
PHYSICAL REVIEW D VOLUME 46, NUMBER 7

Decuplet baryon structure from lattice @CD

1 OCTOBER 1992

Derek B. Leinweber
Department of Physics and Center for Theoreticat Physics, University of Maryland, ColLege Park, Maryland 807/8"

and TRIUMF, $00$ Wesbrook Mall, Vancouver, British Columbia, Canada V6T BA8

Terrence Draper
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky $0506

R. M. Woloshyn
TRIUMF, )00$ Wesbrook Mall, Vancouver, British Columbia, Canada V6T BAS

(Received 9 April 1992)

The electromagnetic properties of the SU(3)-flavor baryon decuplet are examined within a lattice
simulation of quenched QCD. Electric charge radii, magnetic moments, and magnetic radii are
extracted from the EO and M1 form factors. Preliminary results for the E2 and M3 moments
are presented, giving the first model-independent insight to the shape of the quark distribution in
the baryon ground state. As in our octet-baryon analysis, the lattice results give evidence of spin-
dependent forces and mass effects in the electromagnetic properties. The quark charge distribution
radii indicate these effects act in opposing directions. Some baryon dependence of the effective quark
magnetic moments is seen. However, this dependence in decuplet baryons is more subtle than that
for octet baryons. Of particular interest are the lattice predictions for the magnetic moments of
0 and 6++ for which new recent experimental measurements are available. The lattice prediction
of the b,++/p ratio appears larger than the experimental ratio, while the lattice prediction for the
A /p magnetic moment ratio is in good agreement with the experimental ratio.

PACS number(s): 13.40.Fn, 12.38Gc, 14.20.—c

I. INTRODUCTION

Knowledge of the quark substructure of baryons is
largely based on experiment and model-dependent de-
scriptions of quark-gluon interactions. While most mod-
els are "QCD inspired, " they all suffer from an approxi-
mate treatment of the complex nonperturbative long dis-
tance interactions. Often these interactions are approx-
imated by a simple potential. Quark spin-dependent in-
teractions are approximated by a single gluon or effective
pion exchange. In many models the subtleties of current
quark and gluon interactions are lumped into an effective
or constituent quark mass. Skyrme models offer an alter-
native description of hadronic phenomena. However, the
foundation of the model is in the 1/N, expansion of QCD.
To learn the true nature of nonperturbative QCD and, we

hope, hadronic phenomena, it is necessary to calculate di-
rectly with the QCD Lagrangian in a manner which fully
accounts for nonperturbative interactions. The most suc-
cessful, reliable, and promising approach currently avail-
able is that of numerical simulations of QCD.

Through studies of hadronic electromagnetic form fac-
tors, the lattice gauge approach to QCD has proven to
be a valuable tool in revealing the underlying quark sub-
structure of hadrons [1,2]. Early calculations focused on
the pion electric form factor with SU(2) color [3—5] and
later with SU(3) color [6—8]. Calculations of the pro-
ton electric form factor followed [9]. Electromagnetic
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form factors of n, p, and N were calculated [2] from
which magnetic moments and electric charge radii were
extracted. Our analysis of the entire baryon flavor octet
followed [1] in which electromagnetic properties were re-
ported for both baryons and the quark sector contribu-
tions. This examination of octet baryons exposed the
presence of spin-dependent forces and center-of-mass ef-
fects in the underlying quark dynamics. These effects
give rise to large variations in the quark contributions
to baryon magnetic moments which were not anticipated
by model calculations. Recently the qz dependence of
the nucleon electromagnetic form factors was examined
using a method which characterizes one of the nucleon in-
terpolating fields as a zero momentum secondary source
[1O].

Other studies of hadron structure in lattice QCD have
been pursued through an examination of current overlap
distribution functions [11—13] and Bethe-Salpeter ampli-
tudes [13]. Form factors have a number of advantages
over Bethe-Salpeter amplitudes, in that they are gauge
invariant, path independent, and allow the extraction of
quark distribution radii relative to the system center of
mass. In contrast, Bethe-Salpeter amplitudes only give
relative quark separations, and subtle dynamical effects
can remain hidden.

In this paper we continue our study of hadron struc-
ture and present the first lattice QCD calculation of
the electromagnetic form factors of SU(3)-flavor-decuplet
baryons. An analysis of electromagnetic transition mo-
ments will follow in a subsequent paper [14]. The tech-
nique for extracting the four form factors associated with
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spin-3/2 baryons from the electromagnetic current ma-
trix elements has been outlined in Ref. [15]. From these
form factors we will determine magnetic moments, elec-
tric radii, and magnetic radii and we will present prelim-
inary results for the higher-order E2 and M3 moments.

On the lattice, decuplet baryons are stable as a result
of the unphysically large quark masses that are used in
present calculations. Decay to a pion and an octet baryon
is forbidden by energy conservation. However, the sta-
bility of decuplet baryons is common to most hadronic
models. In this sense, lattice results provide a new forum
in which the strengths and weaknesses of various models
may be identified. The lattice results also provide access
to observables not readily available with present experi-
ments such as the higher-order multipole moments of the
A which is stable to strong interactions.

An examination of decuplet baryon structure in lattice
QCD enables one to study new aspects of nonperturba-
tive quark-gluon dynamics. In analyzing the results we
make comparisons within the baryon decuplet and with
the octet results which provide insight into the spin de-
pendence of quark interactions. The E2 and M3 mo-
ments accessible in spin-3/2 systems provide a prelimi-
nary glimpse at the shape of the decuplet baryon ground
state. These higher-order moments also have the poten-
tial to discriminate between model dependent descrip-
tions of hadronic phenomena. For example, a vanish-

ing E2 moment would cast serious doubt on hedgehog
Skyrmion descriptions of baryons. To put our results into
perspective, we compare our calculations with experi-
mental measurements where available, with recent quark,
bag and Skyrme model calculations, and with QCD sum
rule calculations.

The format of our paper is as follows. Interpolating
fields are discussed in Sec. II A. Correlation functions at
the quark level are discussed in Sec. II B. Two-point and
three-point correlation functions at the hadronic level are
discussed in Secs. II C and II D respectively. Lattice tech-
niques are discussed briefly in Sec. II E. Decuplet baryon
masses are reported in Sec. IIIA. Correlation function
ratios used in extracting the multipole form factors are
illustrated in Sec. III B. Our findings for the electromag-
netic properties of the four multipole form factors are
presented in Secs. IIIC through IIIF. Finally, Sec. IV
provides an overview of our results and a discussion of
future investigations.

II. THEORETICAL FORMALISM

A. Interpolating fields

The commonly used interpolating field for exciting the
6++ resonance from the QCD vacuum takes the long

established [16, 17] form of

(x) = ~ "'(u (x)Cp„u (x)) u'(x). (2.1)

Unless otherwise noted, we follow the notation of Sakurai
[18]. The Dirac gamma matrices are Hermitian and sat-
isfy (p~, p ) = 2 b», with o» ——

&, [piJ, , p„].C = p4pz is
the charge conjugation matrix, a, b, t." are color indices,
u(x) is a u-quark field, and the superscript T denotes a
transpose. The generalization of this interpolating field
for the b,+ composed of two u quarks and one d quark
has the form

(x) = 8 ' 2 (uT (x)Cp„d (x)) u'(x)

+ (u '(x)Cp„u (x)) d'(x) . (2.2)

Other decuplet baryon interpolating fields are obtained
with the appropriate substitutions of u(x), d(x)
u(x), d(x) or s(x). The interpolating field for Z'o is
given by the symmetric generalization

abc
( '()& "()) ()

+ (dT (*)&V,s'(x)) u'(x)

+ (s~ (x)Cp„ub(x))d'(x) . (2.3)

The SU(2)-isospin symmetry relationship for Z' form

factors

gg+
gyp

2
(2.4)

may be easily seen in the E's interpolating field by noting

e'b' (s '(x)Cp„u (x)) d'(x)

(2.5)

B. Correlation functions

Two-point correlation functions at the quark level are
obtained through the standard procedure of contracting
out pairs of quark fields. Consider the 6+ correlation
function at the quark level:

+ 4S '~ CS 'C~ S '+

+ 2S tr p„CS&"Cp S" + 2Sd tr p CS Cp S" (2 6)
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where the quark propagator S„'= T {u {e),u {0))
and similarly for other quark flavors .SU(3)-flavor sym-

metry is clearly displayed in this equation.
The corresponding connected three-point function may

be constructed by replacing each of the three propaga-
tors 8, one at a time, by 8 denoting the propagation of
a quark in the presence of the electromagnetic current.
The interesting result obtained from (2.6) is that the elec-
tromagnetic form factors of the neutral charge decuplet
baryons vanish under SU(3)-flavor symmetry. Introduc-
tion of the more massive strange quark, as in Z' or =',
violates SU(3)-flavor symmetry and allows a nontrivial
result. However, under SU(2)-isospin symmetry the elec-
tromagnetic form factors of As vanish. A nonzero value

for the magnetic moment of the 60 resonance reflects dif-

ferences in the u- and d-quark masses and contributions
from the quark sea through disconnected quark loops in-

teracting with the electromagnetic current.

in p-matrix and metric definitions in reporting the final
results using Sakurai's notation.

