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We investigate the use of two types of nonlocal ("smeared") sources for quark propagators in

quenched lattice QCD at P=6.0 using Wilson fermions at ted=0. 154 and 0.155. We present results for the
hadron mass spectrum, meson decay constants, quark masses, the chiral condensate, and the quark dis-

tribution amplitude of the pion. The use of smeared sources leads to a considerable improvement over
previous results. We find a disturbing discrepancy between the baryon spectra obtained using Wuppertal
and wall sources. We find good signals in the ratio of correlators used to calculate the quark mass and

the chiral condensate and show that the extrapolation to the chiral limit is smooth.

PACS number(s): 12.38.6c, 11.15.Ha, 11.30.Rd

I. INTRODUCTION

In addition to reducing systematic errors in lattice
QCD due to finite lattice volume, finite lattice spacing,
and extrapolation from heavy-quark masses to physical
m„and md, it is important to improve the signal in ob-

servables. The particular observables we are interested in

are matrix elements within hadronic states; the corre-
sponding correlation functions from which these are ex-

tracted are made up of products of quark propagators.
Even though at present the quark propagators are calcu-
lated without specific information on the motion of the
other valence quarks in a given bound state, it has been
shown that the signal is significantly improved by using
smeared quark sources [1,2].

A number of different smearing methods have been in-

vestigated and some of these have been reviewed in Ref.
[3]. Our choices here are motivated by the requirements
of a parallel calculation of weak matrix elements using
Wilson fermions [4]. Our calculation requires two kinds
of hadron sources: one that produces hadrons with zero
momenta and the other that couples to all momenta. We
construct zero-momentum hadron correlators using
"wall" source propagators while the "Wuppertal" source
propagators [2] yield hadron correlators that have over-

lap with all momenta. In this paper we demonstrate the
efficacy of these two kinds of correlators by investigating
the signal in both the amplitudes and the masses obtained
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from two-point correlation functions. The improvement
is exemplified by the results obtained for the spectrum
and meson decay constants.

We do, however, find a disconcerting difference be-
tween the masses of baryons extracted using Wuppertal
and wall sources. Even though at this stage the difference
between the central values is 1 —3 0., it has a significant
effect on the nucleon-to-p mass ratio.

An important prerequisite when using Wilson fermions
to calculate matrix elements is an understanding of the
realization of chiral symmetry. It was shown in Refs. [5]
and [6] that the conventional continuum current algebra
can be reproduced on the lattice provided suitably
modified chiral Ward identities are used. Among other
things, this requires multiplying lattice fermion bilinears
by renormalization constants to relate them to their con-
tinuum counterparts. We use the definitions

S'""'(x)=ZsS(x), S(x)=i)'t(x)g(x),

P""'(x)=ZPP(x), P(x)=g(x)y, g(x),
V„""'(x)=Zt,V„(x), V„(x)=g(x)y„f(x),
A„'""'(x)=Z„A„(x), A„(x)=g(x)y„y P(x) .

If we were working with a chirally invariant regulator
and a mass-independent continuum renormalization
scheme, we would have Z~=Z~ =1 and
Z&=Z~=1/Z „„where Z „, is the mass renormaliza-
tion. The latter three constants have anomalous dimen-
sions and therefore depend on the momentum scale. On
the lattice with Wilson fermions Zz and Z„are finite re-
normalization constants and Z~&Zz. Although all these
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constants can be calculated in perturbation theory (see
Appendix A), it appears that for present couplings

(g =1) there are large nonperturbative contributions.
For Z„and Zv, nonperturbative calculations are possi-
ble, and have been performed by a number of authors.
These estimates include, in general, large 0(a) effects,
and therefore different nonperturbative techniques can
give different estimates. We use the estimates most ap-
propriate for our study, Zz =0.86 and Zz =0.57 [7].

The constants Zz and Zz are more problematic be-

cause, unlike Z~ and Zv, they depend upon the choice of
continuum renormalization scheme. We need to deter-
mine these constants if we are to relate the cutoff-
dependent lattice results for the chiral quantities m, and
($1(t) -0 to the scale-dependent continuum values. A

q

convenient continuum scheme is the modified minimal
subtraction (MS) scheme at JLt= 1 GeV. Since this is a
perturbative scheme, the most natural thing to do is to
use the lattice perturbative results for Z& and Z~. These
are discussed in the Appendix. If perturbation theory is
accurate (which is unlikely in the present simulation)
then one can make unambiguous predictions for m, and
( f1t ) 0 in the continuum.

q

Alternatively, one can proceed in a phenomenological
fashion and demand, for example, that the lattice results
reproduce the value of m, in the MS scheme. With this
assumption Zz is fixed, and the Ward identities then
determine Z& nonperturbatively. The question is then
one of consistency: with Zz and Z~ fixed in this way, can
all lattice quantities whose definitions depend upon Zz
and Z~ be made to agree with the MS scheme? In
quenched QCD we can expect this to be only approxi-
mately true. We address these questions further in Secs.
VII and IX. For the present study we simply state that
our data do favor values of Z~ and Zz very different from
their perturbative values.

This paper is organized as follows. In Sec. II we de-
scribe the lattices used and our method for extracting
physical parameters from two-point correlators. The
types of quark sources used to construct the hadron
correlators are defined in Sec. III. We present an analysis
of the spectrum in Sec. IV and of the meson decay con-
stants f and fv

' in Secs. V and VI. The calculation of
the current quark mass and chiral condensate is present-
ed in Sec. VII, and of the second moment of the pion dis-
tribution amplitude in Sec. VIII. The extrapolation to
the chiral limit is discussed in Sec. IX, and we end with
conclusions in Sec. X. The perturbative results for the re-
normalization constants are given in the Appendix.

II. LATTICE PARAMETERS
AND FITTING PROCEDURE

Our statistical sample consists of 35 lattices of size
16 X40 at P=6.0, generated as two independent streams.

3

The first stream consists of 14 lattices, generated using a
pseudo-heat-bath algorithm, which are separated by 1000
sweeps. The second stream consists of 21 lattices gen-
erated using a combination of overrelaxed and Metropo-
lis algorithms, and are separated by 300 combination

sweeps. These sets of lattices have been used previously
for spectrum and weak matrix element analysis using
both Wilson and staggered fermions [8].

The major thrust of this study is to explore improved
numerical techniques for Wilson fermions. For this pur-
pose we use only two values of the quark mass, ~=0.154
and 0.155. Translated to physical units these correspond
to pion mass values of roughly 660 and 540 MeV, respec-
tively. The criterion used to judge whether the quark
propagator has converged is R =

~ (Mg —P) /y~, where y
is the solution, P is the source vector, and M is the Wil-
son operator. We find no significant difference in the
long time tail of propagators when reducing R from
10 ' to 10 ', at either quark mass. To be conservative,
we adopt R =3 X 10 ' as our convergence criterion.

