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Logarithmic pion-mass singularities in the radiative corrections to v = m v,
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We study the logarithmic pion-mass singularities in the radiative corrections, to order o., to the decay
~~vrv . We show that such contributions are independent of strong-interaction effects. We verify that
the total decay rate is in agreement with the Kinoshita-Lee-Nauenberg theorem on the cancellation of
mass singularities.

PACS number(s): 13.40.Ks, 13.35.+s

I. INTRODUCTION II. BREMSSTRAHLUNG CORRECTIONS

The decay r~m. v, (r z for short) can be viewed as the
cross of the decays m~ev„pv„(vr12 for short). One
could expect, then, that the results of former calculations
of the radiative corrections to m&2 almost apply mutatis
rnutandis to ~ 2 through analytic continuation. Effects
due to strong interaction are present in both decays. A
way to handle these effects is by means of the modified
pion decay constant, which contains some contributions
coming from the pion structure. For ~I2 this is done in
Refs. [1,2], and for r 2 in Ref. [3]. There it is shown that
the largest contributions come from the logarithmic
lepton-mass singularities (LMS's) in(m&/m ) in m&2, and
from the logarithmic pion-mass singularities (PMS s)
In (m /m, ) in r 2 Marcian. o and Sirlin [4] have shown
that the coefficient of the LMS is independent of strong
interactions. Then, one is motivated to look for the
analogous result in ~„2. In this paper we show that the
coefficient of the PMS terms in the radiative corrections,
to first order in the fine-structure constant, to the ~„2de-

cay is also independent of strong interactions. However,
the proof requires an extra ingredient than in the mt2

case: we have to assume the fulfillment of the PCAC
(partial conservation of axial-vector current) hypothesis
in order to eliminate two pion form factors in the virtual
corrections not present in the bremsstrahlung part.

The paper is constructed as follows. In Sec. II, we

compute the structure-dependent PMS in the brernsstrah-
lung corrections, since the procedure serves as a guide
when we treat the virtual corrections. Section III is de-
voted to computing the structure-dependent PMS in the
virtual corrections. In Sec. IV, we combine both results
in order to establish the desired result, and discuss the in-
dependent model PMS within the context of the
Kinoshita-Lee-Nauenberg I'KLN) theorem on the cancel-
lation of mass singularities [5]. Following Ref. [3], we
work within the general framework of quantum electro-
dynarnics and the V —A theory.

Tg (p, k)=H, g" +Hzk"p +H,p"p +H4p"k

+H5k "k +iH6c" ~k~p, (2)

where H, =H, (k, s), with s =(p +k) . After contraction
with ez(k), the photon polarization four-vector, we can
eliminate the H4 and H5 terms in Eq. (2). Furthermore,
gauge invariance tells us that H3 =0, and H& = —H2p k.
Then, Tg (p, k) is finally written as

Tg (p, k) =H2(k "p" pkg" )+iH6e—" ~k~p . (3)

The structure-dependent contributions in the brems-
strahlung corrections come from the emission of a real
photon from any hadronic line, as depicted in Fig. l. The
total bremsstrahlung amplitude, denoted by M~, is given
by [3]

p E I e 8Gf k
Ma =Mo „+— u P(l ys)

p 0 ~ 2

eG Tg"(p, k)+ —u, y„(1 y, )—u, E)„(k)v'2 ' " '
p k

The first line in Eq. (1) corresponds to the model-
independent contributions, which we will denote by Mz.
The second line is the structure-model-dependent contri-
bution, which will be denoted by M~. The tensor
Tg (p, k) is constructed under the assumption of Lorentz
covariance in terms of form factors:
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FIG. 1. Diagram involving the strong interaction in the
brernsstrahlung correction to ~~~v, . The photon leg is at-
tached to any internal hadronic line.
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The contribution of M~ to the total transition proba-
bility arises from its interference with Mz, and its square
lMs l . First, we will consider the interference term. The
calculation can be simplified if one observes that

p„Tg(p, k)=0

and

p) Tg (p, k }=H (p k" pk—p" }

Summing over photon and lepton polarizations and in-
tegrating over the neutrino momentum, photon-pion an-
gle, and pion energy, we obtain, for the transition proba-
bility, the result

bPs = P—
() in' H~ (0 x)dx + .