The extraction of baryon mass and electromagnetic
form factors proceeds through the calculation of the en-
semble average (denoted ( )) of two- and three-point
Green's functions. The two-point function is defined as

(G..(t;p;r) )

= ) e ' '"rS (A T(y (2:)yp(0)) Q ) . (2.7)

Here 0 represents the /CD vacuum, I' is a 4 x 4
matrix in Dirac space and o., P are Dirac indices.
The subscripts o, 7. are the Lorentz indices of the
spin-3/2 interpolating fields. At the hadronic level
one proceeds by inserting a complete set of states

B,p, s ) and defining

C. Two-point Green's functions
(0 y (0) B,p, s)=ZB u (p, s), (2.8)

In this and the following subsection discussing correla-
tion functions at the hadronic level, the Dirac represen-
tation of the p matrices as defined in Itzykson and Zuber

[19] is used to facilitate calculations of the p-matrix alge-
bra. It is then a simple task to account for the differences

]

where ZB represents the coupling strength of y(0) to
baryon B. The momentum is denoted by p, spin by s,
and ugg(p, s) is a spin vector in the Rarita-Schwinger for-

malism [20]. E„=gp2+M2 and Dirac indices have
been suppressed. Using the Rarita-Schwinger spin sum,

7 p+M) u~(pas)u~(pts) = — g~~ —-p~p~
S

(2.9)

our usual definitions for I',

1(~, 0& 1(r 01
) 2E.

(2.10)

and p = (p, o, o), the large Euclidean time limit of the
two-point function takes the form

( G .(t; pi I' ) ) = Z

where

e ' tr[r4h ], (2.ii)

( GBB(t,p I'4) ) z2 lpl'
l

i'+

(2.12a)

(GBB(t. r )) z2
l

P
l

E„g
2E„

(2.12b)

(2.12c)

(2.12d)

In determining the appropriate forms suitable for calcu-
lations using Sakurai's conventions the de6nitions of the

p matrices used in the interpolating fields are taken into
account. Since the nonvanishing terms of GBB are di-
agonal in o' and r, the p matrices are paired with their
Hermitian conjugates Since . the p-matrix notation dif-
fers only by factors of i and —1, there are no required
alterations for calculations using the notation of Saku-
rai.

Equations (2.12a) through (2.12d) provide four corre-
lation functions from which a baryon mass may be ex-
tracted. All baryon masses extracted from the different
selections of Lorentz indices agree within statistical un-
certainties. The combination providing the smallest sta-
tistical fluctuations is ( G22 (t;p, r4) + G33 (t;p, r4) )
and these results are presented in Sec. III.

It should be noted that the spin-3/2 interpolating
field also has overlap with spin-1/2 baryons. For the 6
baryons and 0 this poses no problem as these baryons
are the lowest-lying baryons in the mass spectrum having
the appropriate isospin and strangeness quantum num-
bers. However, E* and:-* correlation functions may have
lower-lying spin-1/2 components and therefore it is de-
sirable to use the spin-3/2 projection operator [21]

32 = 1 1&„.(p) =up —
3&I v —3, (v pvpp + ppv v p).

352

(2.i3)
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However, to use this operator, one must calculate the full
44 matrix in Dirac and Lorentz spaces of G++(t;p, I')
which exceeds our current analysis of four Lorentz terms
and two Dirac terms by a factor of 32.

@CD sum rule investigations of Z' and:-' hyperons
suggest that the spin-1/2 component of the spin-3/2 in-
terpolating field is small relative to the spin-3/2 com-
ponent [22]. However, the analysis does not determine
whether the spin-1/2 component lies above or below the
lowest-lying spin-3/2 state. Our lattice results for baryon
two-point functions give no indication of a low-lying spin-
1/2 component being excited by the spin-3/2 interpolat-
ing fields.

The electromagnetic current matrix element for spin-2
particles may be written as

M~
( p', s' j "(0) p, s )= ~ u (p', s')C7 "~up(p, s).

p p

(2.14)

Here p, p' denote momenta, s, s' spins, and uqq(p, s) is
a Rarita-Schwinger spin-vector. The following Lorentz
covariant form for the tensor,

,-s(.„.~ " p.]2M'

D. Three-point functions and multipole form factors (2M&)z
'

2M~
(2.15)

Here we begin with a brief overview of the results of
Ref. [15],where the multipole form factors are defined in
terms of the covariant vertex functions and in terms of
the current matrix elements. The Dirac representation of
the p matrices as defined in Itzykson and Zuber contin-
ues to be used to facilitate calculations of the p-matrix
algebra. Finally, the results are reported in Sakurai's no-
tation in a form suitable for calculation in lattice field
theory,

where P = p'+ p, q = p' —p and Mg is the mass of
the baryon, satisfies the standard requirements of invari-
ance under time reversal, parity, G parity, and gauge
transformations. The parameters aq, aq, cq, and cq are
independent covariant vertex function coefficients which
are related to the multipole form factors.

The multipole expansion of the electromagnetic cur-
rent matrix element, defined in terms of angular momen-
tum recoupling algebra, has the form

- (o)
( p', s'~j (0)~p, s )= A ( —s' Gzo(q ) +2@5rGzz(q ) Z x [q x q] —s ), (2.16a)

- (o)
( p', s'[j(D)[ps )= xs ( —s' (G@s(q ) +2&5sGss(q ) z( f x [q x qj( ) p

- (~)+i —GMi(q )Z( ) + 3rGM3(q ) Z( l x [q x q]( l x q —s ),3 2
(2.16b)

where r = —qz/(2M&)z () 0), and P and q are unit vectors. A = v'1+ r in the laboratory frame (p = 0) and A = 1
in the baryon Breit frame (P = p'+ p = 0). The spin matrix elements are defined by Clebsch-Gordan coefficients:

(2.17b)

(2.17c)

(2.18a)

(2.18b)

(2.18c)

(2.18d)

3 / 3
( —s' —s )= b..., (2.17a)

( —s' Z —s )= v15
~

—s'lm —1—s ~,
('3, 3 3l

2 2 E2 2 2)
3, z 3 5(3, 33'[

( —s' Z&'l —s)= — —
~

-s'2m -2-s i,2 2 6 (2 2 2)
( —s' & —s)= -- —

~

-s'3m -3-s ~,
3, , 3 7 2(3, 33'[

(2.17d)
2 6 3(2 22)'

where the Condon and Shortley phase convention has been used [23].
The multipole form factors are defined in terms of the covariant vertex function coeKcients aq, a2, cq, and c2

through the Lorentz-invariant expressions [15]

g~p(q ) = (1 + sr) (ai + (1 + r)ag) —sr(1 + r) (ci + (1 + r)cz),
/@2(q ) = (ai + (1+r)azj —z(1+ r) (ci + (1+r)cq),
gMi(q ) = (1+ sr)ai —5r(l+ r)ci,
QM3(q ) ai 2 (1 + r)ci ~

The multipole form factors g~p, g~z s gMi s and @Ms are referred to as charge (EO), electric-quadrupole (E2), magnetic-

dipole (Ml), and magnetic-octupole (M3) multipole form factors, respectively.
In a manner similar to that for the two-point function, the three-point Green function for the electromagnetic

current is defined as
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{G (t2, tl, p', p;I')) = ) e ' '" e+' " r& {n[T(X.(»)i~(»)X~(0)) ~n).
Xg lXg

(2.19)

(2.21)

where we have defined the reduced ratio R (p', p; I'). Note that there is no implied sum over o and r in (2.21).
Using our standard definitions for I' given in (2.10) and the Rarita-Schwinger spin sum of (2.9), the multipole

form factors may be isolated and extracted. The appropriate combinations of R (p', p; I') suitable for calculations
employing the p-matrix and metric conventions of Sakurai are

gEO(q') = — Rl'1(ql, O; r4) + R2'2(ql, O; r4) + R3'3(ql, O; r4),
3

(2.23a)

Once again, the subscripts a, r are the Lorentz indices of the spin-3/2 interpolating fields. For large Euclidean time
separations t2 —tl))1 and tl))1 the three-point function at the hadronic level takes the limit

{G ' (t2, tl,.p', p;I')) = ) e ' " "e ""F {n[X ~p', s'){p', s'[2"[p, s){&,s[& ]n), (2.20)
s, s'

where the matrix element of the electromagnetic current is defined in (2.14), and the matrix elements of the interpo-
lating fields are defined by (2.8).