To extract the amplitudes and masses from the long
time behavior of the two-point correlators, we make fits
assuming that the lowest mass state dominates the corre-
lation function. To ensure this we first examine the
effective mass plot for a plateau and then make a single fit
selecting the range of the fit based on the following cri-
teria: (a) t;„always lies in the plateau, (b) t,„ is select-
ed to be as large as possible consistent with a signal. In
most cases we find that the central value obtained from
the fits is the same with and without using the full covari-
ance matrix. In some cases we cannot use the full range
of the plateau because the covariance matrix is close to
being singular. In such cases the problem is not that we
cannot invert the covariance matrix but that the result is
very sensitive to the range of the fit (the central value can
change by one or more standard deviations on the addi-
tion of a single point to the fit range). Our tests using
subsets of the data show that this instability is a result of
inadequate statistics. We, therefore, reduce the range of
the fit to get a stable result. For example, even though
the signal in the pion correlators lasts until t =40, we uset,„&25 in order to avoid fits based on almost singular
covariance matrices.

All error estimates are obtained using a single-
elimination jackknife procedure. Previous analysis [8,9]
leads us to believe that the lattices used are sufficiently
decorrelated for this method to be adequate.

III. QUARK PROPAGATORS
AND HADRON CORRELATORS

The calculation of quark propagators is done on lat-
tices doubled in the time direction, i.e.,
16 X40—+16 X80. We use periodic boundary conditions
in all four directions. These propagators on doubled lat-
tices are identical to a linear combination of propagators
calculated with periodic (P) and antiperiodic ( A ) bound-
ary conditions on the original 16 X40 lattice. For the
source on time slice 1, the forward moving solution (time
slices 2 —40) is F= (P + 3 ) l2 while the backward moving
solution (time slices 80—42) is 8 =(P —A)/2. We find
no numerical difference between calculating F and 8
directly or from the combination of P and A. We use
doubled lattices because our weak matrix element calcu-
lations require both forward and backward moving solu-
tions. We will show that doubling also helps in the spec-
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trum analysis.
We calculate quark propagators using two different

types of smeared sources: "Wuppertal" and "wall. " The
wall source for a given spin and color consists of a 5 func-
tion at each point on time slice t =1, with the wall time
slice fixed to Coulomb gauge. The hadron correlators
built from these propagators have overlap with only
zero-momentum states.

The Wuppertal source is the covariant solution of the
three-dimensional Klein-Gordon operator K with a 5-
function source at x =y =z = 1 on time slice t = 1

3

E( xy)=5„a„o—g [U(x, i)5, +, +U (x,i)5„, ],
(3.1)

where the parameter ~zG controls the size of the smear-

ing. The implementation of this smearing method is the
same as that used in Ref. [10], and the details have been

presented there. We choose xK&=0. 181, for which the
size of the smeared source (defined in Ref. [10])varies be-
tween 4.1 and 4.5. A statistical problem when using the
Wuppertal source is that, as one increases ~z, the
configuration to configuration fluctuations in the hadron
correlators increase. For our value of ~KG, the fluctua-
tions at long time separation are less than a factor of 5.

We also construct a third kind of quark propagator
which is smeared at both the source and sink points.
This is obtained by applying the inverse of the Klein-
Gordon operator to the result of Wuppertal source prop-
agator at each time slice.

From the three kinds of quark propagators we con-
struct three kinds of hadron correlators: (a) wall source
and local (point) sink (labeled henceforth as LW), (b)
Wuppertal smeared source and local sink (LS), and (c)
Wuppertal smeared source and sink (SS). We use the fol-
lowing notation to define the two-point hadron correla-
tors:

(t) &plgiocal(r)Jwau(0)lp& & Ig lh & & h I J lp& —Mr

2M

(t) —&plglocal(r)Jsmeared(p)lp&
&pig"-'la &&a IJ' -""lp& Mf

1 (t) —
&

plgsmeared(r)Jsmeared(p)lp &

&Plg "
lh & & h

I
J IP& —Mr

ss 2M

(3.2)

where lh & is the appropriate hadronic state that saturates the two-point correlator at large t and M its mass. The

operator J creates the hadron and is always constructed from sineared (Wuppertal or wall) quark sources in our calcula-

tion, and g is the operator used to destroy it. The projection onto a definite momentum state is always done at the sink

time slice. We compare the eScacy of these correlators for the three types of quark sources in the next section.

IV. SPECTRUM

The flavor-nonsinglet meson and the baryon interpolating operators we have used are

~=fr 6 ~2 t()'4l 54 ~4 P 4Y; P P2 Plsr;0 uo=A ui =6';1'54

g3/2+ =g u ap u b u c g3/Z+-~Pz ap b c'V1+ & 'Vz

&abc 1& 1 abc 2
u uz

=E t, (u C1'yu }u i &etc u C u u23/2+ a b c a ~1 ~2 b c

2

+i
bi =e,I„(u Cy3u }u~+e,t„u C3/2+ a b c a K1 X2 b c

2
u u1

where C=y4yz is the charge conjugation matrix. We

specify the total angular momentum and the parity for
the baryons (the opposite parity baryons are obtained
from the backward moving solutions using the same

operators). For the b, we use two different Lorentz struc-
tures (b, ,

~ + has Jz=+—,
' while hz

+ has Jz=+—,') to

check for systematic errors. The correlators for the two

Jz terms are averaged to improve the statistics. The sub-

script on u' specifies the Dirac index of the spinor. The
results for the masses in lattice units along with the range
and g /XDF of the fit are given in Tables I—IV. The
effective mass plots for each of the three sources at
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TABLE I. Meson masses at a =0.154. For each operator and correlator we give the y per degree of
freedom, the fit range, and the mass estimate.

SS
0.53

10-22
0.362(6)

1.25
8—24

0.368( 10)

1.23
10-20

0.459( 14)

P2

0.69
8-16

0.465(11)

a&

1.42
5 —13

0.759(31)

ao

0.82
5 —10

0.708(37)

b,

1.02
5—10

0.772( 38)

LS
0.94

10-25
0.365(6)

0.89
15-25

0.364( 14)

0.48
10-22

0.460(7)

1.16
10-19

0.467(8)

0.36
7—11

0.732(38)

1.27
7—11

0.717(40)

0.62
7—11

0.766(44)

LW
0.63

10-22
0.361(4)

0.83
9-30

0.365(6)

0.35
10-20

0.463(6)

0.25
8-16

0.460(9)

1.13
6-10

0.727( 30)

0.57
6—10

0.676( 34)

0.42
6-10

0.714(31 )

a =0. 155 are shown in Figs. 1(a)—1(c). The correspond-
ing plots at the heavier quark mass, ~=0.154, have
smaller errors.