21T ~ 0
(4)

where the ellipsis means that no PMS terms are discard-
ed, Po is the uncorrected decay rate, and p=m /m, .
Equation (4) tells us that only the form factor Hz gives a
PMS. The absence of contributions from H6 can be
traced back to the fact that a factor (p k) arises from the
product of H6 with the M~ amplitude, canceling the fac-
tors p k in the denominators of Mz and Mz.

Combining Eq. (4) with the independent-model brems-
strahlung contributions we obtain, for the bremsstrah-
lung corrections to the transition probability [6],

SPY =Pp 2
2 lnp+ 1

a 1+@
m' l —p2 m,

—In(1 —p )
——in'+ ——

ln(M
1 3 (M (10—7p~)
2 4 2(1—p)

+ 2(1+& ) L(1— )+ 15—21@, 1
1 f )H'(0, )d +

1 —pz 8(1—p~) 2f„0

+lH6(O, x)l ](1—x)dx+ (6)

This contribution can be analyzed analogously as in the
~&2 case. As a first approximation we can neglect the x
dependence of the two form factors, H, (O, x)=H;(0, 0),
i =1,2. Then, Eq. (6) reduces to

[lH, (0,0) l'+ lH, (0,0) l'] in@ .'4~ f' (7)

where A, is a small photon mass used to handle the in-
frared divergence.

The contribution from le l
can be similarly comput-

ed. Denoting by LPGA the corresponding transition proba-
bility, the result is

a j.'a= —Po, lnp
2m' f~

X H20X 2

where the tensor TP (p, k) contains all the structure
dependence (the Born term has been separated out and it
was included in the virtual model-independent ampli-
tude). The resulting expression for TIl (p, k) is exactly
the same as in Eq. (2). Since terms k do not contribute
to the PMS, we can replace H, (k, s) with H;(O, s),
s =(p +k) . Unlike the n.

&~ case, we have to consider the
contribution of all six form factors. However, we have to
reduce TP to just two form factors Hz and H6 as in Eq.
(3). To this end we proceed as follows. The tensor
TP (p, k) is the Fourier transform

TP =f d x (m(p) T [J(r)(x)J~( )(0)]l0) e (9)

where J~ ] and J~[
~

are the electromagnetic and weak ha-
dronic currents, respectively. By using translation invari-
ance, Eq. (9) can also be written in the form

T(('."(p,k)= f d x(~ p(l)T[J ()(0)JI' )(x)]IO&e'"

Taking the values lHzl =0.011, H6=0. 014, and

f = 131.14 MeV, from Ref. [7], we estimate that
b,Pr')-—(4X10 )Po. Comparing this number with the
percentage value of the model-independent radiative
corrections, when the neutrino mass is zero in Ref. [3],
we observe that AP~ is quite small, and hence can be ig-
nored.

III. VIRTUAL CORRECTIONS

By contracting with p„,we obtain

p„T(((p, k)=i f d x(m(p)l5(xo)[J~ )(x),J( )(0)]

+ T[() J~( )(x)J(,(0)]l0)e'"
The current algebra relation

(10)

The virtual model-dependent radiative corrections
come from the diagram in Fig. 2. It has the amplitude

4&2~'i "
TI', (p, k)

X
k —2p -k

(8) FIG. 2. Diagram involving the strong interaction in the vir-
tual corrections to ~~~v, .
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[J( ) (x),J(~) (0) ]=J(~)(x )5'(x)

and the PCAC hypothesis

(}„J
~ ) (x)=(}„A"(x) =f m 2 4(x ),

where 4 is the pion 6eld, allow us to write

p„TIl(p, k) =i ( m (p) ~ J( ) (0)~0 )

+if m f d x (n(p) ~
T[(p(x)J( )(0}]~0)

i(k —p) xXe (12)

p„TP"(p,k)=O(m ) .