In Ref. [15] it was noted that the time dependence of the three-point function may be eliminated by use of the two-
point functions. However, the appropriate combination of the two-point function Lorentz indices was not specified.
Maintaining the lattice Ward identity, which guarantees the lattice electric form factor reproduces the total charge of
the baryon at q2 = 0, provides an indispensable guide to the optimum ratio of Green functions. The preferred ratio
of two- and three-point Green functions is

((G.." (t„t,;p', p;r) )(G.," (t„t,;-p, -p', r) ))
( G~~(t2, p', r4) )( G++(t2, —p; F4) ) )

2E„) q 2E„) (2.22)

g@2 (q ) = 2 Rl 1(ql, 0; I'4) + R2 2(ql, O; r4) —2 R3 3 (ql, O; r4),M(E+ M) 4 4 4 (2.23b)

gM1(q ) = Rl 1('ql 0 F2) + R2 2(ql 0 F2) + R3 3(ql 0 F2) (2.23c)

W

gM3(q ) = —4, Rl 1(ql, o; F2) + R2 2(ql 0 F2) R3 3('ql 0 F2)
M(E+ M)' —,

2
(2.23d)

0 "~ =g ~ F p" + io.""qp~

2M

q q
ot P

+ 2 I'3p + i o q„F4

B 2MB
(2.24)

Provided one includes a factor of ~6 to account for
their normalization of the M3 form factor, the results
of (2.23a) through (2.23d) isolate the multipole form fac-
tors.

where ql = (q, o, o). Equation (2.23b) for g@2 isolates

the spin matrix element ( 23s' Zoi l 233 ). Smaller
statistical uncertainties may be obtained by using the
symmetry R2 2(ql, o; I'4) = R3 3(ql, o; I'4). This sym-
metry is used in the following analysis to eliminate the
term R242(ql, 0; I'4) in the E2 form factor. The signs of
the E2 form factors remain unchanged.

It is worth noting at this point that the form of the
tensor G~&~ in (2.15) is not unique. While equations
(2.23a) through (2.23d) are derived using (2.15) these
results are more generally applicable. For example, the
authors of Ref. [24] employ the form

E. Lattice techniques

Here we briefly summarize the lattice techniques used
in the following calculations. Additional details may be
found in Ref. [1].

We use Wilson's formulation for both the gauge and
fermionic action. SU(2)-isospin symmetry is enforced by
equating the Wilson hopping parameters Ic„=tcp = Ic.
We select three values of m, which we denote zl = 0.152,
Icz = 0.154, and Ics = 0.156, and extrapolate the u-d
quark sector to the chiral limit. To account for the rela-
tively heavy strange quark we fix ~, = ~~, the smallest
of the three values of Ic considered. This allows an ac-
ceptable extrapolation of the light quarks to the chiral
limit through values of quark mass less than or equal to
the strange quark mass. Our calculations of octet and
decuplet baryon masses indicate that this selection for
~, gives a reasonable description of the strange quark
dynamics.

The conserved electromagnetic current is derived from
the fermionic action by the Noether procedure. The lat-
tice Ward identity guarantees the lattice electric form
factor reproduces the total baryon charge at q~ = 0.
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G(p', p, q; I') = sp G'( —p', —p, —q; I'), s~ =+1,
(2.25)

The quark propagators coupled with fixed momentum
qi = (q, 0, 0) to j~ are calculated using the sequential
source technique (SST) [25—27].

To minimize noise in the Green functions, we exploit
the parity symmetry of the correlation functions, and the
equal weighting of (U) and (U') gauge configurations in
the lattice action. Defining s~ as

2.0

1.5

-vuuzw
18/i YF3

0

0.5

vugg
y/y/// p//

F/ii

F/Ill

F/i

and sg as 0.0
N A Z

r=s& CrC-' *, s~ = +1) (2.26)

where C = Cps, the correlation functions are real pro-
vided

sg = sg. (2.27)

III. RESULTS

A. Baryon mass

Baryon masses are determined by fitting the Euclidean
time evolution of baryon two-point functions at three val-
ues of K with the strange quark fixed at the smallest
value of ~. The light u and d quarks are extrapolated
to r„where an extrapolation of the squared pion mass
vanishes. The nucleon mass is used to define the lattice
spacing a = 0.128(ll) fm, a = 1.54(13) GeV. Figure

This condition is satisfied with the selections for I' in-
dicated in (2.23a) though (2.23d). While this approach
requires an extra matrix inversion to determine an addi-
tional SST propagator with momentum —qi, inclusion of
both (U) and (U') configurations in the calculation of
the correlation functions provides an unbiased estimate of
the ensemble average properties which has substantially
reduced fiuctuations [28].

Twenty-eight quenched gauge configurations are gen-
erated by the Cabibbo-Marinari [29] pseudo-heat-bath
method on a 24 x 12 x 12 x 24 periodic lattice at P = 5.9.
Dirichlet boundary conditions are used for fermions in
the time direction. Configurations are selected after 5000
thermalization sweeps from a cold start, and every 1000
sweeps thereafter [30]. Time slices are labeled from 1 to
24, with the b-function source at t = 4. A symmetric
combination of the current [j "(xi —

ru) +j"(xi)]/2 is cen-
tered at time slice ti = 12. The following calculations
are done in the lab frame p = 0, p' = qi = (2z /24, 0, 0),
the minimum nonzero momentum available on our lat-
tice. The spatial direction of the electromagnetic current
is chosen in the z direction. As discussed in Sec. III B and
as in Ref. [1], the reported masses and form factors are
determined by fitting the correlation functions in time
slices 16 through 20 inclusive.

Statistical uncertainties are calculated in a third-order,
single elimination jackknife [31,32]. A third-order jack-
knife provides uncertainty estimates for the correlation
functions, fits to the correlation functions, and quanti-
ties extrapolated to the chiral limit.

FIG. 1. Octet and decuplet baryon masses. The nucleon
mass has been used to set the scale. Horizontal lines indicate
the experimental values.

1 displays the masses of the decuplet baryons obtained
from the combination of two-point functions t gP+Ggg.
Octet-baryon masses are also displayed for reference. Ex-
perimental masses [33] are indicated by horizontal lines.
With the exception of the N-b splitting, the baryon
masses are reasonably reproduced. Table I summarizes
the lattice baryon masses at the three values of ~ consid-
ered as well as the extrapolated masses. The momentum
transfer is relatively insensitive to the baryon mass. For
all baryons, q a = 0.067 6 0.001 with the larger values
corresponding to the heavier baryons.

B. Correlation function ratios

0.8
0

0.6

Fg 0.4

0.2
O

0.0

A —0.2

—0.4
~ ~ ~ a ~ ~ ~ $ II

10 12 14 16 18 20 22
t2

FIG. 2. Quark contributions to the correlation function
ratios isolating the Z + electric-charge form factor as in

(2.23a). The correlation functions are for r.„=Ks. Ratios
for larger quark mass have smaller statistical uncertainties.

Here we present a few of the correlation function ratios
of (2.21) which are combined to isolate the multipole form
factors. Figure 2 displays the quark contributions to the
electric charge form factor of Z' hyperons at r.„=rs,
the lightest quark masses considered. The d-quark con-
tribution is related to the u-quark result by a ratio of the
quark charges. Electric charge form factors for the three
charge states of the Z* hyperons are obtained through
the appropriate sums of quark contributions. Similar re-
sults are seen for other decuplet baryons.

The form factors are determined by fitting the corre-
lation function ratio sum by a horizontal line for times
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TABLE I. Baryon mass in lattice units (Msa).

