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We calculate the decay rates for 8~El+I and B~K I+I as functions of the invariant mass of the
I+I pair and the center-of-mass angle in the I+I center-of-mass frame. We obtain the helicity depen-

dence of B~K I+I and calculate the contributions from the CP-odd and CP-even channels. In the
calculations we use the heavy-quark and factorization approximations.

PACS number(s): 14.40.Jz, 13.20.Jf

I. INTRODUCTION

Decay rate measurements for B~KI+ l and
8~K'I+I, in addition to other rare 8-meson decays,
are expected to provide tests of the standard model. In
addition, there is an interest in exploring CP violations in
B decays. Therefore, it is important to utilize all the ave-
nues of information to explore decay channels of B
mesons. Experimentally it is important to know the an-
gular distribution for a decaying particle to determine
where detectors should be placed in order to get the max-
imum efBciency. This information can also be used to
recognize the decay and to eliminate some of the back-
ground effects. Therefore, in this paper, our purpose is to
obtain the angular dependence of the decays B~El+i
and 8~K'I+I (these decay processes are important
because of their sensitivity to the top-quark mass}. We
do this first by looking at the decays in the I+I center-
of-mass frame, for which the configuration is shown in
Fig. 1. Then we calculate the decay rates as functions of
the center-of-mass angle 8, and the invariant mass s of
the I+I pair. Then we obtain the ratio of the cos 8,
term to the flat term as a function of s, which we call
a(s). Then we proceed to obtain the ratio of the contri-
bution from zero-helicity states and the ratio of the con-
tribution from the CP-odd and CP-even states.

In doing the calculations mentioned above, we use the
heavy-quark and factorization approximations [1-3].

Our aim is to provide a reference mark for experiments
and, as a result, to see how well these approximations
work for these decays.

II. KINEMATICS

3

X(2 )5'' P —gp;

Here P is the four-momentum of the decaying particle
and p; are the four-momenta of the final-state particles;
we choose p& and pz to be the four-momenta of l+ andl, and p3 —=Pz to be the four-momentum of the remain-
ing particle. A is the matrix element for the decay. By
introducing the invariant mass s =(p, +pz) of the I+I
pair via

1 s s p p I Jl J2
d3

s P P) Pp (2)

we obtain

The three-body differential decay rate for an unstable
particle is given by

3 d3
dr= ' g2M', .

) (2sr) 2Et

l gs 1 P] d Pp

2M' 2n(2m) 2E('(2n. } 2Eg

d'p d'Px
(2m) 5' '{P—P —p) ~JK~

(2n} 2E (2sr) 2E3

I dsdcosy QA(s, m„mq) Q A(M ,ass)
2mM~9 3 s

(3)

or

QA(s, m f, m ~z )QA{Mtt, Mx, s ) ~
JN,

~

ds dcos8 2 n. sM&
(4)
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FIG. 1. Momentum con6guration for the B-meson decay in
the I+I center-of-mass frame.

where

A(a, b, c)=a +b +c 2ab ——2ac 2bc —.
In the l+l center-of-mass frame p&= —

pz, PB=P» (the
configuration is as shown in Fig. 1),

s=(pi+p') =(P Px)'—
=(E, +E2) =(EB Ex)—

s-;„=(m~+m~)

s,„=(MB—Mx)

and

In the calculations of the following section, we model
the decay processes on the b-quark decay, and we consid-
er the diagran1s shown in Fig. 2. In the B-meson decay
diagrams, we have introduced the factors 9' at each ver-
tex. In general, the 2's are functions of the masses and
the decay rates of the mesons as well as the invariant
mass of the l+I pair. However, since our purpose is to
obtain the angular distribution up to an overall factor, we
leave them as parts of an overall factor.