Using Eqs. (2) and (14), we obtain the relations

(14)

The first term in Eq. (12) is the Born term, already con-
sidered in the M~ amplitude. Thus, we get, finally

p„TIl(p, k) = if„m Tv(p, k), (13)

with an obvious definition for T~(p, k) As ter.ms propor-
tional to m do not give contributions to the PMS, we
can safely write

Substituting Eq. (17) into Eq. (8), and neglecting some
terms proportional to k and p k, we arrive at

aG dk
4&2vr i k (k —21 k)(k —2p k)

X u, [21 p (H2+H6)1(,'

+(k —21 k)H. 611 ](1—r5)u, .

(18)

Proceeding as usual, we can extract the 1np term from
Eq. (18). In the road we find that the contribution of H6
cancels, leaving the result

1

Mv = — — u „gf(1—r 5)u, 1np, H2(O, x)dx +
4V2~ " ' '

o

(19)

The contribution to the transition probability is given by
the interference of M~ and the uncorrected decay ampli-
tude. Then, after summing over lepton spins, and per-
forming the integrations over the neutrino momentum
and pion momentum, one gets

and

H]+H2p. k+H3p =0 (15a)
hpv =p() lnpfH, 2 (O, x)dx +

277 ~ 0
(20)

H4p +H5p k =0 . (15b)

We first consider the contribution of H4 and H5 in Eq.
(8):

aG
Mv(H, H ) 5. u.r"(1—r5)u4' ' 4 2m i

d k
k'(k' —2p k)

X[p„H4(O,s) —k„H5(O,s)] .

for the transition probability induced by the structure-
dependent form factors. Combining Eq. (20) with the
contribution from the model-independent virtual correc-
tions, we obtain, for the virtual corrections to the transi-
tion probability [8],

1+bP„=Pa 2—in@+1 [ln(m, lk, )+—,
'

ln((4
—

—,']
1 —p

+ lnp+-p, 1

1 —p

After Feynman parametrization, and shifting variable
k'=k —px, we get

aG
Mv(H, H ) 5. uvI ( r5)u74' ' 4 2mi

+ lnp, f H2 (O, x)dx +1 1

2 ~ 0

IV. RESULT AND DISCUSSION

(21)

d k'

X[H4(O, s)+xH5(O, s)] .

Using Eq. (15b), it is easy to show that

f 1

X dx
0 (k i2 m2 2)2— The result is established adding Eqs. (5} and (21): all

the structure-dependent PMS's cancel in the total decay
probability. The only surviving model-independent
PMS's are given by

d k'f [H4(O, s)+xH, (O,s)]=0,
(k' —m~ )2

TP"(p, k) =H, g""+H2k"p +H,p "p"

+iH, ~ "~k~, ,

which, after applying gauge invariance, reduces to

Tp (p, k) =H2(k "p" pkg"")+iH6e" ~k~&.—.

(16)

(17}

i.e., the combined contribution of H4 and H~ vanishes.
Then, for our purpose, we are left with the tensor

P =P() 1+—B ()M}

where PO=G f„m,(1—p2) /16m. , and [9]

1+pB(1)=4—2 Inp+ I ln(1 —
(M }

2

+—— p 1np
1 8 —5p

2(1—p')'
2(1+)M ) 2 15—21((4

(22)

(23}
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In the limit m =0, Eq. (23) reduces to

B(p)=Pc 1+—[ —", +2L(1)] (24)

tains PMS's. When all the photons are taken into ac-
count, as we have done in Eq. (5) above, the PMS's cancel
out exactly.

and Po =G f~, /16~. Then, the total rate is logarith-
mically convergent, in agreement with the KLN theorem.
We note that the partial decay rate Eq. (15) of Ref. [3],
where hard bremsstrahlung has been excluded, still con-
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