Baryon

N

0

ey ——0.152

1.09(3)
1.13(3)
1.13(3)
i.i3(3)
1.13(3)

x2 ——0.154

0.96(3)
1.02(4)
1.05(4)
1.09(4)

r3 ——0.156

0.84(3)
0.90(5)
0.98(4)
1.05(4)

e„=0.1598(2)

0.61(5)
0.70(7)
0.84(5)
0.98(4)
1.13(3)

tz » 12 and t2 (( 24. Fortunately there is a rather
broad plateau region where the electric form factor may
be reliably determined. We consider fits of the correla-
tion functions from time slice 15 through 21 in intervals
including 4 to 7 points. The results are selected from
these 10 fits based on the flatness of the correlation func-
tions and the statistical uncertainties. As in the octet
baryon analysis, it is found that fits of the 5 points in the
time slice interval 16 to 20 provide the optimum balance
between these systematic and statistical uncertainties.

Figure 3 shows a similar plot for the quark contribu-
tions to the magnetic-dipole form factor of:-' hyperons.
Once again it„=es with e, fixed at iti.

Figures 4 and 5 display the E2 and M3 ratio sums for
b, baryons in comparison with EO and Ml ratio sums
respectively. Only the ratio terms appearing inside the
square brackets of (2.23a) through (2.23d) are included
here. The higher-order moments are dependent upon
subtle differences in the ratio contributions, R . For-
tunately the statistical uncertainties of individual corre-
lation function ratios are correlated and some of the un-
certainty is canceled in the higher-order moment sums.
However, statistical uncertainties in the E2 and M3 mo-
ments remain large.

The E2 result is small relative to the EO ratio sum. In
the interest of placing an upper limit on the magnitude
of the E2 form factor we will consider fits of the E2
correlation functions in the standard interval of ts = 16
through 20. The M3 moment is finite and remains finite

2.5

C. Electric charge form factors

Electric charge form factors are extracted from fits of
the ratios in (2.23a). Table II reports the form factors for
the decuplet baryons at the three values of it considered
along with the extrapolated values. Table III gives the
form factors for individual quarks of unit charge within
decuplet baryons. Note that isospin symmetry equates s-
quark properties to u-quark properties when normalized
to unit charge.

We use the standard small qz expansion of the Fourier
transform of a spherical charge distribution to extract
the electric charge radius.

(")=-6,gE(q') .. . (3.1)

We have two points describing the function g@(qz).
Namely g@(0), the total charge of the baryon, and g@(qz)
evaluated at the smallest finite value of q2 available on
our lattice. To evaluate the derivative of (3.1) we use a
dipole form for the function gE(qz). The dipole result

for all three values of it considered. This is not entirely
surprising as pure Ml multipole moments are generally
not seen in extended physical systems. Unfortunately, a
clear plateau region is not seen. To determine the scale
of the M3 moment we will fit the correlation function
ratio sum in the standard interval of t2 ——16 through
20 with the understanding that the result may be an
underestimate of the M3 moment.
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FIG. 3. Quark contributions to the correlation function
ratios isolating the = magnetic-dipole form factor as in
(2.23c). For purposes of illustration the leading kinematical
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has been set to a constant. The correlation functions are for
/c = K3. Ratios for larger quark mass have smaller statistical
uncertainties.
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FIG. 4. A comparison of the ratio sums in the square
brackets of Eqs. (2.23a) and (2.23b) isolating gzo and gs2
respectively. Correlation function ratios are for r
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FIG. 6. Electric charge radii for charged octet and decu-
plet baryons in units of the proton charge radius. Radii of
4++ and A are equal to that of 4+ when normalized by
the total baryon charge.

for the radius is

(r') 12 ( g~(O)
g~(o) 8 q gE(q') )

(3.2)

To assess the sensitivity of our results on the dipole ap-
proximation we also consider a monopole form.

In the figures and tables of this section we quote

the quantity r~ z 0 which gives the ra ius of
baryons and quark distributions with unit charge. In all
cases the sign of ( rz ) is the same as the charge of the
baryon or quark. The difference of the radii extracted in
the dipole and monopole approximations is small relative
to the statistical uncertainties in the radii. We refer to
the dipole results in the following discussion and figures.

The charge radii of decuplet baryons are not deter-
mined by experiment so our goal here is to compare de-
cuplet and octet results to see if there is some indication
of how spin-dependent interactions affect the electromag-
netic structure. Of course the spin-dependent interac-
tions depend on the quark masses and our calculations
are done at masses which are not yet small. However
the extrapolation of charge radii into the physical (light)
quark region is problematic since charge radii become in-
finite in the exact chiral limit [34]. To reproduce this
behavior in the present calculation would require some

model-dependent theoretical input which is not available.
To estimate the charge radii in the physical mass region

and allow a comparison with model calculations which of-
ten neglect couplings to the continuum, we extrapolate
in 1/K (or equivalently in ms) to r.„Altho.ugh this
prescription involves some systematic uncertainty [35], it
gives a better picture of what is happening at physical
quark masses than, for example, using only results calcu-
lated at our largest it value. However it should be noted
that the qualitative statements and conclusions are the
same whether we extrapolate or not.

Figure 6 displays the lattice results for the electric
charge radii normalized to the proton charge radius for
the charged members of the baryon octet and decuplet.
We find a similar pattern of quark mass effects in the
octet and decuplet with a 6+ charge radius essentially
equal to that of the proton. Note that the charge radii
of 6++ and b, are equal to that of 6+ when the radii
are normalized by the total charge. Table IV summarizes
the lattice calculations.

Some insight into quark dynamics may be obtained by
examining the behavior of the quark distribution radii
in hyperons as the u and d quarks become lighter. Con-
sider for example, the distribution radii of u and s quarks
within Z+ as the u quarks are extrapolated to ~„.Fig-
ures 7 and 8 display the quark distribution radii in lattice

TABLE II. Baryon electric charge form factors.

Baryon
~++
Q+
~0

g Q+

g~p

Ky ——0.152

1.723(17)
0.861(9)
0.000

—0.861(9)
0.861(9)
0.000

—0.861(9)
0.000

—0.861(9)
—0.861(9)

~2 ——0.154

1.681(27)
0.841(13)
0.000

—0.841(13)
0.831(13)

—0.008(1)
—0.847(11)
—0.016(3)
-0.854(10)

e3 = 0.156

1.636(55)
0.818(27)
0.000

—0.818(27)
0.796(28)

—0.017(5)
—0.831(19)
—0.036(8)
—0.846(12)

~,„=0.1598(2)

1.562(80)
0.781(40)
0.000

—0.781(40)
0.743(40)

—0.032(8)
—0.805(28)
-0.065(14)
—0.832(16)
—0.861(9)
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FIG. 7. Extrapolations of the electric charge distributions
of quarks within the octet Z+ baryon. The radius of the s-
quark distribution decreases as the u quarks become lighter.

FIG. 8. Extrapolations of the electric charge distributions
of quarks within the decuplet Z'+ baryon. The radius of the
s-quark distribution is largely unaffected by changes in the
u-quark mass.

units (LU) for the octet Z+ and the decuplet Z'+ respec-
tively.

In both cases, the radius of the u-quark distribution
increases as the u quark becomes lighter (smaller z i),
as expected. However there is a difFerence in the behav-
ior of the s-quark distributions in the octet E+ and the
decuplet Z'+. In the case of octet Z+, there is a small,
but significant, trend for the s-quark distribution radius
to decrease as the u quarks become lighter [36]. This ef-
fect was understood as a shifting of the center of mass of
the u-s system towards the strange quark which becomes
relatively heavier as the u quarks become lighter. In con-
trast, the s-quark distribution radius in the decuplet Z'+
has little dependence on the u-quark mass.

This difference between octet and decuplet behavior
has a natural explanation in the hyperfine interaction
term of the one-gluon-exchange potential. The hyperfine
force is repulsive for quarks interacting in spin-triplet
states. The strength of the interaction increases with
decreasing u quark mass and provides a mechanism to
counteract the center-of-mass e8ect.

Lattice results for the neutron electric form factor con-
firm a repulsive force between quarks with their spins
aligned. Furthermore, the magnetic form factors indi-
cate that in the octet Z+ (decuplet Z'+), the singly rep-
resented s quark has, on average, its spin antialigned
(aligned) with that of the doubly represented u quarks.
Hence the spin alignments of u and s quarks seen in the
lattice results are in qualitative agreement with those an-
ticipated from SU(6)-spin-fiavor symmetry. Note how-

ever, the lattice dynamics do not impose this symmetry.
The quark contributions to octet baryon magnetic mo-
ments differ significantly from the SU(6) predictions.