III. B~Pl+i

We can write the matrix element for the decay in Fig. 2
in'the form

+At, +A,P2+ JRg, +Ay

where, for i =u, c, t,

2v'2 " '
4MBMK (2~)" (k —m, )(k f —m )(k2 —M~)(k& —M~)

Tg":—Tr[ys(P'+M~)y"(I —ys)(~+m )'Y (1 ys)(PB+MB)ys]

=2(MBA. +M»PB)k Tr[y y"y~y "(1—y, )],
tg":q2y'(1 ys—)(k—, +m)y"(1 —ys)q, =Zq2y'Qy"(I —y, )q, ,

PBVz f d~k [(k3 —kz)zq»+(k2 —k, )„gz,+(k, —ks)@xq]T~~tg
2V2 4 " ' 4MBM» (2m. ) (k —m; )(k, —M~)(kz —M~)(s —Mz)

T~; =Tr[ys(Pe+Ma)y"(I ys)(~+m )y (1 ys)(~B+MB)ysl

=2(MBA +M»Pg)k Tr[y y"y~y'(I —y, )],
t~~ =—qzy"(a+bys)q~, (10)

2V2 4cos8~ " '
4MBMk (2~) (k —M~)(k, —m, )(k,™,)(s —Mz)

T~2 ——Tr[ys(~re+Ma)y (1 ys)(~z+m;)y"(c+dys)(j(i+m, )y„(1—ys)('B+MB)ys] .

Here m, is the mass of the internal quark and I is the
mass of the internal lepton. To obtain the Z contribu-
tion, we substitute

a = —1+4sjn 0~, b =1,

and to obtain the y contribution, we use

a =c=1, b=d=O,

Mz ~O, cos0~~1, (13)

c=1——,'sin 0~, d=1,
d —c=—sin 0g

(12) together with

—g —+e2 2
4

(14)
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in JK~& and

4 cos0~

2

—+e Q,. (15)

In the limit where the external momenta are negligible
with respect to the internal momenta, k;~k up to an
overall sign, and these integrals, up to an overall sign,
reduce to

d4k

277 k 2 —g.
(16)

d4k k~k'

(2n ) g(k; —a; )

in JM, ~z, where Q; is the charge of the internal quark line.
The dominant term is the y contribution since
sm»=(M~ —Mz) &&M~,Mz.

There is also a contribution when the internal quark
lines form a resonance. The calculations for this case
have already been done elsewhere [4—6].

Within these matrix elements, we have momentum in-
tegrals of the form

p d4k 1

(2m. ) P(k, —a, )

d k 1

(2~) g(k' —a )

dk k"
(2n) ff(k —a; )

(17)

d k k"k
~ (2m) g(k —a, )

l

1 q„dk k
4 (2n) ff(k —a )

After some algebra, we obtain the following expressions
for the matrix elements:

4
g t ~B ~K 8~0

0 V '~b
4M M

'f2r"( r5)—91P'

B

p K, K'

(K')

2&2

'2
g t 9g 7+ 242+]

4 " '4MM s Mz

2

(18)

2&2 4 COSH'

B

(b) g K, K»

K(K')

»

XV V
Pa Vz 82~2" 'b4M M

t"
s Mz

p"=(M~PIr+MgPb)" .

In getting these expressions, we have used

[r.7'p'„(1 )5)][)"—r~7'"(U ars)]—
=

I r„(1—
7 5) ] I 10[r"(U ar»]—

—6[y"(a —Uys) ]I,
a

y ypy„=g py„+g„py g „yp i& p„y y
—6iy5y =e' " y ypy„.
We have also defined

d 4k It

(2m. )4 (k —M~)(k —mi )(k —m )

d4k k
~ (2n. ) (k' —M' )'(k' —m')

d4k (c —d )k —2(c+d )mi
Q2 2~ 4 k2 M2 k2 ~2 2

(20)

FIG. 2. Decay diagrams for B~K*1+1 and B~K1+1

The matrix element for 8~Kl+l can be written as

~= [&(e2X 'Vl )+~(727'"rsvp )]P„.
Consequently,

(21)
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I~I'= [ IVI'Tr[(pi —m }y"(pz+m }y"']+IA I'Tr[Vi —m }r"rs(Pz+m }r"r s]1{{z„{{z„

+ [V A Tr[(gfi —m )r"(pz+m )y" r&]+A VTr[(pi —m )r"rq(pz+m )r" ]]pi p&

=4[(IVI'+ IA I')[2(pi. p}(pz {p}—(pi pz&(p p)]+m'(IVI' —IA I'}(p p}] .

