see no reason why the con-

100f course, in the application of this Lagrangian, one must
follow the rules discussed in Secs. III and IV for discarding dia-
grams containing internal quark loops.

[
nection between m and m, should be analytic. I propose
that m, should be identified with m’ (up to an overall fac-
tor), rather than with m. This would imply the relation-
ship

mq°<m1+5 . (96)

As far as I can tell, once this identification is made there
are no observable effects of the nonanalytic dependence
on m.

VI. FINITE VOLUME DEPENDENCE

The discussion thus far concerns quantities calculated
in infinite volume. Numerical simulations, by contrast,
are done in finite boxes. These have finite extent in both
space and in Euclidean “‘time.” I denote the length of the
lattice in the spatial directions by L;, i =1-3, and the
length in the time direction by L,. The latter is related
to the temperature by T=1/L,. In the following discus-
sion, I assume that L, >>L;, so that the dominant finite-
size effect is due to the spatial volume.

Gasser and Leutwyler have shown that the same loop
graphs which give rise to the leading chiral logarithms
also allow one to predict the leading finite volume depen-
dence [6]. They have presented results for £, and m . in
a theory with N degenerate flavors. It is simple to extend
their method to any quantity for which the chiral loga-
rithms are known. The only subtlety concerns the appli-
cability of their method to the quenched approximation.

Their method depends upon the result that the volume
dependence in chiral perturbation theory enters only
through the pion propagators. The chiral Lagrangian it-
self does not depend on the volume, and so the vertices in
chiral perturbation theory are unchanged. This is also
true of external sources, such as that representing Og.
Thus the constants f, u, and B are volume independent.
The volume dependence of the pion propagator enters
through the boundary conditions, which are periodic in
all four Euclidean directions. This means that the in-
tegral over momenta is replaced by a sum, in which p 18
an integer multiple of 27/L,. In position space, the
propagator is a sum over periodic images

G (x,m)=G(x,m)+ 3 G(x +n#L#,
n,ﬁéo

m), 97)

where n,=(1,0,0,0), (—1,0,0,0), (0,1,0,0), etc. Volume
dependence comes from replacing G with G, in loop in-
tegrals such as 7, and 1,.

The volume independence of the chiral Lagrangian is
clearly crucial to the method. The arguments for this are
presented in detail in Ref. [25]. The ingredients are'! (a)

H]n addition, one must work at volumes large enough that
chiral symmetry is not restored.
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that chiral Ward identities remain valid in finite volume,
(b) causality, (c) that the pion propagator at fixed distance
should approach the infinite volume form as the volume
increases to infinity, and (d) the permutation symmetry
between the four directions u=1-4. The first three in-
gredients establish the existence of a finite volume chiral
Lagrangian, and that the coefficients of its leading terms
are the same as at infinite volume. Volume dependence
suppressed by powers of 1/L? is allowed, so there can be
terms such as EiTr(a,-Ea,-ET)/L,-z. Such terms are ruled
out by the fourth ingredient, permutation symmetry.
This symmetry implies that, if there is any dependence on
the spatial lengths L;, there must also be a dependence on
L,, and thus on T. But this contradicts a standard field
theoretic result, namely that the temperature enters the
functional integral representation of the partition func-
tion only through the boundary conditions. Thus permu-
tation symmetry rules out L, dependence in the vertices
at any order in the chiral expansion. For the symmetry
to be present, the boundary conditions must be the same
in all four directions. In particular, since the finite tem-
perature functional integral has antiperiodic boundary
conditions on fermions in the time direction, the bound-
ary conditions must also be antiperiodic in the spatial
directions.