Figure 9 shows charge distribution radii for quarks of
unit charge in decuplet baryons. The analogous graph
for octet baryons is indicated in Fig. 10. It should be
noted that although the uncertainty regions of the radii
for different quarks overlap it does not necessarily mean
that the u-quark distribution radius in n, for example,
may be larger than the u-quark radius in =0. The un-
certainties are highly correlated between the two results
and a calculation of the difference of the radii indicates
u= is larger by 0.50+0'&s LU. Other octet baryon quark
pairs such as ug —u„differ from zero by at least one stan-
dard deviation. In the octet, therefore, some nontrivial
baryon dependence of the quark distributions does occur.
In contrast, significant baryon dependence of the quark
distributions in decuplet baryons is not observed. The
lattice results are summarized in Table V.

Figure 11 displays ratios of octet and decuplet quark
charge distribution radii. With the exception of the
singly represented octet quarks u„and sz which showed
some baryon dependence in their charge distributions,
the remaining quark distribution radii are unaffected by
differences between octet and decuplet spin-fiavor sym-
metry.

Figure 11 also gives an understanding as to why the
proton and 6+ have similar charge radii. Naively one
might expect b,+ to be larger due to additional spin-
dependent repulsion between the quarks. However, the

TABLE III. Electric charge form factors for single quarks of unit charge.

Quark my ——0.152

0.861(9)
0.861(9)
0.861(9)
0.861(9)
0.861(9)
0.861(9)

eq = 0.154

0.841(13)
0.839(12)
0.863(9)
0.838(12)
0.862(9)

e3 = 0.156

0.818(27)
0.814(24)
0.866(13)
0.810(19)
0.863(9)

tc„=0.1598(2)

0.781(40)
0.774(34)
0.869(18)
0.767(27)
0.865(11)
0.861(9)
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TABLE IV. Baryon rms charge radii normalized to unit charge in lattice units ( r /a )
~/2

Baryon
Q++
~+

gy+

0

~y ——0.152

3.71(13)
3.71(13)
3.71(13)
3.71(13)
3.71(13)
3.71(13)
3.71(13)

]c2 = 0.154

4.02(19)
4.02(19)
4.02(19)
4.15(19)
3.92(16)
3.81(14)

K3 = 0.156

4.34(39)
4.34(39)
4.34(39)
4.63(38)
4.16(28)
3.94(18)

~„=0.1598(2)

4.90(57)
4.90(57)
4.90(57)
5.42(56)
4.54(41)
4.15(23)
3.71(13)

dominant effect of the additional spin repulsion is to en-
hance the charge distribution radius of the d quark in
6+ relative to that in p. This counteracts any possible
enhancement of u-quark radii in b,+.

Some attention has been given to model calculations of
the 0 charge radius. The model predictions vary over
a wide range. Figure 12 illustrates results for the 0 /p
charge radius ratio. The results include the lattice (Latt)
results of this analysis, a calculation based on the rela
tivized quark model (QM) of Ref. [37), MIT bag (MIT)
and cloudy bag (CB) models [38], and a bound state ap-
proach Skyrme (Skyr) model calculation [39]. Only the
relativized quark model calculation agrees with the lat-
tice results.

The electric form factors calculated at q 0.4 GeV
for neutral decuplet baryons are illustrated in Fig. 13.
Neutral octet baryons are also given for reference. For
the hyperons the form factors are dominated by the net
charge of the light quarks. Octet and decuplet hyper-
ons display similar behavior. For ho the symmetric spin
state of the quarks causes the form factor to vanish. This
contrasts the neutron where the octet-spin asymmetry of
the three quarks gives rise to a negative squared charge
radius.

With knowledge of quark distribution radii, the charge
radii of neutral baryons may be calculated as in rz =
Q. ..„e;rsfor =o. Table VI summarizes the results.
The lattice result for the squared charge radius of the

neutron rz /rz = —0.11+a'1& encompasses the experimen-
tal value [40, 41] of —0.167(7).

D. Magnetic-dipole form factors

gM1(o) gZ(0) (3.3)
gM1(q') gZ(q')

'

and similarly for the light quarks, such that the magnet1c
moment of a hyperon is given by

gM1( ) gM1( ) + gM1( )& (3.4)

where l labels the light quarks. For b, baryons it is not

Our calculation of magnetic-dipole form factors is done
at the smallest finite value of qz available on our lattice.
Table VII summarizes the form factors in units of nat-
ural magnetons (e/2M~) where the mass of the baryon
appears in the definition of the magneton. The magnetic
moment y, is defined at q = 0 as gM1(0) = p/(e/2M~)
snd therefore we must scale our results from gM1(q )
to gM1(0). Lattice extrapolations in q to q = 0 suf-

fer from large statistical errors. To make contact with
the experimental magnetic moments, we assume equal
scaling of electric and magnetic form factors as in the
octet baryon analysis and as supported by experimental
measurements of nucleon form factors. In hyperons, the
strange and light quark sectors are scaled separately by

:~5
a$

A4
ttQ

g 3
A

AB
C5

N1
CY

S ~ s

P////Q pgyyggg ruu~uw

:~5
C
K4
40

C~
A

2
4
N1

CX

0

n d

s SA

FIG. 9. Charge distribution radii of unit charge quarks
within decuplet bar yons. Symmetric isospin symmetry
equates u- and d-quark properties in decuplet baryons. No

significant baryon dependence of the charge radii is seen.

FIG. 10. Charge distribution radii of unit charge quarks
within octet baryons. Center-of-mass shifts and spin-
dependent forces give rise to significant baryon dependence
of the charge radii.
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FIG. 12. The 0 /p charge radius ratio. The model re-
sults include a calculation based on a relativized quark model

(QM), MIT bag (MIT) and cloudy bag (CB) models, and a
bound state approach Skyrme (Skyr) model. References may
be found in the text.

necessary to separate the u- and d-quark sectors due
to the SU(2)-isospin symmetry of the correlation func-
tions. Table VIII gives the magnetic-dipole form factors
for quarks of unit charge in units of natural magnetons.
Combined with the results of Table III the magnetic mo-
ments may be calculated.

In the octet baryon analysis it was found that the
magnitudes of the lattice results for magnetic moments
were consistently smaller than the experimental measure-
ments. It was argued that at P = 5.9 some deviations
from asymptotic scaling may occur. A recent analysis
[10] determines nucleon form factors at P = 6.0 on a cu-
bic lattice with physical spatial dimensions roughly equal
to our smaller y and z dimensions. Some improvement is
seen in the magnitudes of the magnetic moments which
are still 10-15% low compared with experiment. Chiral
dressings of the nucleon may cause our linear extrapo-
lation of the magnetic moments in I/r. to underestimate
the magnetic moments in the physical regime. Finite vol-
ume effects may also give rise to the underestimation of
the magnetic moments as the baryon is restricted by its
periodic images. The proton rms electric charge radius
at es indicates the proton largely fills the lattice in our
smaller y and z spatial dimensions. Nonquenched correc-
tions may also provide additional contributions [42].

To reduce the effects of these uncertainties, ratios of
the lattice results to the lattice proton result are used
when making comparisons with experimental rneasure-
ments or model calculations. Table IX reports the ex-
trapolated decuplet baryon magnetic moments in units p„=Ap,„—Bp,d, , (3.5)

of nuclear magnetons (p~), ratios of decuplet baryon
moments, and the proton magnetic moment and ratios
scaled to reproduce the proton magnetic moment. These
scaled ratios are illustrated in Fig. 14. The expected
qualitative behavior of mass dependence is displayed
here. For example, as d quarks are replaced by s quarks
in going from 6 to Z' through to 0, the magnetic
moments of the negatively charged hyperons decrease in

magnitude. As in the case of the electric charge form
factors of neutral baryons, the magnetic moments are
dominated by the net charges of the light quarks. SU(2)-
isospin symmetry causes the b,o moment to vanish.

The simple quark model formula for the magnetic mo-
ment of a decuplet baryon is simply given by the sum
of the intrinsic moments of the quarks composing the
baryon. Results using intrinsic moments determined by
the p, n, and A moments [33] are also indicated in Fig.
14 by horizontal dashed lines. The agreement is striking
and suggests a baryon independence of the lattice effec-
tive quark moments.