In the l+l center-of-mass frame, we have

Ps =(Es,O, O, P» }, P» =(E»,O, O, P»),
pi=(E p» pz=(E -p»

B 'p —PKp cosdc rn.

As a result

p, p =M»(EsE P»p —cos8, }+Ms(E»E P—»p cos8, ),
pz p =M»(EsE+P»p cos8, ~ )+Ms(E»E+P»p cost, ~ ),
(p, .p)(p z{p}=E(M~E»+M»Es) (Ms+—M») P»p cos 8, ~

(p p}=(MsE»+M»Es) —(Ms+M») P»,
(p, .pz ) = —,'s —m

p =—'s —m

E2= —'s .4

Substituting these equations in (22) gives

2

l~l =4 (IVI +IAI )(Ms+M») P» ——m 1 —
z

cos 8
s 2%i

+4m [IAI [2(MsE»+M»Es) —(Ms+M») P»]+IVI (Ms+M») P»] .

(22)

(23)

(24)

(25)

F«4mz s (Ms M-»-}z, IVl—z»IAI', thus,

IJKI =2IVI [(Ms+M») P»s][1+a(s)cos 0, ],
(26)

4ma(s)—:— 1—
s

G a ls3+sze'sl
9'(s) =

z z2n (Ms+M»)

X [I2mbc7(mi, )&(s )+cs(mb )f+ (s) I

+ IC9(mb)f+ (s )I ] (30}

and

, (2~sP, )'—IVI'(M, +M, )'
ds dcos8 2 m MB 2

X [1+a(s)cos 8, ~ ] .

In the limit rn ~0, the expression reduces to

dI
ds , [A(Ms, M», s)]"' IVI'(M, +M—)'.

(28)

At this point, we use the calculations of Ref. [7] to obtain
the expressions for 9's. Hence, our final expression is
given by

In a similar manner, we can calculate the differential
partial decay rate for B~I( 'l+I . In this case we need
to make the substitutions

MK ~M

1P»~P, = —A(M Ms„s)K 4$ K

' 1/2

and c7, cs, c9, f+, and h are as defined in Ref. [7]. We
see that as m ~0, d I /ds dcos8 ~ 1+a cos 0, with
a= —l. But as s ~4m, a(s)~0. This is an important
conclusion. For example, at the Collider Detector at Fer-
milab (CDF), the efficiency for a=+1 is about 75% of
the eSciency for a= —1.'

iV. 8~K I+I

where

X [1+a(s}cos8, ~ ], (29)

3 [A(Ms, M», s }] (Ms+M» }
ds dcos8 2 m MB

P» ~9
r,(j»+M») g, .(g,.+M„) .

'J. Mueller (private communication).

(31)
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(32)

(33)

These substitutions give

TI,'~ =Trg, (P,+M, )y"(1—y, )(k+mi)
X y "(1 —y s)(Pa+Ma }'Ys

T",g, =TrE—' »(P»+M»)y"(I y—s)(k+ml)

X y
"(1 y—s)(PB+MB }ys

T»gz =—Trg»(P»+M, )

Xy"(1—ys)(kz+ m~) y"(c +dys)

X(lt!)+mr)y„(1—ys)(Pzt+Mu)ys .

After some algebra, we obtain

k
pro 2 [Vzl (1 ys)qi]

X 32[(e~» Pzt )Pg» —(P~ P~»+M~M~»)e~*

T",&, [(k& kz )zg—»+(kz —k, )„gz„+(k, —
k& )~z„]

k2= —24 [(e».Pa)P~» (Ps.P—»+MaM «)e4~»

TI;~z =2[(c—d )k' —2(c+d )mi ]

X[(e» Pq)P" » (P~ P—»+MgM»)&~g»

Now we write the matrix element in the form

~=(&[ezy l I ]+~[hazy„ys91])(v" +a") (34)

where we have defined

a":g—e ~""e,P,p~„,

u" =[((e~—» Ps)P)» (P~—P~»+MztM»)e" »],
(35)

&~» = (P~ »O, OE»},
K*

e~»*= (0, +1,—i, O) .)r»

(36)

When we perform the calculations we obtain

and introduced g and g. In the I+I frame, the states

corresponding to helicity A, of K* are given by

where

v 'u = [g sP&» —[(Ms +M& ) s ] ) 5zp —[(Mzt +Mrs» ) —s ] 5&+, a a = (st» 5—&+

(p, .a )(pz a)= —
g sP,p sin 85z~= gsP, p (1——cos t))5z~ ,

'

2p2 E2
K

A.O

K

2

sP» — [(M++M—») —s]E» z 5&o
— [(M&+M—) —s] p sin 85&+ .