In the quenched approximation only the first and third
ingredients are present. Concerning the former, one can
derive the Ward identities on the lattice independent of
the quenched approximation [18,19]. As for the latter, it
is reasonable to assume that the boundaries become
unimportant as they recede to infinity. But the lack of
dynamical quarks means that one cannot even formulate
the second ingredient, causality. Causality requires that
the anticommutator of fermion fields vanish outside the
forward light cone. In the quenched approximation, one
cannot construct the transfer matrix and obtain an opera-
tor formulation in which quarks are represented by an-
ticommuting operators. A less formal way of seeing this
is to note that, without quark loops, there is no Pauli ex-
clusion principle, so that, in some sense, fermion fields no
longer anticommute. The lack of quark loops also means
that the fourth ingredient, permutation symmetry, is not
relevant. The requirement of antiperiodic boundary con-
ditions applies to internal quark loops, for it is these
loops which build up the contribution of states contain-
ing quarks to the partition function. Since these loops
are absent, one is free to choose the boundary conditions
on the valence quarks as one pleases.

The absence of two of the four ingredients means that
one cannot rigorously argue for the volume independence
of the chiral Lagrangian in the quenched approximation.
In fact, as already discussed, even the existence of such a
Lagrangian is an assumption. I will simply extend this
assumption by taking the quenched chiral Lagrangian to
have volume-independent coefficients. I think this is
reasonable, and in the following I give a qualitative argu-
ment in its support. Ultimately, however, it must be test-
ed by numerical simulations.

The physical origin of the finite size effects from chiral
loops is that particles are surrounded by a cloud of virtu-
al pions. The pions in this cloud can propagate “‘around

the world” due to the periodicity, the propagator falling
roughly like exp(—m _L;). If there were no interactions,
then there would be no pion cloud, and the only effect of
finite volume would be to restrict the momenta to
discrete values. In particular, masses would remain un-
changed. Liischer has given a general analysis of finite
volume effects arising from polarization clouds on the
masses of stable particles [7]. For the pion, his analysis
implies that the leading-order effect comes from a “‘tad-
pole” diagram, similar to that of Fig. 1(b), except that the
vertex and propagator are fully dressed. The crucial re-
sult is that volume dependence enters only through the
pion propagator, which goes “‘around the world” in each
of the six spatial directions. Luscher’s general formula
simplifies when applied to pions, because one can do a
chiral expansion of the propagator and vertices.'> The
result coincides with that obtained from chiral loops, up
to exponentially small corrections which are beyond the
accuracy of Liischer’s formula [6]. This agreement would
not hold if there were any volume dependence in the
coefficients of the chiral Lagrangian, such as terms of
O(1/L?). This provides independent confirmation of the
arguments of Ref. [25].

Lischer’s result can be paraphrased as follows. The
pion only “knows” about the finite size of the box
through loop diagrams, and in particular through the
pion propagating in the loop. The vertex that emits and
absorbs the pion does not itself “know” about the finite
volume. Such knowledge would require another pion
loop, which would bring an additional exponential
suppression. This physical picture applies also to proper-
ties of the pion other than its mass, for example f and
Bg. It also seems reasonable to apply it to the quenched
approximation.

The previous discussion has ignored the possibility of
finite volume effects due to particles being ‘“‘squeezed” by
the box. To avoid such squeezing the box must be larger
than diameter of the particle. It is not very clear what
box size this requires. Numerical calculations of various
definitions of “wave functions” show that they fall ap-
proximately exponentially in the range 0.5—1.5 fm, with a
scale of roughly m =750 MeV [26,27]. This may imply
a correction factor from squeezing that falls as
exp(—my,L). As long as m_<my the contribution
from squeezing should be suppressed. At large enough
distances the wave function should fall faster than an ex-
ponential, so the effect of squeezing should be further
suppressed.

Another source of finite volume dependence is loops of
heavier mesons, such as the p. Such contributions would
fall roughly as exp(—m,L). As long as m,<<m, they

12The reader consulting Ref. [7] might be misled by the fact
that the leading term in Liischer’s formula falls like
exp(—V3/4mlL), i.e., more rapidly than exp(—mL). This
term, however, is absent for pions because it is proportional to
the three pion coupling, which is zero. The dominant term falls
as exp(—mL), and the leading corrections are proportional to
exp(—V2mL).
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should be strongly suppressed relative to the contribu-
tions from pion loops.