We find that the effective mass mz(t) converges from
above for SS (as it must with a positive definite transfer
matrix} and for LS correlators, and from below for the
LW correlator. An agreement between the different
methods therefore provides a good test of whether the
mass estimate is asymptotic.

In the pion channel we find that m, tt(t) reaches a pla-
teau at t = 10 for LS correlators, at t =8 for SS correla-
tors, while the LW correlators stabilize even earlier at
t =6. The onset of the plateau is independent of the
quark mass in the two cases considered. In the plateau
region the three different sets of correlators give con-
sistent results. The signal in all three cases extends all
the way across the lattice and the errors stay roughly
constant with t. A theoretical analysis of why this occurs
for the pion and not for other states has been given by
Lepage [11]. The errors in m, (ts} are comparable for LS
and LW correlators and roughly a factor of 2 larger in
SS. In Ref. [10] we gave an argument for why, with
Wuppertal smearing, the errors in I ss are larger than
those in I zs. On the other hand, an analysis of the eigen-
values of the covariance matrix shows that the time slice
to time slice correlations in I ss are significantly smaller.
The interplay of these two effects makes the errors in the

fit parameters comparable in the two cases.
Within the plateau region we have investigated the

dependence of the fit parameters on the fit range used and
on whether or not we use the full covariance matrix. We
find that while the variation in M is no greater than 1%,
the result for the amplitude can change by as much as
12%. This is one reason why the extraction of matrix
elements is prone to large errors.

We find that the operator ~2 has a better overlap with
the pion and m, it(t) reaches a plateau earlier. On the
other hand the errors in m, tt(t) are much larger. A com-
parison of signals for the two channels can be made from
Figs. 1(b) and 2(a).

In Fig. 2(a) we plot ,m(ts) for the four lowest momen-
tum states coupled to the A4A4 LS correlator. It is
desirable to get a good signal in nonzero momentum
channels as these correlators play an important part in
the calculation of many matrix elements, for example
structure functions and form factors. The data show a
reasonable plateau for p=(0, 0, 2m. /16) and the possible
beginning of one for p=(0, 2m/16, 2n/16). We compare
the resulting energy estimates with the continuum disper-
sion relation in Fig. 2(b).

The signal in the p correlators is also very satisfactory.
There is a plateau between t =10 and 30 for all three
types of correlators, but unlike the case of the pion the
errors do increase with t. The final estimates from the

TABLE II. Baryon masses at ~=0.154. For each opertaor and correlator we give the y per degree
of freedom, the fit range, and the mass estimate.

SS
0.60
8—16

0.733(17)

1.58
6—10

1.034(48)

0.65
9—16

0.796(47)

1.55
8—15

0.824(24)

1.51
5 —12

1.105(47)

0.48
5—10

1 ~ 134(36)

LS
0.86

10-17
0.740( 14)

0.47
7-10

1.069(42)

0.40
10-16

0.805( 14)

0.68
10-16

0.822( 12)

1.24
7—11

1.111(69)

0.46
7—11

1.130(37)

0.30
9—16

0.708( 18)

0.40
6-10

0.935(23)

0.28
9—15

0.767(21)

0.25
9—15

0.761(20)

1.87
5 —12

0.958(25 )

0.73
6—10

1.009(42)
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TABLE III. Meson masses at re=0. 155. For each operator and correlator we give the y' per degree
of freedom, the fit range, and the mass estimate.

SS
1.39

10-22
0.297(9)

0.79
7—16

0.303(7)

1.65
10-22

0.411(14)

1.45
8 —20

0.425(20)

al

1.04
5—9

0.714(45 )

&o

1.70
4—8

0.738(64)

0.52
4

0.748( 54)

1.60
10-25

0.297(9)

1.15
12-24

0.298( 17 )

0.44
10-22

0.411(10)

1.40
10-18

0.428( 13 )

0.28
7—10

0.700(43)

1.75
6—10

0.696(44)

0.93
7-10

0.744( 55 )

LW
1.36

10-22
0.295(5)

1.45
8—20

0.301(7)

0.51
9—20

0.420( 10)

0.65
8—18

0.431(9)

0.88
5 —10

0.692(24)

0.66
5 —10

0.657( 53 )

0.41
5-10

0.693(21)

three sets are consistent. We find that the signal is a little
better for the p than for the p2 operator.

There is a reasonable signal in the nucleon (N' +)
channel with a plateau extending between t =10 and 18.
We find that the plateau in the hz

+ channel has a mar-
ginally better signal than in the 6, +, and for this reason
we quote results using Az. The big surprise is the sys-
tematic difference in the baryon spectrum as extracted us-
ing the Wuppertal and wall sources. In Fig. 3 we show
an effective mass plot comparing the LS and LW correla-
tors for both nucleon and b,z. (We emphasize that either
Wuppertal correlator, SS or LS, could equally well have
been used for the comparison with LW. ) Both types of
correlators appear to reach plateaus, though from oppo-
site directions. The problem is that the asymptotic values
differ, the LW results lying below the LS. The same is
true for both values of the quark mass. To explore the
statistical significance of this difference we performed a
jackknife analysis of the difference of the masses. We find
that the difference for the nucleon is only 1 cr, while that
for 5 is 2-3 0.. Even though the effect is of marginal
significance in each channel, the fact that in all three
baryon channels the LW masses lie below the LS and SS
masses suggests that the difference is systematic.

Further evidence for this conclusion comes from a
comparison of our results with those from the APE Col-
laboration [12], both of which are collected in Table V.

(Our results use the operators n, p, N, and b, 2.) The APE
Collaboration uses yet another type of source, the "multi-
cube, "which is, in a sense, intermediate between wall and
Wuppertal sources. The meson masses are in good agree-
ment, while the APE results for baryons lie in between
ours for Wuppertal and wall sources.

A similar effect has been observed in hadron mass cal-
culations using staggered fermions [13,14]. Meson
masses agree, while baryon mass estimates with multi-
cube source again lie a couple of standard deviations
higher than those with wall sources.

If this is a systematic effect, it means that the extracted
mass estimate is not asymptotic. Any such difference has
important implications for the M~/M ratio. Calcula-
tions over the last two years have found a smaller value
for this ratio than previous lattice results. This improve-
ment has come, however, from calculations that use wall
or similar sources [3]. Clearly this is an issue deserving
further study.

For the positive parity mesons and the negative parity
baryons the signal is marginal. In most cases the plateau
is noisy and extends only over -5 time slices. For this
reason we give the results of the fits but do not present a
detailed analysis of the data.

The signal in the n. and p channels extends beyond half
the length of the original gauge configuration (t =20), so
we can address the question raised by the HEMCGC Col-

TABLE IV. Baryon masses at ~=0.155. For each operator and correlator we give the g per degree
of freedom, the fit range, and the mass estimate.