Figure 15 displays the lattice effective quark moments
for quarks of unit charge within decuplet baryons. Ef-
fective moments have been defined by equating the lat-
tice quark sector contributions to the same sector of the
SU(6)-magnetic-moment formula derived from SU(6)-
spin-favor symmetry wave functions. For example,
SU(6)-spin-fiavor symmetry gives the simple quark model
formula

TABLE V. rms charge radii for single quarks of unit charge in lattice units ( r /a )

Quark ey ——0.152

3.71(13)
3.71(13)
3.71(13)
3.71(ls)
3.71(13)
3.71(13)

peg
——0.154

4.02(19)
4.03(18)
3.68(14)
4.05(17)
3.70(13)

e3 ——0.156

4.34(39)
4.40(33)
3.65(20)
4.44(27)
3.68(14)

yc„=0.1598(2)

4.90(57)
4.99(48)
3.60(28)
5.07(38)
3.66(16)
3.71(13)
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TABLE VI. Neutral baryon rms charge radii in units of
~/2

the proton radius ( ~r /r„~ )

0.10

0.05
RadiusBaryon

0.00 0.34(22)
0.39(8)
0.44(4)
0.53(10)
0.39(4)
0.57(9)
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FIG. 13. Electric charge form factors of neutral baryons
calculated at q 0.4 GeV. The light quark charges dominate
the hyperon form factors while decuplet spin symmetry causes
the 4 form factor to vanish.
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FIG. 14. Ratios of the lattice baryon magnetic moments
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FIG. 16. Effective quark moments in octet baryons. Sig-

nificant baryon dependence of the quark moments is illus-

trated.

FIG. 15. Effective quark moments in decuplet baryons.
Approximate baryon independence of the quark moments is
displayed.

for the magnetic moment of the proton, where A = 4/3
and B = 1/3. The effective moment of the lattice u quark
in the proton is defined by equating the lattice u-quark
sector contribution to sp„,the corresponding u-quark
sector contribution of the simple quark model. Similarly,
the lattice d-quark sector contribution is equated with
—syg in defining the effective d-quark moment. In b,+
the lattice u-quark sector is equated with 2y,„and the
d-quark sector equals the efFective d-quark moment. Nu-
merical values for efFective quark moments are summa-
rized in Table X for both octet and decuplet baryons.

Approximate baryon independence of decuplet baryon
effective quark moments is displayed in Fig. 15. Closer
examination of efFective u-quark magnetic moment ratios
does reveal some small baryon dependence of the quark
moments. These results are summarized in Table XI.
The quenching of effective quark moments in hyperons is
largely due to the baryon mass setting the scale at which
quarks contribute to the baryon moment [42]. These re-
sults are in sharp contrast to the enormous baryon de-
pendence of the efFective quark moments seen in octet
baryons as illustrated in Fig. 16.

It is instructive to consider ratios of the octet baryon
effective quark moments with their decuplet partners.
These ratios are illustrated in Fig. 17. In the simple
quark model all of these ratios are equal to 1. Dramatic
effects are seen for the singly represented quarks u„,sz,
and u- where deviations from SU(6)-octet wave functions
are large in the lattice results. All quarks show a signifi-



46 DECUPLET BARYON STRUCTURE FROM LA'l l'ICE @CD 3079

TABLE VII. Baryon magnetic-dipole (Ml) form factors in units of natural magnetons

(pa = e/2M').

Baryon

Q++
Q+
~p

PQ+

esp

]cy ——0.152

4.48(30)
2.24(15)
0.00

—2.24(15)
2.24(15)
0.00

—2.24(15)
0.00

—2.24(15)
—2.24(15)

eq ——0.154

4.48(42)
2.24(21)
0.00

—2.24(21)
2.36(21)
0.058(13)

—2.25(19)
0.119(23)

—2.25(17)

~3 ——0.156

4.45(60)
2.22(30)
0.00

—2.22(30)
2.47(so)
0.119(45)

—2.24(24)
0.235(68)

—2.24(19)

e„=0.1598(2)

4.44(87)
2.22(44)
0.00

—2.22(44)
2.69(44)
0.224(75)

-2.24(32)
0.45(12)

—2.24(23)
—2.24(15)

cant baryon dependence with the exception of u„/un and
possibly up/up. . This rich octet/decuplet baryon depen-
dence in the effective quark moments contrasts that of
the quark charge distribution radii as illustrated in the
ratios of Fig. 11.

While lattice octet baryon moments difFer significantly
from the predictions of SU(6), it was not possible to de-
termine how each of the coefficients A = 4/3 and B = 1/3
of (3.5) are altered. Using ratios of the u- and d-quark
sector contributions to p or n and isospin symmetry, the
octet baryon analysis indicates

+0 050'13 —o'iz + (3 6)

where 1/4 is the SU(6) prediction. The decuplet baryon
results indicate the efFective moments and charge radii
of doubly represented quarks are largely unchanged, sug-
gesting A 4/3 and indicating B is better approximated
by 1/6 than the standard SU(6) value of 1/3.

Considerable effort has gone into model calculations of
the b,++ and 0 magnetic moments. Here we collect to-
gether a handful of these calculations for comparison with
our lattice results. Figure 18 displays ratios of b,++/p
magnetic moments. The model calculations include re-
sults from the simple quark model [33] (QM), cloudy bag
[43] (CB), Skyrme [44] (Skyr), Bethe-Salpeter [45] (BS),
and /CD sum rule [46] (SR) analyses. The experimen-
tal (Expt) result is from a recent pion bremsstrahlung
analysis [47] and therefore has some model dependence.
Earlier papers reported larger values [48, 49] in better
agreement with our lattice result.

Figure 19 displays ratios of 0 /p magnetic moments.

The labels are as in Fig. 18 with additions of an additive
quark model [50] in which effective masses (EM) of the
quarks are used to estimate the intrinsic quark moments
and a calculation in which relativistic corrections (RC)
to baryon magnetic moments are considered [51]. Ex-
perimental (Expt) results are from a recent investigation
where A hyperons are produced by a polarized neutral
beam spin transfer reaction [52].

In the simple quark model the ratio of 0 /Ao mag-
netic moments is 3. The lattice results suggest that spin-
dependent forces give rise to a larger strange quark mo-
ment in 0 relative to that in Ao as indicated in Fig. 17.
The lattice ratio of 0 /Ae magnetic moments is 3.6+e's
suggesting an enhancement over the simple quark model
ratio.

To complete the discussion of decuplet baryon
magnetic-dipole properties Fig. 20 summarizes our cal-
culatiori of magnetic radii normalized by the magnetic
moment as in g(rz)/gMq(0) (see Table XII). The mag-
netic radii follow a similar pattern to that of the charge
radii.

E. Electric-quadrupole form factors

The results of the higher-order multipole moments
must be regarded as preliminary due to the lack of sym-
metry in the spatial dimensions of our lattice. The elon-
gated z dimension coupled with possible finite volume
restrictions may induce deformations from spherical sym-
metry. On the other hand, it is useful to examine these
quantities with a view toward determining the feasibility
of extracting E2 moments in future calculations.

TABLE VIII. Magnetic-dipole (Ml) form factors for single quarks of unit charge in units of
natural magnetons (pe = e/2M').

Quark

$ge

ry = 0.152

2.24(15)
2.24(15)
2.24(15)
2.24(15)
2.24(15)
2.24(15)

e2 ——0.154

2.24(21)
2.30(20)
2.13(17)
2.36(19)
2.19(16)

e3 = 0.156

2.22(30)
2.36(27)
2.00(20)
2.48(24)
2.12(17)

~„=0.1598(2)

2.22(44)
2.46(38)
1.79(25)
2.69(32)
2.02(19)
2.24(15)
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TABLE IX. Lattice results for decuplet baryon magnetic
moments in units of nuclear msgnetons (p~), ratios of de-
cuplet baryon moments to the proton magnetic moment and
ratios scaled to reproduce the proton magnetic moment.

Baryon

g++
g+
~Q

g++
gsQ

Magnetic moment

(par)

4.91(61)
2.46(31)
0.00

—2.46(31)
2.55(26)
O.27(5)

-2.O2(18)
0.46(7)

—1.68(12)
—1.40(10)

Ratio
(v/~. )

2.18(32)
1.09(16)
0.00

—1.09(16)
1.13(14)
0.118(24)

—0.90(10)
0.206(35)

—0.744(85)
-0.621(78)

Scaled

(v~)
6.09(88)
3.05(44)
0.00

—3.05(44)
3.16(40)
0.329(67)

—2.50(29)
0.58(10)

-2.08(24)
—1.73(22)

The E2 form factor is particularly interesting since it
provides a glimpse into the shape of the baryon ground
state. A small E2 form factor would cast serious doubt
on Skyrme models where the hedgehog Skyrmion has an
inherently large quadrupole moment. Our focus here is
on estimating an upper bound for the E2 form factor.
Tables XIII and XIV summarize the lattice results for
E2 form factors.