I now turn to the calculation of finite volume depen-
dence. The loop integrals that appear are I, and I,, pro-
portional respectively to [, Gand [, G* They are relat-
ed by

L(m)=—m? ), (98)

so it is sufficient to consider I,. It is simplest to work in

position space

I,(m)= ,m)=712—GA(x =0,m) . (99)

f? f k| <A
The subscript A indicates that the position space propa-
gator is smeared over a range 1/A, due to the cutoff on
the momentum integral. At finite volume we simply sub-
stitute G; [Eq. (97)] for G. We are interested in the
difference

I,(m,L)=I,(m,L)—1,(m), (100)
which is given by
fLmL)= 3 Gp(n,L,,m) (101)
n”ﬁﬁO
= ¥ G n#L#,m) (102)
n}ﬁ&O

The smearing of the propagator has been dropped in the
second line; this is a good approximation if L >>1/A, as
is true in practice. The precise form of the cutoff is ir-
relevant. Using Eq. (98), the corresponding result for I,
is

fIimL=S —mzdLG(n L.m).  (103)

nu?ﬁO m 2 HoR
In the notation of Gasser and Leutwyler these results are
(6]
fzfl(m,L)=g1(m2,Lﬂ) ’

- (104)
fZIZ(m,L)‘:ngo(mz,L“) .

The finite volume dependence of £, f, Bk, By, and B 4
can now be predicted by substituting the results for I,
and I, into the formulas presented in previous sections.

To actually calculate the T, it is convenient to use the
heat-kernel representation

f daa 28 x /4ae am®
0

G(x,m)= (105)

1
(4m)?
Using this, the functions g, and g, turn out to be particu-
lar cases of the general function

—(n, L V/4a _ .2

zf daa 3 > e #H e ,

n#O

8.(m,L,

(106)

the properties of which have been discussed extensively
in Ref. [28]. The crucial point for present purposes is

that the sum over n, converges rapidly, as long as
mL,>>1. This is because each term falls like
exp(—mn, L), as can be seen by evaluating the a in-

tegrals in the saddle-point approximation

172
m? 8
G(x,m)=
BT 42 | (mxy?
_ 3 1
Xe ™ |1+ ——+0 Al (107)
8mx (mx)
J 2 [, 1/2
—mz———z-G(X,rn)= m : £
dm (477)
Xe ™ |1——— 40 |—L
8mx (n»l,x)2

(108)

To illustrate the properties of the integrals, I set
L,=L,=L;=L and assume L,>>L, which is the
geometry used in simulations. This means that in the
sum over n, only the n; are nonzero. It is useful to nor-
malize the results by dividing by the saddle-point approx-

imations to the terms involving propagation only to the

six adjacent periodic images, i.e., n;=(1,0,0), (—1,0,0),
(0,1,0), etc. These are
m> gr |
Sy(m,L)=6 5 7| e, (109)
(4mf)* | (mL)
2 . 12 .
S,(m,L)=6 il el IS (110)

Figure 10 shows the ratios I /S, computed numerically,
for different numbers of terms in the sum over n;. The
notation is that I,(N) includes the first N distances, where
“distance” means d =1/n;n;. Thus for N=1 only the
six d =1 terms are kept, whlle for N =4, the twelve
d=V"2, eight d =V'3, and the six d =2 terms are also in-
cluded. Various points are noteworthy.

(1) It is straightforward to show that the ratios depend
only on the product mL.

(2) The results for N =1 show that the saddle-point ap-
proximation is accurate to better than 10% for mL > 3.
If one includes the 1/mL corrections from Egs. (107) and
(108) then the agreement is better than 1%.

(3) The full result (N =) differs substantially from
the leading-order term (N =1) at small mL. Typical
simulations work down to m L =3—4, and for these it is
clear that the leading term is not sufficient. This was not
appreciated in Refs. [13,12,15].

(4) The bulk of the difference is taken up by the N =2
terms, with N =4 being a good approximation to the full
result.

(5) The ratios for I, and I, at N = oo are very similar.