SS
0.70
8—17

0.664( 15 )

1.21
5 —10

0.989(37 )

0.94
8—17

0.752(25 )

2.35
9—15

0.778( 32)

1.81
6—12

1.010(95)

0.48
5 —10

1.099(44)

0.80
9—17

0.665( 15)

1.67
7—18

0.942(73 )

0.82
10-16

0.740( 18 )

1.01
9—15

0.778(21 )

0.76
7—ll

1.075(90)

0.18
8 —11

1.035(97 )

LW
0.35
8—16

0.634(28)

0.38
6—10

0.885(32)

0.93
8 —14

0.718(22)

0.63
8—16

0.697(37 )

0.57
4—8

0.910(21)

0.52
6—10

0.951(60)
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1.2

0.8—

0.6—

I
I

I I f I
I

I I I I
I

I I I I

p=(0,0,0) SS Correlator

0 p

laboration about fluctuations in the effective mass in-
duced by doubling the lattices [15]. The plateaus in our
m, fr(t) plots do show fluctuations, but these are not
correlated with the lattice periodicity. Furthermore, if
we analyze different subsets of lattices we do not find fluc-
tuations at the same values of t. In addition, we have cal-
culated the spectrum using quark propagators on the un-
doubled 16 X40 lattices with periodic boundary condi-
tions in the time direction. These results are included in
Table V. There is no significant difference between the
mass estimates from doubled or undoubled lattices. In
sum, our data show no evidence that the fluctuations are
anything other than statistical. It remains possible, how-

0 2 I I I I

0

1e2 I I

tD

10 20
t
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I I I I
I
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I
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0.8—

I I I
I

I I I f
I

I I I I
I

I I I I

A4-A& LS Correlator (a):
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O p=(0, 1,1)

o p=(0, 0, 1)

X p=(O, O, O)

4
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z ~~)--
CV= . -=&
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XX~.=-~vs'x'x'LT r
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0

g &&'&~ «)
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t
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&)
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0.2
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t
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I I I « I

40

f I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I

1 2, I

p=(0,0,0) LW' Correlators

I I I I

(c):
0.4

0.8—

JS & xw~xwzb'l (g)
0.6 —y g)

' 4---
-@ (t)

(D
(D

0.4

0 p

0.2

0 I I I I I I I I I I I I I I I I I I I I I I I I

0 0.1 0.2 0.3 0.4
P

0.5
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t

FIG. 1. (a) The effective mass plots for the m, p, nucleon and
the 6 at a =0.155 using SS correlators. (b) Same as in (a) except
the data are for LS correlators. (c) Same as in (a) except the
data are for L% correlators.

FIG. 2. (a) The m, &{t) plot for m.2+2 LS correlator for the
four values of momentum, p=(0, 0,0), (0,0, 1), (0,1,1), and
{1,1,1), at a.=0.155. (b) Comparison of lattices pion spectrum
with the continuum dispersion relation E =m +p . Calcula-
tions were done only for the four lowest values of momentum.
We do not quote a result at ~=0.155 for P =(1,1, 1) as there is
no credible plateau in m, ft(t) [see 2iai].
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~LW

0.9 — o

0.8—
8

4

0.7 +

ever, that systematic fluctuations would appear if the sta-

tistical errors were reduced.

V. PSEUDOSCALAR DECAY CONSTANT f
The definition of the pseudoscalar decay constant on

the lattice is [16]

z„(ol a',™~ll~(p) &

z() (5.1)

where Z~ is the axial-vector current renormalization,
and we are using the convention that the experimental
value is f„=132MeV. In order to extract f we study

two kinds of ratios of correlators:

r„(r) -- (ol~,'-"l~)
R, (r)= (r) (ol g smeared

l )

r„,(r)r„(r) -- l(ol&'-"l~&l'
I ss(t) 2M„

(5.2)

0 6 1 i i i l i i 1 1 I

0 10 20 10
Separation t

FIG. 3. Comparison of the m, z(t) plots for the baryons at
K=O. 154 using LW and LS correlators.

where the I are defined in Eq. (3.2). In the case of R, we
have to extract (ol Ae "" le) separately from the I ss
correlator. For each of the two ratios R, and R2 the
smeared source J used to create the pion can be either ~
or ~~. Thus we calculate f„in four different ways, which
we label as f' (using ratio R

&
with J=rr), f (using ratio

R, with J =~2), f' (using ratio R2 with J=m), and f"
(using ratio Rz with J =7r2) T.he results are given in
Table VI. Errors are estimated by applying single-
elimination jackknife to the estimate of f itself. We
note in passing that the "naive" estimate obtained by
combining the errors in each of the fit parameters in
quadrature results in errors that agree with quoted errors
to better than 10%.

%e find that all four methods give consistent estimates
of f„. Since we have to combine different correlators in
order to extract f we select the fit range based on the
following criteria: (1) goodness of the fit, (2) presence of a
plateau with a similar mass estimate from each of the in-
dividual correlators. Otherwise, as stated before, there
can be a large variation in the estimate of the amplitude.
The quality of the signals for the correlator ratios leading
to f' and f ' are exemplified by Figs. 4(a) and 4(b).

Bernard er al. [17] have calculated f using point
sources at the same two values of ~ and using a subset of
the lattices analyzed by us (they use every other lattice).
They get f„=0.094(7) and 0.086(9) at ~=0. 154 and
0.155, respectively, in good agreement with our values.
%e also find agreement with recent point-source results
of the QCDPAX Collaboration [18]. The results of the

—M
APE Collaboration [12] are in error by a factor & e
[19]. After correcting for this factor their value at
« =0.155 (obtained using extended cube sources) is con-
sistent with our corresponding result fd.

We have also calculated f at nonzero momentum,
and find that its value is stable to the addition of one unit
of momentum. The results are included in Table VI. The
overa11 quality of the signal is good even though the pla-
teaus in the e6'ective mass are much shorter than those
for the p=(0, 0,0) case. At p=(0, 2m/16, 2'/16) the er-
rors are larger and the determination is far less reliable.

TABLE V. Quenched Wilson fermion spectrum at P=6.0. We present results from Wuppertal
(denoted by superscript a in a third column) and wall sources (superscript b) on 16'X 80 lattices sepa-

rately. Our Wuppertal source results on both doubled and undoubled lattices are the mean of the LS
and SS values. We include results on 183 X 32 and on 24 X 32 lattices from the APE Collaboration [12]
for comparison. To get the value for f in lattice units we have used Z„=O.86.