K

(p, v )(pz v ) = gEk»&s — [(M++M+»—) —s ]

As a result, with the definitions

6„&=@,&—= [2(p& u)(pz u) —(pi pz+m )(u v)],
A, =O, +

G„z=a,z
—=[2(p v)(p u) —(p p ™)(u.u)],

A, =O, +

6,~=6,~=[2(p a)(pz. a) —
(p& pz+m )(a a)],

A, =O, +

e,z=a, z
=—[2(p, a)(p a) —(p p —mz)(a a)],

A. =O, +

fAt/ =4/V/ I[2(p, v)(pz v) —(p, pz+m )(u u)]+[2(p, a)(pz.a) —(p, pz+m }(a a)]J

+4[A/ [[2(p, v)(pz. v) —(p, pz
—m )(v v)]+[2(p, a)(pz a) —

(p& pz
—m )(a.a)]$, (37)

(38}

(39)

Here we actually have

a"=is ~" c P P, ,K a

v"=[( „PE~)»P"» (Ps.P»+MsM»)e"—»],

but for the sake of generality, we keep g and g in the following calculations.
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we obtain

Qz=o
v1

2 2
1

P
g'E g, &s ——[(M +M g, ) —s]K 2 B K* M2

K
g sP, ——[(Ms+M, ) —s]

2
s 4m1—
2 s

sP +
— [(M—s+M „) —s]E, cos g,1 1

M

26~-+ s 1+ 4m

16 s
[(Ms+M, ) —s] 1+ cos2&

s+4m
2 p2

6 =—gE g&s ——[(M +M, )
—s]g=p s — 1 K $

K 2 ~ K
4m1—

s

'2

g sP, — [(M—s+M, )
—s ]2

s 4m1—
2 $

sP g
——[(Ms+M ~) —s]E „cosg,1 1

K M2
(40)

2s 4m
16 s

[(M +M )
—s] (1+cos 8) 6 = =6 = =0

2
Qx=+ gz

s pz
Q1 16 K*

'2
4m

2
s —4m s 4m

Thus, the differential decay rate for the helicity A. of K* is given by

dI
ds dcos8

[A(M~, M, ,s )]'
4~V~ [(6„,+6,",)+g (6, +6„)]2' M~

8[A(Ms, M, ,s)]' [(6„+6„)+q(6,2+6,~)],
2m M~

(41)

where

dI
ds dcos8

dI [I+a,(s)cos 8],2

ds dcos8

Equivalently, after summing over the helicities,

(42)

(43)

and
(I+g )(s —4m )

2[(6„+6„)+vP(6, ~+ 6„~)]

[(Ms+M~g, )
—s] s 4m'

8
+gP g

2

where

dI
ds dcosB

dI
ds cosB' p~ p

(44)
2M

[(Ms+M „) —s]E„,
4M

(45)

0-'

-0.2-

-0.4-

FIG. 3. Plot of a +(s) as a function of s.
K
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We plot a ~(s) in Fig. 3 for g =g =1 and ri=O [since

for 4m ~ s ~ (M~ —Ms ),r) ((1]. In Fig. 4, we plot the
ratio of the contribution from the zero-helicity state:

(dl /ds)q 0

(dl'/ds)~ +(dI /ds) +(dI /ds)

mind that Rz 0 is a helicity rate; therefore, it would be
affected by the QCD corrections since only the total an-
gular momentum would be conserved in general. Similar-
ly, we can extract the contributions of CP-odd and CP-
even states. %e de6ne the ratio of the contribution from
the odd CP states to the overall contribution by

(46)

As can be seen both in Figs. 3 and 4, the dominant con-
tribution comes from the A, =O state. It should be kept in