The need to include not only the d =1 term in the sum
over n; raises the question of whether there are other
corrections of comparable size. Higher loop diagrams
give rise to terms which are also proportional to
exp(—m L), but are suppressed by an additional power
of m2 /16m2f%. These may be substantial for present lat-
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_ FIG. 10. The ratios of the finite volume part of the integrals
1; to the saddle point approximants S; for (a) I, and (b) I,.

tice pion masses. There are also corrections from two
loop diagrams suppressed both by a power of m 2, and by
an additional power of exp(—m L). These are presum-
ably small.

I close this section with a comment on the effect of the
nonzero lattice spacing a. This cuts off the momenta at
p =2mr/a, which should be much larger than the chiral
cutoff A. This condition is satisfied in present simula-
tions, for which 27/a 212 GeV. Such a large cutoff
should have little effect on the propagator over distances
of L or greater. To check this, I replace the continuum
propagator by that for a lattice scalar field for which the
second derivative is discretized using the standard
nearest-neighbor form. This is for illustrative purposes
only: it is not clear how the pion field should be discre-
tized, or indeed whether it should be discretized at all.
My choice is really the worst case one can imagine, since
discretizations involving more neighbors will give a better
approximation to the continuum derivative. With the
nearest-neighbor form, the lattice propagator is

G(x,y,z,t)=fowdaIX(Za)Iy(Za)Iz(Za)

2

XI,(2a)e ~8a¢ ~am (111

Here x, y, z, and ¢ are integers giving the distances in lat-
tice units, and I, is the xth modified Bessel function (and
should not be confused with the integrals I, and I, under
study). The ratio of the integrals using this lattice propa-
gator to those using the continuum propagator are shown
in Fig. 11. The results are for N =1, but there is no

—
[

Lattice/Continuum

1.0

FIG. 11. Ratios of the I;(N =1) evaluated using the lattice
propagator to those evaluated using the continuum propagator.

significant dependence on N. The ratio is close to unity,
the difference not exceeding 10% for the values of m
and L used in the simulations discussed in the following
section. The effect is probably smaller than that of
higher-order chiral corrections.

VII. NUMERICAL PREDICTIONS AND RESULTS

In this section, I compare the predictions for chiral
logarithms and the associated volume dependence with
numerical results. For the most part the predicted
volume dependence is smaller than the statistical errors
of present simulations. My aim in such cases is to show
how close we are to testing the predictions. Only for B
and B , is there clear numerical evidence of finite volume
dependence.

I use the numerical results from quenched simulations
at B=6 presented in Refs. [13] and [24]. These calcula-
tions use staggered fermions, and work on 163X40 and
243X 40 lattices. Finite size effects can be studied by
comparing results from the two lattices. Using the lattice
spacing obtained from f,_, 1/a=1.7 GeV, the smaller
lattice has L =1.9 fm, the larger L =2.8 fm. Both lat-
tices are probably large enough so that the squeezing of
the pion wave function is a small effect. The lattice pions
have masses ranging from m_a=0.24 to 0.41, or
0.41-0.70 GeV in physical units. The convergence of
chiral perturbation theory is controlled by the ratio
m2/1672f2%, and this varies from 0.12 to 0.36. Thus
higher-order corrections are likely to be sizable for the
heavier pions.

The pions in these simulations are composed of quarks
of masses m,a =0.01, 0.02, and 0.03. These are com-
bined in all possible ways, so there are results for pions
with both degenerate and nondegenerate quarks. The
predictions for quenched chiral logarithms given above
are only for degenerate quarks. It turns out, however,
that the results for m2, f_, By, B, and other quantities
depend mainly on the average quark mass. When I
present results I will simply treat all pions as though they
contained two degenerate quarks each with the average
mass.

Typical chiral logarithmic corrections are numbers of
O (1) multiplied by the integrals I, and I,. The finite
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volume-dependent parts of these integrals are shown in
Fig. 12. These are exact results, and are thus a sum of ex-
ponentials, multiplied by powers of m .. Nevertheless, as
the figure shows, the results are well approximated by
single exponentials for the range of quark masses con-
sidered. The magnitude of the I; should be compared to
the typical statistical errors in present numerical simula-
tions, which are rarely as small as 1%. For the larger lat-
tice, and for m_a=0.24-0.41, T, and I, are always
smaller than 0.4%. Thus, for practical purposes, L =24
corresponds to infinite volume. For the smaller lattice,
however, I, reaches 3% at m_a=0.24, which is a level
that might be measurable.