Lattice

0.154
0.154
0.154
0.154

16'x40
16'x 80
16'x 80
18'x 32

35
35'
35

104

0.365(4)
0.364(6)
0.361(4)
0.361(1)

0.465(7)
0.460(7)
0.463(6)
0.463(3)

0.736( 11)
0.737{14)
0.708( 18)
0.721(7)

0.82(2)
0.82(2)
0.76(2)
0.782( 10)

0.093(3)
0.091(4)

0.155
0.155
0.155
0.155
0.155

16'x 409
16'x 80
16'x 80
18'x 32
24'x 32

35
35'
35
104
78

0.301(6)
0.297(9)
0.295(5)
0.295{1)
0.297(3)

0.420( 12)
0.411(10)
0.420( 10)
0.422(4)
0.428(4)

0.663( 15)
0.665( 15 )

0.634(28)
0.651( 10)
0.647(6)

0.78(2)
0.78(2)
0.70(4)
0.723( 14)
0.745( 15 )

0.086(3)
0.087{4}

0.083(3)
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TABLE VI. Results for the pseudoscalar decay constant, f,
calculated in the four ways described in the text, and using

Z„=0.86. For each measurement we give the y per degree of
freedom, the fit range, and the estimate. (alt)„~ „'lI(I &

= (al0 [ ~'/»trt~] y54IP& (7.1)

In the continuum, the PCAC (partial conservation of
axial-vector current) relation is

~=0.1540
p=(0,0,0)

v=p. 1540
p=(0, 0, 1)

~=0.1550
p=(0, 0,0)

0.95
15-22

0.090(4}

0.73
10-16

0.093( 12)

1.93
8-24

0.086(4)

1.56
12-22

0.090(7}

1.84
8—16

0.094(5)

1.18
10-20

0.079(8)

1.33
12-22

0.092(5)

0.21
9—16

0.094(7)

1.49
8—28

0.088(5)

1.00
12-22

0.093(7)

0.32
10-16

0.094(8)

1.85
9—21

0.087(7)

where ~a& and ~P& are physical states, and A,
' is a fiavor

Gell-Mann matrix. Individually m~ and fy5$ are scale

dependent, and one must choose a particular scheme to
precisely define them. The standard choice is the MS
scheme at a scale ILI

= 1 GeV [21].
The lattice relation corresponding to Eq. (7.1) is [6]

(a)Z„a„~„(P&=Z, (~/y[) /2, m, ]y,l(/P&+0(a),

(7.2)

~=0. 1550
p=(0„0,1}

0.92
8-14

0.090(7)

1.23
8—14

0.085(4)

0.93
7—14

0.084(9)

0.23
9—16

0.088(8)

0.0007

R, = &A, P&/&P P&

VI. VECTOR DECAY CONSTANT fv
0.0006—

We use the local vector current V,- to define the dimen-
sionless number fv

' as [16] )t
0.0005 —--

eM
«lv, lp&=

'

v v
(6.1)

This matrix element can be extracted in two ways analo-
gous to Eq. (5.2). We use V; to both create and annihilate
the vector meson. The results are given in Table VII,
where we use the nonperturbative estimate Z&=0.57 ob-
tained using two-point correlators in an earlier calcula-
tion offv at the same P [7). We point out that due to the
existence of a conserved vector current on the lattice, this
estimate of Zv is free of 0 (g ) ambiguities.

The quality of the signal in correlator ratios R
&

and R2
is very good as shown in Figs. 5(a) and 5(b). The final
data are shown in Fig. 6 where for comparison we have
also included results from the Wuppertal [20], APE [12],
and QCDPAX Collaborations [18]. The experimental
points have been taken from Ref. [20]. Our results lie
significantly below %upperta1 estimates and are in agree-
ment with the results obtained by the QCDPAX Colla-
boration and the APE Collaboration (the latter after

correction by a factor +e™s[19]). The data by the
QCDPAX Collaboration, obtained using point-source
propagators measured on 160 lattices of size 24 X54,
show that smeared and local sources yield consistent re-
sults once systematic errors are under control.

0.0004—

p ppp3 I I I I I

0 10

I I I I I I I I I I I

20
t

30

0.6—

0.4—
ItI

8

)i

)( --z ~F-X -- .' - -. 40( g && )(-=

)()p-

I I I I
I

I I I I
I

I I I I
I

I I I I

Ra = &A4 P& /&P P&

40

VII. QUARK MASSES AND
THE CHIRAL CONDENSATE

In order to extract the quark masses and the conden-
sate with Wilson fermions one must understand how con-
tinuum current algebra relations are realized on the lat-
tice. This was explained in Refs. [5] and [6], and we re-
call here the relevant results.

0 I I

0
I I I I I I I I » I

10 20
t

30 40

FIG. 4. (a) The ratio of correlators R, at a=0. 154 from
which f', as defined in the text, is extracted. (b) The m, s(tl plot
for the ratio of correlators Rz at «=0. 154 from which f', as
defined in the text, is extracted.
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TABLE VII. The value of the vector meson decay constant,
fy ', calculated in the two ways described in the text, and using
ZI, =0.57. For each measurement we give the g' per degree of'

freedom, the fit range, and the estimate.

b

04 I I I I
J

I I I I
I

I I I I
)

I I I I
(

I I I I

0.1540
1.03

8—18
0.24(2)

1.53
10-20

0.25(2)

63 p

0.1550
1.19

8—18
0.26(2)

2.84
10-22

0.26(2)
0.2—

0 ~ 0025

R, = &V,. V,. & /&V, . V,. & (a)

0.002—

Ql

01 I I I I l I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8
Mes/Mv

FIG. 6. Comparison of the lattice estimates of I/f z with ex-
perimental data. Points labeled by + are the corrected data
from Ref. [12], o from Ref. [18], X from Ref. [20], and 0 from
this calculation. Experimental points are indicated by H.

0.0015—

)(
- 4T.T. i((")(( )' ' )(

) t') p

x(
where mq, the quark mass, is related to the bare lattice
quark mass by

latt
q mass q

latt 1

2 K Kc
(7.3)

Q QQ1 I I I I I I I I I I I I I I I

0 10 20 30
t

40

R~ = (VI V,&LS/(V; V;&ss (b)—

0.8—

0.4—

0.2—

0 I I I I I I I I I I I

10 20
t

30 40

1 I I I I
t

I I I I
(

I I I I
{

I I I I

In this and the following equations we assume degenerate
quarks. We stress that Z „, is the mass renormalization
and differs from the finite constant Z defined in Ref. [6]
(Z =Ztz „, in our notation). In Ref. [22] it was
shown that for m —+0, Z „,=Z& '. In the Appendix we
rederive this result in perturbation theory to all orders,
and argue that it remains true for general m in the con-
tinuum limit. For this reason, we will express all our re-
sults in terms of Zz and Zp by requiring Z „s=Z~ '

identically. It should be borne in mind, however, that for
nonzero lattice spacing there are O(ma) corrections to
the individual Z factors which depend on the initial and
final states. Thus Zz factor extracted from different ma-

trix elements may differ by terms of O(ma).
For Wilson fermions, the absence of chiral symmetry

means that Zz and Zp differ, and as discussed in the In-
troduction they must either be calculated perturbatively
or else fixed by some phenomenologica1 requirement,
since the continuum quantities we are comparing to are
defined perturbatively. Their ratio Zp/Zg however, is
finite and can be extracted nonperturbatively, as we now
describe.