(d I /ds)
R,dd(s) =

(d I /ds )cp, dd + ( d I /ds )cp

Then we obtain

(47)

,'g s P, +—,', [(Ms+M—,) —s] [s+—,'(s —4m )]
R,dd(s) =

fd cos8[6„(s,cos8)+ 6„(s,cos@)]
(48)

We plot this ratio in Fig. 5. From Fig. 5 we conclude that CP-odd states contribute less than 1.2% of the total
differential decay rate for a given s. Thus the CP-odd contribution is considerably less than the CP-even contribution.
Since QCD conserves CP, R,dd would not be affected by the QCD corrections.

For completeness, we quote our results for 8 +E"'J/g, J/—g +1+I . (The —detailed calculations for this case are
done in Refs. [4—6], including QCD corrections. ) This process takes place via the decay b~ccq. The decay rate for
8 —+EJ/P is given by

0.01-

0.008-

0.006-

0.004-
FIG. 5. Plot of R,dd(s) as a function of s.

0.002-

0-
0 2.5 75

t

10 125 15 17.5
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P 16 ig
8~ 3 2v'2

2 2
qc ~cb ~B~K ~J i|b

[(Ms+Mt') ]6i o .

The requirement that k&=0 follows from the conservation of angular momentum. The B meson, as well as the K
meson, is a spin-0 particle; therefore, after the decay the orbital angular momentum of the K-J/g system would be per-
pendicular to the decay plane, which would require J/g to have its spin perpendicular to its direction of motion, i.e.,
A &=0. The ratios of the contributions from the different helicity states of K' for 8~J/gK* is given by

I [o,o} [(E&E&«+P * )(E +M «) Mtt—P «]2

I ( '*1 M «M~(E «+M «+p 'P, )2

1

—,'(1+0.55p ') (50)

where p measures the relative strength of the vector and the axial-vector contributions. Similarly, for the ratio of the
CP-odd to CP-all contributions, we have

M ~M~p P

[(E~E «+P «)(E «+M «) MttP—«] +M «M~[p P «+(E «+M, )]

And the total decay rate is given by

1

2+ 13p
(51)

sc' 16 igr
8trM g Q

P' Ir
b 9tt VyV» «

k2 —M~~ 8M~M~M g

X[[(E~E «+P, )(E,+M, ) MttP «—] +M «M~[p P, +(E «+M «)]] . (52)

According to these results, the A, =0 contribution

would account for at most 80% of the decay rate, which
corresponds to p & 10, and the CP-odd channel would ac-
count for at most 50% of the decay rate, which corre-
sponds to p =0. The preliminary results from the
ARGUS Collaboration support the dominance of the

« =0 channel while the CLEO results do not [5,6].

V. CONCLUSION

In this paper, we have calculated the decay rates for
B—+KI+I and B~K*I+I, modeling these processes
by the quark decay 6 ~sl+I in the I+l center-of-mass
frame as functions of the center-of-mass angle 6, and
the invariant mass s of the I+I pair. Then we obtained
the ratio of the cos 8, term to the Bat term as a func-
tion of s, which we call a(s} for K and a«(s) for K*. We
have concluded that both a(s) and a«(s) are negative in

the allowed region of s, which implies that the contribu-
tion from the zero-helicity states dominate these decay
channels. It is important to have explicit expressions for
a(s} and a«(s} since they help in identifying the decay

channels as well as in getting the best efficiency (as men-
tioned in the text, in the case of the CDF the efficiency
for a = + I is about 75% of the efficiency for a= —1).
We found that the weight factor a «(s) of the cos 8 term

takes its largest values for small s values. We have also
calculated the contributions from the different helicity
states of K* and observed that the I, + =0 channel dom-

inates the decay. Our calculations have also shown that
CP-odd part of the decay accounts for only a very small

part of the decay rate ((1.2%). We do not expect the
QCD corrections to effect R,dd since QCD conserves CP,
but we do expect them to effect Rg —p since only the total
angular momentum is conserved in QCD in general.

In our calculations above, we used the heavy-quark
and factorization approximations. The results are in-

dependent of the model used for form factors. These re-
sults should serve as a reference mark for experiments.
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