To give an idea of the typical size of finite volume
corrections I first consider f, in a theory with four de-
generate dynamical quarks. This is the theory represent-
ed by a single species of staggered fermions in the contin-
uum limit. From Eq. (24) we see that

fAL)=f (L=w)[1—2T,(m_,L)] . (112)

It is clear from Fig. 12 that to observe this effect will re-
quire calculations with a precision of less than 1%. In
the quenched approximation, the prediction is that there
is no finite size dependence in f, at leading order. Such
dependence enters only due to the diagrams of Figs. 3(b)
and 3(c), and is suppressed by m2 /1672f2. In fact, the
numerical results of Ref. [24] show no evidence for finite
size dependence. The errors are large, 5-10 %, so that
this does not constitute a test of the predicted difference
between full and quenched chiral logarithms.

I note in passing that it will be even more difficult to
see the volume dependence in m , calculated with dynam-
ical quarks. The result for N degenerate flavors is [6]

1+—1—f1(m,,,L)

sz 2L=
m(L)=mZ,( 0 ) N

. (113)

For the condensate, on the other hand, the situation is

slightly better than for £ [6]

N2—1
N

I,(m,_L)

(DY )N L)= (PP ) (L =) (1—

(114)
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FIG. 12. T, and I, for N = o, using 1/a=1.7 GeV.

Since the condensate can be calculated more accurately
than f, and m, this equation may offer the best chance
of testing the predictions of chiral loops in theories with
dynamical quarks. The only problem is that there is a
quadratically divergent perturbative contribution to the
condensate, to which the prediction does not apply, and
which must be subtracted.

As discussed in Sec. V, quenched chiral logarithms in
m?2 come only from %’ loops. Using Egs. (89) and (86),
the volume dependence is predicted to be

2
mg —
—}%——flz(m,,,L)
m

m

m2(L)=m2(L = w0 )exp , (115)

where I have dropped terms suppressed by powers of m 2.
For N =3, the phenomenological estimate from the phys-
ical 7' mass gives Am3}/3~(0.5 GeV)%. Thus the factor
multiplying I, ranges from 1.6 to 0.55 for
m_ =0.41-0.70 GeV. This means that, although the
finite volume correction is parametrically enhanced by
1/m 72,, and is also increased by the exponentiation, the
actual numerical enhancement is small. The volume
dependence is somewhat larger than that for the full
theory, because it is the integral I, which appears, rather
than I,. The result is that, at m_a =0.24, the correction
increases m . (not its square) by 2.4% for L =16, and by
0.2% for L =24. The correction decreases rapidly with
increasing pion mass. The numerical results for m . show
no significant finite size dependence, but the errors are
about 2%, i.e., at same level of the expected effect [24].
Future quenched calculations may be able to test this pre-
diction.

The form of the volume dependence of the condensate
in the quenched approximation is the same as that for
m?2, because m2f2 «m{yp). Again the numerical re-
sults show no significant finite volume dependence, but
the errors are too large (5-10 % for the value extrapolat-
ed to m,=0) for this to represent a disagreement with
the prediction.

I now turn to the kaon B parameters. For degenerate
quarks, the predicted volume dependence has the same
functional form in full and quenched theories. From Eq.
(45) I find

8By(L)=By(L)—By(L =)

~By(L=o)[I,(myg,L)—2I,(mg,L)].  (116)

I use my rather than m . to be consistent with the name
of the B parameter; this does not imply that the quarks in
the “kaon” have different masses. In Fig. 13 I show the
fractional size of this correction. There is a large cancel-
lation between I, and I, in the mass range of interest,
and the correction does not exceed 0.2%. This is unfor-
tunate as By can be calculated with errors as small as
1%. The prediction is thus that there be no finite volume
dependence, and the results of Ref. [13] are consistent
with this.