From Eq. (7.2) we can extract m Zp/Z„. To do this
we calculate the ratios

FIG. 5. (a) The ratio of correlators R, at ~=0.154 from
which I /f v, as defined in the text, is extracted. (b) The m, ~(t)
plot for the ratio of correlators R2 at K=0. 154 from which
I/f v, as defined in the text, is extracted.

M„(O~A (t)J(0)~0) -- Z,
(o~s (t)J(0)~o) z„

1 (oia, w, (t)J(0)io) -- z,
2 (O~P(t)J(0)~0) Z„

{7.4)
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TABLE VIII. The value of Zpmq, calculated in the four ways described in the text, using Z„=0.86.
For each measurement we give the y per degree of freedom, the fit range, and the estimate. Also given

are the lattice quark mass and the renormalization constant Zp/Zs.

0.1540

Zpmq

1.29
12-25

0.042(1)

Zpmb

0.79
12-22

0.041(2)

Zpmq

1.76
10-30

0.043(1)

Zpm,"

0.79
12-28

0.042(1)

m latt
mq

0.062

Zp /Zs

0.68(1)

0.1550
1.41

12-20
0.027(1)

0.85
12-22

0.027(2)

1.52
12—28

0.028(1)

1.06
12-28

0.028(1)
0.042 0.66(2)

where P and A4 are the local operators and the smeared
source J=m. Thus, given Z„and assuming
m =Zz 'm'"', we can make a nonperturbative evalua-

b dtion of Z~/Z&. Two other estimates, m and m, are ob-
tained by substituting J =m.2. All four methods give con-
sistent results, as shown in Table VIII. The quality of the
signal is displayed in Figs. 7(a) and 7(b). Also given in
Table VIII are the values for m"" and the results for
Zp/Zs. Our values are consistent with the earlier esti-
mate of Ref. [7], Zp /Zs =0.7.

To calculate the chiral condensate we use two variants
of the method suggested in Ref. [6]. This is based upon
the continuum Ward identity

0.2—

)(

g~ggg3 gg g$ $$)0 0c&gg$
~+pggg~=

Oo4 I I I I
(

I I I I
(

I I I I
(

I I I I

&As As&~/&P As&sa (o)—

(7.5)

&pit )"'—= &ols(0)lo&

= lim m fd x & pl P (x)P (0) l
0 &,

m ~0

where (gf) ' is the chiral condensate per light flavor.
The lattice equivalent of this is [6]

I I I I ( I I I I ( I I I01
0 io 20

t
30 40

Using Eq. (7.4) one can rewrite this as

z„&ola,A, (t)J(o)lo&
lim

m, -o 2Zp (OlP(t)J(0)lp)

xz,' y (olP(t')P(o)lo), (7.7)

&It&) '= »m rn, g &OlZpP(x)ZpP(0)lp) . (7.6)
m ~0

X O.OS

(04A4 A4&~/&P A4)~ (b)—

0.08—

where the ratio of correlators is evaluated at large t. We
cannot use (7.7) since we only have LS and SS correlators
available, so instead we use

(yy)wI 1 (olB A (t)J(0)lp)= hm-
Zpzz m, -02 (pip' ""e (t)J(p)lp)

0.07 —--

0.06—

-), , )(. ,

-~sr)
3(:(-=

')(

x y (pip(t )Psmeared(p)lp) (7.8)

This is equivalent to Eq. (7.7) if the pion pole dominates
the sum on the right-hand side, which occurs in the limit
rn ~0. The results are given in Table IX for the two
choices of the source J. A typical example of the quality
of the signal is shown in Fig. 8(a) for J =m..

A variant of this method is to assume pion dominance
of Eq. (7.7), and derive a lattice version of the Gell-
Mann —Oakes —Renner relation [23,21]

I I I I I I I I I ( I I I I I I I I I0 05
0 10 20 30

t
40

FIG. 7. (a) Plot of the ratio of correlators at x=0. 155 from
which mq, as defined in the text, is extracted. (b) Plot of the ra-
tio of correlators at ~=0.155 from which mq, as defined in the
text, is extracted.
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TABLE IX. The value of the chiral condensate on the lattice. For each measurement me give the g
per degree of freedom, the fit range, and the estimate. We have to multiply all numbers by Z~Zz in or-
der to get physical values. The result at ~, =0.15704 is obtained by linear extrapolation.

0.1540

( qq )WI

1.12
12-22

—0.0080( 8 )

( qq) Wl
"2

0.84
8 —18

—0.0079( 8 )

qq )GMOR

1.78
10-20

—0.0147( 8 )

( qq)GMOR

1.22
8 —18

—0.0149(8 )

0.1550
1.89

8—22
—0.0073(7)

1.48
10-22

—0.0072( 13 )

1.82
8 —18

—0.0118(7 )

1.07
8 —18

—0.0118(8 )

0.157 04 —0.0059(26) —0.0058(42 ) —0.0060(26) —0.0056(29 )

1 I I I I
I

I I I I
I

I I I I
I

I I I I

(Qj ZtPP m A4P&m/~PP ss

2M2
( qq )GMOR

rn ~0 4POq
q

(7.9)

0.9—
)

)(

0.8—

ll) Il

();)( )(
'

I i(i( )
li J

)( ()( /'ii
')( ' )(

i(
)i)~---')( ' &olp(t)J(o)lo& &ol ~,(t)J(0)lo&

(ol1(t»(0) lo&
t- ao (qq)GMOR

e
ZPZ A

(7.10)

Using Eqs. (5.2) and (7.4), this can be extracted from the
combination of correlators

0.6
0 10 20

t

I I I I I I I I I I I I

30 40

where the pion source can again be J=a or rrz. [To
derive this result one must bear in mind the normaliza-
tion factors of 2M„, as shown explicitly in Eq. (5.2).j The
results using this method are also given in Table IX, and
in Fig. 8(b) we show a typical m, Ir(t) plot for the above
ratio.

These two methods should only agree for m =0, in
which limit they give the condensate. In an expansion

05 I I I I
I

I I I I
I

I I I I
I

I I I (q1() = (q1(). ,+cm, + (7.1 1)

0.4—

0.3 — )(
'( -~(.'

)()(
)()( )(

0.2 ——

(b) 4 Ls 4 ~&ts/ 4 4 ss
)(

the linear (and higher order) terms are contaminated by
lattice artifacts. We also include in Table IX the results
of linearly extrapolating ( 1( 1( ) to A., =0. 157 04. It is very
encouraging to see that the four values agree with each
other within our statistical resolution, and this leads us to
believe that the results are physical. Therefore we com-
pare them with those obtained using staggered fermions
and with the experimental values in Sec. IX.