The negative sign of the central values for positively
charged baryons is consistent with the deformation one
might expect from our elongated lattice. Equation
(2.23b) isolates the spin matrix element

(-s Z, -s)3 I (2) 3
2 2

and therefore determines the asymmetry of the ground-
state wave function having some overlap with the spher-
ical harmonic Yqo(8) where 8 is measured relative to the
spin quantization axis z. A negative E2 moment corre-
sponds to an oblate shape which may be due to some
broadening of the wave function in the longer z direction
where overlap with periodic images is minimized.

In nonrelativistic models where angular momentum l

and spin s are constants of the motion, it is useful to
consider angular momentum selection rules. Consider
the transition

1.2

~ 1.0
0

o.s

0.6

0.4

0.2
O

~ 0.0

0
O

&P/g+&7ty~oQ~g~'Q

~ 3.5
++

~ s.o—

2.5
C4

2.0

YEPi

1.0

0.5

0
Expt Latt Q M C B Skyr B S S R

FIG. 18. Comparison of the lattice 6++/p magnetic mo-
ment ratio (Lstt) with model calculations snd an experimen-
tal result (Expt) having some model dependence. The model
calculations sre the simple quark model (QM), cloudy bsg
(CB), Skyrme (Skyr), Bethe-Salpeter (BS), snd QCD sum
rules (SR). References are given in the text.

FIG. 17. Ratios of octet baryon effective quark moments
with their decuplet partners. Octet/decuplet dependence is
seen throughout the qusrks with the exception of u„/u~ snd
possibly ur. /ug. .

(j'=l'+s' j~ j=t+s), (3.7)

Octet baryons
Quark Effective moment

2.41(27)
1.10(74)
2.12(23)
0.59(37)
1.53(27)
1.24(10)
1.25(15)

Decuplet baryons
Quark Eff'ective moment

Q,~ 2.46(31)
2.46(31)

Q,~e 2.29(22)
1.49(13)

Q ~~ 2.14(18)
1.45(10)

Sn 1.40(10)

TABLE X. Effective quark magnetic moments for quarks
of unit charge in units of nuclear msgnetons (p~). o —1.0

—1.2

Expt Latt QM CB Skyr EM RC SR

FIG. 19. Comparison of the lattice A /p magnetic mo-

ment ratio (Lstt) with model calculations snd experiment
(Expt). The model calculations sre as in Fig. 18 with ad-
ditions of an additive quark model based on effective quark
masses (EM) snd s calculation including relativistic correc-
tions (RC). References are given in the text.
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where j~ is the total angular momentum of the photon
and determines the multipole character of the transition.
Total angular momentum selection rules require j+j~ =
j' and therefore

1.4

1.2

1.0

lj - j'I «j, & ~+i' (3.8)

[q && Ql
=

15
&& (q)

(g) 8'

Eq. (2.16a) may be written as

(-,— j (o) —,-)0
2'2 2'2

(3.10)

= G@p(q ) + -r —Yqp(q) G@s(q ). (3.11)
3 5

Model approaches determine current matrix elements via
the Fourier transform

Combined with parity conservation, (3.8) indicates there
are at most four multipole form factors available in spin-

3/2 to spin-3/2 transitions. Electric form factors corre-
spond to s = s'. This yields the orbital angular momen-
tum selection rule

il —l'[ & j, & t + l', (3 9)

indicating the E2 form factor vanishes in nonrelativistic
models unless some configuration mixing is included in

the baryon ground state.
The relationship between our definition of the E2

form factor given in (2.16a) and that usually calculated
in models may be easily established by writing (2.16a)
using the spherical harmonics in the Breit frame with
s = s' = j = 3/2. Noting that

0.0

FEG. 20. Magnetic radii of decuplet baryons in units of the
proton magnetic radius. The magnetic radii follow a similar
pattern to that of the charge radii.

gZ2 —Is, —
( r2 ) 25

(3.15)

where ( r2 ) is the isovector charge radius and Is is the
3-component of isospin. The analogous lattice ratio is

quadrupole moments. The factor M~ indicates that
ga2(0) gives the E2 form factor in units of (e/Mz~).

A chiral quark model calculation [53] gives g@2(0) =
—0.30 fm~ for b,++ which lies 2cr outside our bound of
—0.03(13) fm2. However it may be more appropriate
to compare the dimensionless ratio of the E2 form fac-
tor and the squared charge radius. The generic Skyrme
model result is [53, 54)

(-', — j'(0) —', - )=2'2 2'2
(r2) g

'
2& (ri)~+ (3.16)

Using the small [q[ spherical harmonic expansion

(3.12)

00e"' = «) .
( )

„q'r' ) . &i~(~) &i~(q)
L=p m=-L

(3.13)

and choosing q = qz, it is straightforward to show

The isospin dependence of the lattice results is propor-
tional to the baryon charge which is not the case for the
Skyrme model. For b,++ the lattice ratio is —0.08(30)
which encompasses the Skyrme model ratio of —0.24.
Future high statistics lattice calculations on a cubic lat-
tice should be able to confirm or reject the hedgehog
Skyrmion description of baryons.

F. Magnetic-octupole form factors

g@Q(0) = Mz f d re/(r) (3z —r ) Q(r), (3.14)
The magnetic-octupole form factors are large for heavy

quark masses and appear to decrease as the quark mass
becomes lighter. In the physical regime the uncertainties

where 3z~ —r2 is the standard operator used for

TABLE XI. ERective u- and s-quark magnetic moment
ratios.

,8,s

Quark ratio

+z
Q~~+ ++4

Q~»

S=*/Sg~

SA/8E~

Lattice result

0.93(5)
0.94(3)
0.87(7)
0.97(5)
0.97(3)
0.94(7)

FIG. 21. A skeleton diagram of a disconnected quark loop
contributing to the magnetic moment of a baryon. The di-
agram may be dressed with an arbitrary number of gluons.
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TABLE XII. Baryon magnetic radii ( r~ ) / (QM&a~) in lattice units.

Baryon Icy = 0.152

3.71(13)
3.71(13)
3.71(13)
3.71(13)
3.71(13)
3.71(13)
3.71(13)

Kg ——0.154

4.02(19)
4.02(19)
4.02(19)
4.13(19)
3.93(17)
3.82(14)

eq ——0.156

4.34(39)
4.34(39)
4.34(39)
4.58(38)
4.19(29)
3.98(18)

e„=0.1598(2)

4.90(57)
4.90(57)
4.90(57)
5.34(56)
4.59(41)
4.22(23)
3.71(13)

TABLE XIII. Baryon electric-quadrupole (E2) form factors in units of (e/Mz).

Baryon

g++
Q+
~p

gy+
gyp

r yp

icy = 0.152

—0.6(8)
—0.3(4)

0.0
0.3(4)

—0.3(4)
0.00
0.3(4)
0.00
0.3(4)
0.3(4)

eq = 0.154

—0.8(14)
—0.4(7)

0.0
0.4(7)

—0.3(7)
0.05(7)
0.4(6)
0.07(12)
0.3(5)

eq ——0.156
—0.7(28)
—0.4(14)

0.0
0.4(14)

—0.1(13)
0.15(23)
0.4(9)
0.15(31)
0.4(6)

~„=0.1598(2)
—1.0(39)
—0.5(19)

0.0
0.5(19)

-0.1(19)
0.26(36)
0.5(13)
0.29(54)
0.4(8)
0.3(4)

TABLE XIV. Electric-quadrupole (E2) form factors for single quarks of unit charge in units of
(e/M~).

Quark Ky = 0.152

—0.3(4)
—0.3(4)
-o.s(4)
—0.3(4)
—0.3(4)
—0.3(4)

rcq ——0.154

-0.4(7)
—0.3(6)
—0.4(5)
-0.3(6)
-0.4(4)

Kg ——0.156

—0.4(14)
-o.s(11)
—0.7(6)
-0.2(9)
—0.5(5)

z„=0.1598(2)
—0.5(19)
-0.3(16)
—1.0(8)
—0.2(12)
—0.6(6)
—o.s(4)

TABLE XV. Baryon magnetic-octupole (M3) form factors in units of (e/2M&).

Baryon

~++
~+
~p

g sc+

esp

ey = 0.152

113+30
56+15
0+0

—56+15
56+15
0+0

—56+15
0+0

—56+15
—56+15

eq = 0.154

99+51
50+25
0+0

—50+25
54+27

0.8+2.9
—52+22

2+5
—54+19
—56+15

eq ——0.156

80+73
40+37
0+0

—40+37
48+48

—0.4+7.7
—49+34

2+14
—54+25
—56+15

~„=0.1598(2)

55+112
27+56
0+0

—27+56
43+72

0.3+1.4
—41+49

6+24
—51+32
—56+15
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TABLE XVI. Magnetic-octupole (M3) form factors for single quarks of unit charge in units of
(e/2M').