As discussed in Sec. IV, the chiral logarithms in By,
and B 4 are enhanced by 1/m} over those in By, and one
might hope that the associated finite size effects can be
seen. From Egs. (79) and (80), I find
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— 3y, +y )L (mg)+0(mE) (117)

where By is one-loop corrected result, Eq. (45). The
enhanced chiral logarithm is that proportional to I, /m}.
The important features of this prediction are the follow-
ing.

(a) Since I,/mg <In(A/mg), By should diverge loga-
rithmically in the chiral limit. This is unlike By, for
which the chiral logarithms, being proportional to
m2In(my ), vanish in the chiral limit.

(b) The coefficient of this divergence is not related to
By; it is a new constant proportional to 8, +f,. In vacu-
um saturation approximation 8, +8,= 4. Typically vacu-
um saturation gives the correct sign and order of magni-
tude; if so, By, is predicted to diverge negatively.

(c) The extent of the enhancement is much greater than
that in the correction to the quenched m2, Eq. (115). The
constant u=m2/(m ,+m,) is about 5 GeV on the lat-
tice, roughly ten times the corresponding quantity
(Am2/N)V2,

(d) Since I, increases with L, By is predicted to be-

come more negative as L decreases.
Since B,=Bg—B,, the enhanced logarithm in B,
differs only in sign from that in B,,. Thus B , is predicted
to have a positive logarithmic divergence, and to increase
as L decreases. Since the numerical results for By behave
as expected, i.e., they have a smooth chiral limit and
show no volume dependence, and since the errors in By
are much smaller than those in B, and B 4, there is no
additional information to be gained from studying B ,.
Thus I concentrate on By, in the following.

The numerical results of Ref. [13] for B, are shown in
Fig. 14. There are two striking features: the results ap-
pear to be diverging as the chiral limit is approached,
with the sign expected from the chiral logarithm; there is
a significant finite volume dependence, which also has the
expected sign. It was, in fact, these features that sparked
the present study.

To provide a quantitative test of Eq. (117), I fit the data
using

FIG. 14. Results for By vs m2 in lattice units. The fits are
described in the text.

2

1 1
ByL)=——t—lcn [1+= |+
d 167212 cm x €2 1+x
2
x
tcytey,——
3T 14 x?
-
w’l,(mg,L)
—e (118)
mg

where x ==m,2( /A% A being the cutoff on chiral loop in-
tegrals. This function contains the chiral logarithm and
its associated finite volume dependence, together with a
power series in m}. The power series is supposed to
represent all terms in Eq. (117) aside from the enhanced
chiral logarithm. This includes the normal chiral loga-
rithms proportional to m2In(my ), which can be well ap-
proximated by a polynomial for the range of masses un-
der comnsideration. I choose the particular form of the
first two terms in Eq. (118) because the loop integral is

167 iy GemP=In(1+1/x)=1/(1+x) . 119
|

The denominator of the ¢, term is chosen so that the

function is smooth for x ~ 1. Finally, the flavor symme-

try breaking for staggered fermions is accounted for by

applying the prescription (83), with Ry =1, to all terms

in Eq. (118).

Figure 14 shows the best fit. I have taken A to be 0.8
GeV; the precise value is unimportant since, to good ac-
curacy, changes can be absorbed into the other constants.
These constants are

¢;=0.29, ¢c,=—1.25,
(120)
¢3=0.63, c,=—0.37.

The fit is reasonable, with a y? of 1.4 per degree of free-
dom. I therefore conclude that the numerical results are
consistent with the expected chiral logarithm. The
coefficient ¢, is smaller than the result expected from vac-
uum saturation approximation, ¢, =1, but I do not con-
sider this to be a serious problem for the following
reasons.

(i) Vacuum saturation can be a poor approximation.
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FIG. 15. Finite size dependence of B),. The line shows the
result of the same fit as in Fig. 14.