VIII. SECOND MOMENT OF THE QUARK
DISTRIBUTION AMPLITUDE IN THE PION

0
0 10 20

t
30

I I I I I I I I I I I I I I I I

40

The quark distribution amplitude of a hadron is a wave
function describing the distribution of the hadron
momentum between valence quarks near the light cone
limit. For the pion, the second moment of the distribu-
tion amplitude, (( ), paratnetrizes the matrix element of
an axial operator with two derivatives:

FIG. 8. {a) The plot for the ratio of correlators yielding
(pg) ' at R'=0. 154. The result has to be multiplied by 4R' to
take into account our normalization of quark propagators. (b)
The m, fr(t) plot for the ratio of correlators yielding (l(p)
at v=0. 155.

&ol &„.,(0)lIr(p)) =z 'f.(g'&p„p„p, ,

A„(x)=( —i) P(x)@san„D„D P(x) -—traces .

Equation (8.1) holds independent of the symmetrization
of Lorentz indices, though for certain analyses such a
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symmetrization is desirable in order to project out an
operator of definite twist. On the lattice, the renormal-
ization constant Z is unknown, and depends on the
Lorentz indices. In one-loop perturbation theory, assum-
ing that the dominant contribution to the renormaliza-
tion comes from the tadpole terms which are independent
of the Lorentz indices, one can estimate Z —1.3. There is
no reason to trust this perturbative result, however, and
the results given below support a value substantially
larger.

Using the lattice transcription of operators given in
Ref. [24], we have measured (g &'"'=Z '(g ) from the
following correlator ratios:

(0I ~ [433](p,t)I(o)10&

(ol ~4(p, t)Z(0) lo&

(0( ~[34»(p, tg(0)io&
(oi a4(p, t)J(0))0&

( Oi 3 (433) (p, t)J(0) i0 &

(0~ ~,(p, t)J(0)io&

where I =n., Irz and p=(0, 0, 23r/16). Square brackets
around indices indicate that an appropriate combination
of operators has been taken to nonperturbatively subtract
quadratic divergences [25] and parentheses indicate that
symmetrization over the Lorentz indices has also been
performed:

0.03—

0.02—

)i
)(

)(

0.01—

0 I

0

I I I I I I

5 10

0.05
— (b)

I
I

I I I I
I

I I I I

&A(433) A4)~/(A4 A~&~

0.04—

0.03—

004 I I I I
I

I I I I
I

I I I I

((I ) &A(4') P&34/&A4 P&~

15

A )433] 433 A 4ii ,

A (343] 343 i4i

3 (433) ( 3 [433]+2 2 [343] )/3

(8.3) 0.02—

Our results are given in Table X. Examples of the quality
of the data are shown in Figs. 9(a) and 9(b). In general
using m as the pion source seems to give better results:
with m.

2 it takes longer to reach the asymptotic plateau.
For the symmetrized operator, A(433) the results are

consistent with a previous analysis [24] in which
configurations with dynamical quarks with masses in the
range m, (m (3m, were used. This suggests that
(g &""=0.1. However, examination of the two unsym-
metrized operators separately reveals a surprising feature:
(g &'"' from the operator with a time derivative, 2 [343],
is much larger than from that with only spatial deriva-
tives, A [433].

0.01—

0 I I

0

I I I I I I »» I

5 10 15

FIG. 9. (a) Plot of the ratio of correlators, 8 ' "', at ~=0.155
from which the lattice value of (g ) is extracted. (b) Plot of the

ratio of correlators, R' ' ', at sr=0. 155 from which the lattice

value of ( f3) is extracted.

TABLE X. The value of (g')'" from A „,calculated in the six ways described in the text. For each
measurement we give the y' per degree of freedom, the fit range used, and the estimate.

( g2 ) [433] ( g2 ) [343] ( g2 )(433[ ( g2 ) [433]
2

( g2 ) [343]
2

( 42 ) (433)
2

0.1540
0.61
5—10

0.06(2)

0.51
5—10

0.13(2)

0.82
5—10

0.10(2)

0.47
10-16
0.07(4)

1.27
10-20

0.16(3)

1.32
6—16

0.11(1)

0.1550
0.66
5 —10

0.06(3)

0.54
6—12

0.12(3)

0.91
5—12

0.10(2)

0.16
10-15
0.09(5)

1.70
7—15

0.18(2)

1.37
7—15

0.11(2)
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1.34
6

0.14(2)
p-»40

0.70
6

0 1o(2)

( g2 ) (423)
"2

1.62
6—15

0.12(2)

2

2.09
8

O.08(4)

2.19
8—15

0 11(3)

3.58
7—14

0 11(2)

0.82
6—12

0.15(4)
0.1550

1.17
5 —lp

o.13(4)

1.05
6—12
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f' =0.070(14)+0.38(27)m,

M a =0.313(33)+2 3M a — .3(6)m,
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g CF
Zp = 1+ [6 ln(ay) —22. 596],

16m
(9.4)

where CF= —', . This estimate does not address possible
0 (a) and other nonperturbative effects. We use the con-
tinuum MS renormalization scheme at p = 1 GeV so that
Zp=1 —0.221g for a '=1.8 GeV. This leaves one
source of uncertainty in applying this formula, namely
the choice of g . Using g =2, as advocated by Lepage
and Mackenzie [26], we get Z„ZP =0.5. Given the many
uncertainties in this estimate, what we can say with some
confidence is that including these corrections moves the
lattice estimate closer to the continuum result.

Using Eq. (9.1) we can also attempt to extract the mass
of the strange quark. Our estimate varies by a factor of 2
depending on the method we use. For example, by
demanding that the ratio 2Mx/f attain its physical
value at m =m, we get m,'"'a=0.066, while the ratio
Mz+ /2M' gives m,'"'a =0.036. Translated into physical

units these correspond to Zzm, =81 and 44 MeV, respec-
tively. If we assume Zz = 1, then these values are a factor
of 2 —3 smaller than the conventional estimate. This
discrepancy is similar to the results obtained with stag-
gered fermions [13]. Once again, a value of Zs & 1 would
increase these estimates.

The combination m, (PP) 0 can be extracted with
q

less ambiguity because it involves the finite ratio Zp/Zs,
for which we have a nonperturbative estimate. Taking
Zz =0.86 and Zp/Zg=0. 68, and using the two extreme
values for m, quoted above, we find —0.0024 GeV and
—0.0013 GeV, to be compared to the experimental
value of approximately —0.0017 GeV .