Quark ]cy ——0.152

56+15
56+15
56+15
56+15
56+15
56+15

e2 ——0.154

50+25
53+24
51+1?
5?+23
53+16
56+15

e3 = 0.156

40+37
48+41
49+22
56+37
52+19
56+15

~„=0.1598(2)

27+56
42+61
41+28
57+55
48+22
56+15

( )
= 1.4(4), (3.18)

indicating a relatively large M3 moment. This ratio is
much larger than one might expect from our discussion
of the E2 form factor and angular momentum selection
rules. For 0 the ratio is

( )
——0.02(3) . (3.19)

However, in fully relativistic calculations angular momen-
tum and spin on their own are no longer good quantum
numbers. Gluons may also carry angular momentum al-
lowing radical changes from standard SU(6)-spin-fiavor
symmetry as seen in the magnetic properties of octet
baryons and evidenced in the European Muon Collabo-
ration (EMC) polarized muon-proton scattering exper-
iment [55]. Furthermore, lattice @CD is a relativistic
theory with particle creation and annihilation allowing
some overlap with mesonic dressings of baryons even in
the quenched approximation.

This pattern of small electric effects and large magnetic
effects is reminiscent of the electromagnetic properties of
octet baryons. The lattice results show a spin depen-
dence in the quark distributions that accounts for the
negative squared charge radius of the neutron by slightly
increasing the d-quark distribution radius relative to the

are sufficiently large to make the M3 moments consistent
with zero with the exceptions of:-' and 0 hyperons.
Tables XV and XVI summarize the lattice results for
decuplet baryons and their quark contributions respec-
tively.

Angular momentum selection rules for M3 moments
require s+ 1 = s limiting nonvanishing transitions to

(3.17)

Once again M3 transitions require nonzero orbital an-
gular momentum admixtures in the ground-state wave
function. Connection to model calculations of M3 mo-
ments may be made from our definition of the M3 mo-
ment in (2.16b) in a manner analogous to that for the
E2 moment. M3 moments in hedgehog models [53] are
I/N, suppressed relative to Ml moments and cannot be
determined using conventional semiclassical methods.

The dimensionless ratio of interest for M3 moments
relates the M3 form factor to the Ml form factor and
the squared charge radius. For A the ratio is

u-quark radius. However, spin dependence in the mag-
netic properties is huge. For example, Fig. 16 shows that
the efFective magnetic moment of a u quark in the neu-
tron is roughly half that of the d quark when normalized
to unit charge.

IV. OVERVIEW AND OUTLOOK

We have presented a fully relativistic formalism for iso-
lating and extracting the four electromagnetic multipole
form factors of spin-3/2 systems in lattice field theory.
Results of the first lattice @CD analysis of SU(3)-fiavor
decuplet baryons have been systematically examined to
reveal new aspects of the underlying nonperturbative
quark-gluon dynamics.

The EO and Ml correlation functions for decuplet
baryons show a broad plateau region allowing a reliable
extraction of the electromagnetic form factors. Statis-
tical uncertainties are similar to that seen in our octet
baryon analysis.

The qualitative mass dependence of decuplet baryon
charge radii follows the anticipated pattern produced by
a more localized strange quark distribution. The electric
form factors of neutral baryons are dominated by the net
charge of the light quarks as in the octet-baryon results.
Model calculations of the 0 charge radius vary widely
and the lattice results favor a calculation based on a rel-
ativized quark model [37] over the other bag and Skyrme
models considered.

Closer examination of the baryon charge radii reveals
a behavior in the quark charge distribution radii consis-
tent with a spin-dependent force having an inverse re-
lationship with the quark mass. This behavior is what
one expects from the hyperfine interaction term of the
one-gluon-exchange potential. The spin-dependent force
counteracts center-of-mass shifts and suppresses baryon
dependence of the quark charge distribution radii.

The center-of-mass shifts that give rise to an enhance-
ment of the u-quark magnetic moment in the octet =
relative to that in the neutron are offset by this repulsive
force in decuplet baryons. Variation in the quark effective
magnetic moments from baryon to baryon is minimal for
decuplet baryons. The residual effect is largely due to the
baryon mass setting the scale at which quarks contribute
to the baryon magnetic moment.

The symmetric role of quarks in decuplet baryons con-
trasts that in octet baryons. The role of a quark in an
octet baryon correlation function is different depending
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on whether the quark is singly or doubly represented.
This difFerence, which cannot arise in the decuplet case,
causes large variations in the electromagnetic properties
of quarks in octet baryons.

The lattice predictions of decuplet baryon magnetic
moments agree with the simplest of quark models to a
remarkable extent. This is in sharp contrast to the octet
baryon analysis and is due to an approximate baryon in-
dependence of effective quark magnetic moments in decu-
plet baryons. The lattice prediction of the b,++/p mag-
netic moment ratio is large compared to a recent exper-
imental analysis [47] but compares better with previous
analyses. Our 0 magnetic moment agrees with experi-
ment [52] and prefers the simple quark model result and
a calculation based on efFective quark masses [50] over
the other four model calculations considered.

The E2 and M3 form factors depend on subtle differ-
ences in the correlation function ratios and as a result
have larger statistical uncertainties. The M3 form fac-
tors are finite at all the values of z considered. The E2
form factor is at the threshold of confirming or rejecting
the hedgehog Skyrmion description of baryons. A future
high statistics lattice calculation on a cubic lattice will
provide considerable insight.

For electromagnetic form factors to provide a reliable
test of /CD, one must understand and eliminate sys-
tematic errors. While the results of chiral perturbation
theory may be used to assess the magnitude of possible
systematic errors in the lattice extrapolation procedure
[35], there can be no substitute to actual calculations
probing regimes of lighter quark mass.

A calculation of electromagnetic properties in full /CD
would also assist in understanding systematic errors.
However, to calculate in full /CD, the contributions of
disconnected quark loops as illustrated in Fig. 21 must
also be understood. These loop contributions may play a
key role in removing the discrepancies between lattice
and experimental violations of magnetic moment sum
rules [42]. Closed quark loop contributions may be esti-
mated even in the quenched approximation and present
a major challenge for future lattice /CD calculations.
Such a calculation will provide insight into important
questions such as the strangeness content of the proton
and the general role played by sea quarks in hadrons.

The examination of decuplet baryon structure through
the lattice field theory approach to /CD has given a new
and more detailed understanding of nonperturbative in-
teractions. The underlying theme of the results presented
here involves a cancellation of spin-dependent forces and
center-of-mass effects, which results in a structure that
is consistent with nondynamical models such as the sim-

plest quark model based on SU(6)-spin-flavor symmetry
broken only by the quark masses.

A future investigation [14] will address Np ~ 6 tran-
sitions where there have been significant experimental
effort to measure the M1 and E2 transition moments.
This, of course, has been accompanied by a plethora of
model calculations for these quantities. The lattice re-
sults will be instrumental in assessing the reliability of
the model analyses.

The odd-parity spin-3/2 baryon octet also offers an in-
teresting forum for checking model predictions. There
has not bmn a lattice investigation of these states. The
N(1520) is the lowest-lying baryon with I(JP) = 2(ss).
It is expected to be stable with our present lattice pa-
rameters and therefore is accessible to lattice calcula-
tions. The neighboring N2 (1535) is a source of pos-
sible contamination in the j = 3/2 interpolating field,
and therefore angular momentum projection operators
may be required [56]. Calculations of the electromag-

netic properties of N2 (1520) may be completely differ-
ent from model expectations if gluons carry a significant
fraction of the angular momentum usually attributed to
quark degrees of freedom alone. With the anticipated
experimental program at the Continuous Electron Beam
Accelerator Facility (CEBAF), a lattice @CD analysis of

N& p —+ N& transition moments is also of interest.
It is very encouraging that lattice /CD evaluations

of hadronic electromagnetic form factors give, for exam-
ple, a pattern of magnetic moments which is as good or
better than hadronic models with adjustable parameters,
which in some cases have been tuned to fit magnetic mo-
ments. With further study to understand and eliminate
systematic errors, we believe the study of hadron electro-
magnetic form factors will prove ultimately to be one of
the best quantitative testing grounds for nonperturbative
@CD.
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