For example, the matrix MM may be as much as 50%
smaller than the prediction of vacuum saturation [29].
What matters here, however, are the matrix elements of a
pseudoscalar-pseudoscalar operator [cf. Eq. (71)], and
these are likely to be better approximated by vacuum sat-
uration [30].

(ii) I have assumed (by setting Ryg=1) that the ver-
tices of the non-Goldstone and Goldstone pions are the
same, whereas in fact the former could be smaller. The
matrix elements of some non-Goldstone bilinears are
smaller by as much as 25% [20]. Since the loop diagrams
involve the matrix element of operators consisting of two
bilinears, and also a four pion scattering amplitude, a
more substantial reduction is possible for ¢;.

(iii) There could be substantial higher-order chiral per-

turbation theory corrections to the coefficient of the
enhanced logarithm. That higher-order terms can be
substantial is illustrated by the fact that fZ/f?=1.6 for
the heaviest lattice kaon.
The fit does not, however, demonstrate the existence of
the chiral logarithm. In particular, the coefficient ¢, is
determined not by the nature of the divergence, but by
the finite size dependence. If one allows the coefficient of
the logarithm to differ from that of the I, term, the fit
favors much smaller values for the former. In fact, a fit
as good as that displayed above is obtained with no loga-
rithmic term at all. This flexibility is possible because x is
not small, and varies over a small range, 0.5-0.8, so the
nonlogarithmic terms in the fit function can mock up a
logarithm.

It is thus the finite volume dependence which is the
strongest evidence for quenched chiral logarithms. The
functional dependence of B, (16)—B(24) on m, is pre-
dicted, leaving only the overall factor to be determined
by the fit. As shown in Fig. 15, the fit does a reasonable
job of representing the dependence on my. The shape
can be altered by higher-order chiral terms, which are
proportional to m2, so one would not expect a perfect
match. To provide a more rigorous test of the prediction
results from smaller kaon masses are needed.

VIII. CONCLUSIONS

Chiral logarithms can provide powerful consistency
checks on numerical simulations. The theoretical calcu-
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lations are well founded if dynamical quarks are included.
I have argued that the methods of chiral perturbation
theory, suitably modified, can also be applied in the
quenched approximation. One can imagine a program in
which one first tests the results of quenched chiral pertur-
bation theory using simple quantities such as f_, m, and
(¥), and then applies the predictions to other quanti-
ties in order to test that the physics of pion loops is being
properly included. Furthermore, as I argued in the In-
troduction, if the calculations are reliable one can use
them to estimate the size of the errors introduced by the
quenched approximation.

Such a program requires numerical results with errors
of 1% or less, calculated on a number of lattice sizes at a
variety of pion masses. This should be possible in the
fairly near future, as computer power approaches the
TeraFlop milestone. The numerical results presented
here are encouraging, but not conclusive. What is partic-
ularly needed is for the calculations to be pushed to
smaller pion masses. On a given lattice there is a
minimal mass, m . (min), below which chiral symmetry is
restored [6]. This minimal mass scales with size as
m_(min)?«< L ~3 This means that m_(min)L <1/VL,
so that, by working on larger lattices, one can push to
smaller m_L and thereby increase the finite size effects.

A program of testing finite volume dependence also re-
quires that quenched chiral logarithms be calculated for
other quantities. Examples for which there is hope of
good numerical results in the next few years include the
matrix elements of the AS =1 operators responsible for
kaon decays, both CP conserving and violating, and the
properties of heavy-light systems, such as B and D
mesons. Calculations of the finite size effects in fp and
fp in full QCD have already been done [31]. For some
quantities the quenched calculations appear to be a
straightforward extension of those presented here. For
others, one must face the problem of how best to include
7’ loops. It may be that the perturbative approach of Ber-
nard and Golterman [11] will be adequate. Or it may be
that a resummation, such as that presented here for the
pion mass and the condensate, is required.

It does not appear to be simple to apply the methods
presented here to all quantities. In particular, in the cal-
culation of chiral corrections to baryon properties, it may
not be possible to uniquely assign quark diagrams to
chiral perturbation theory diagrams. This problem is un-
der study.’?
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