X. CONCLUSIONS

We show that both %uppertal and wall quark sources
yield very good signals for the m and p mesons at
p=(0, 0,0). There is an unambiguous plateau in the
effective mass plots for all three types of correlators stud-
ied and the mass estimates are consistent. Since the esti-
mates converge from opposite directions with the two
kinds of sources, consistency of the results implies that
we have extracted the asymptotic value. We find that the
signal in the Wuppertal source pion correlator with
p=(0, 0, 2m. /16) is good enough to allow the calculation
of matrix elements with nonzero momentum Aow.

There are strong indications that we have not extracted
the asymptotic value of the baryon masses. The disturb-
ing difference between the results from the Wuppertal
and wall sources needs to be understood before we can
quote the baryon masses with confidence.

The signal in the ratios of %uppertal source correla-
tors used to extract f, f~ ', m, and ( gg) is very good.
We show how to extract the current quark mass and the
chiral condensate using smeared sources, although com-
paring with experiment is dificult in the absence of reli-
able values for Zp and Z&. We show internal consistency
of the results by using different hadronic operators and
by using different combinations of correlators. We find
that our estimate offv is in good agreement with exper-

imental values.
Lastly, we have calculated the second moment of the

pion distribution amplitude, ( g )'"'. We find a
significant difference between the results extracted from
A [433 and A [343] at p =(0,0, 2m /1 6 ). The average value
of ( g )""-0.1 is consistent with earlier results obtained
using lattices with two dynamical flavors of Wilson fer-
mions.
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X~s(p, m)=i@ pX~s(p, m)+mX2 (p, m),

with the one-loop results

(Al)

X~s(p, m ) =k . 1+2f dx (1—x)

xm '+x (1—x )p'
Xln

p
(A2)

0 p

where A, =g CF/(16m. ) and CF =—', . The lattice self-
energy is

lattX""(p,m) =—X0"+iy.pX';"(p, m)+ m X2"'(p, m),

(A3)

where at one-loop

APPENDIX A: PERTURBATIVE EVALUATION
OF Zg & Zp & AND Zmas&

The perturbative calculations required to evaluate the
constants Zg Zp and Z „,with Wilson fermions have
been performed by a variety of authors [27—32]. It is,
however, rather diScult to extract the precise values
from these papers, and for this reason we collect some of
the relevant results here. %e restrict ourselves to r =1,
and take MS as our continuum scheme.

The calculation of the renormalization constants re-
quires the evaluation of the fermion self-energy (wave
function and mass renormalization) and vertex correc-
tions. The continuum fermion self-energy in the MS
scheme has the form
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X'at' = I,( —51.435 ),
1

X';"(p,m)=A. 13.852+2 J dx(1 —x)in[a [xm +x(1—x)p ]] +O(ma, pa),
0

(p, m)=p 1.901+4I dx ln[a2[xm 2+x (1—x)p ]] +O(ma, pa)
2 7

0

(A4)

We have taken the most precise values available for the
finite constants [30]. These are obtained by numerical in-

tegration and are accurate to better than one part in the
last decimal place. The linearly divergent piece Xo'"

shifts the position of ~„and plays no role in the follow-

ing discussion. Neglecting this term, and adopting a
slightly modified version of the notation of Ref. [28], we
write the difference between continuum and lattice
schemes (in the limit a ~0) as

one-loop renormalization constants

= 1+A [+6 ln( a p, )
—12.952];

=1+k[+61n(ap) —22. 596] .

(A9)

X (p, m) —X'"'(p, m)=iy pbr +mhq (A5)

At one-loop, let us define 6; = A, h', ". Then

hz' = —2 ln( a p )
—12.852,

b, z' = —81n(ap)+0. 099 .
(A6)

With these results the one-loop mass renormalization
constant is

Equations (A7) and (A9) imply that, because b, ',"= —b'z"

within the numerical errors, the relation Z „,Z+=1 is
satisfied. As mentioned in the text, this relation is ex-
pected on the basis of the functional integral derivation
given in Ref. [22]. In fact, as we now discuss, it is
straightforward to understand this result in perturbation
theory.

To establish the equality 6,= —Az at one-loop we be-
2

gin by noting that, to this order,

=1+A[1—61n(ap)+12. 951] . (A7)
gg(1) —

[yMs(p m ) ylatt(p ) ] ~

m
(A10)

5I"=+8ln(ap) —0. 100,

b,"' = + 8 ln( a p )
—9.744 .

(A8)

To extract these results one needs to know that in the di-
mensional reduction scheme used in Ref. [31], both b,I"
and 6'" are larger by +2 than in the MS scheme.

1 5

With these results at hand we can now calculate the

In Ref. [27] the result for Z „, is in error, because the
expression for Az' is incorrect. This error was pointed

2

out in Ref. [29], where a result consistent with Eq. (A7) is
obtained.

Notice that like the 6's, the perturbative Z's are
defined neglecting terms of O(a) and, in particular, terms
of O(ma).

To calculate Zz and Zz one also needs the difference
between the MS and lattice vertex corrections for inser-
tions of ij'jg and gy~g. Following Ref. [28], we write
these differences as 6, and 6, respectively. The above-

y

mentioned error in Ref. [27] propagates into an error in
the one-loop result for b, &=A,b,I" given in Ref. [28]. The
result for 5"' is correct. More precise one-loop values

X5

may be deduced by combining the results of Refs. [32],
[31],and [28]:

which follows from Eqs. (A5) and (A6). The crucial ob-
servation is that the derivative with respect to m inserts
minus the scalar density on the internal fermion line, and
so gives the difference of continuum and lattice vertex di-
agrams. These are precisely the diagrams which, in the
limit m ~0, define —5'&". Note that terms suppressed by
powers of ma (which are present in X"") are irrelevant
since the d's are defined dropping all terms of 0 (a).

This derivation extends straightforwardly to all others.
Taking the derivative with respect to m in a general self-
energy diagram is equivalent to the insertion of minus the
scalar density in all possible ways, and so by de6nition
gives the corresponding set of graphs for —6, . Note that
this is true for any r. The crucial assumption is that the
difference of continuum and lattice self-energies which
defines the 6's is infrared finite, and thus has a smooth
chiral limit. This forbids contributions to the difference
of X's which would make the derivative infrared singular,
i.e., terms of the form in(ma), ln(m /p ), p /m, etc.
Dimensional analysis then shows that the only depen-
dence on m comes from polynomials in ma and
ma 1n(ma), which give no contribution in the continuum
limit.

This discussion makes clear that the relation
Z&Z „,=1, which we use in the text, holds exactly in
perturbation theory. The individual renormalization fac-
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tors we observe in a simulation at finite lattice spacing,
however, also contain O(ma) corrections, the precise
values of which depend upon the external states. Conse-
quently, the replacementZ „,~Z~ ' may have correc-
tions of 0 ( ma ) if the two are extracted from different
matrix elements.

Finally, we give the finite constant

= I +A, ( —9.644),

which is denoted Z in Ref. [6]. Note that in order to
reproduce our nonperturbative result using this formula,
one would have to take g =4.
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