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Photo- and electroproduction of nonstrange baryon resonances
in the relativized quark model
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Photoproduction amplitudes for the nonstrange baryons are calculated in a quark model with an
electromagnetic transition operator containing relativistic corrections, and relativized-quark-model
wave functions. A one-parameter fit to the photocouplings shows significant improvements over

models using the nonrelativistic transition operator or nonrelativistic wave functions. Helicity asym-
metries and other ratios in the electroproduction of some low-lying resonances are also predicted.

PACS number(s): 13.60.Rj, 12.40.gq, 14.20.Gk

I. INTRODUCTION

The information contained in photoproduction ampli-
tudes has been crucial to the development [1, 2] of the
nonrelativistic quark potential model. The tables can be
turned and the validity of spectral models which ulti-
mately have arisen from this early work can be tested by
examining their consequences for the baryon electromag-
netic couplings. The best prospect for new data which
can give further insight into the structure of baryons is
from new and future experiments to measure these cou-
plings, such as those at MIT/Bates and CEBAF. It is
therefore of critical interest to compare the predictions
of such models with the existing data.

Koniuk and Isgur [3] carried out such a systematic
study of the efFects of hyperfine mixing in baryon wave
functions on the photocouplings, using a simple nonrel-
ativistic electromagnetic transition operator. However
Close and Li [4] argue that it is inconsistent to incorpo-
rate the effects of the hyperfine interaction on the wave
function, which are O(1/mz), while using an O(1/m) ex-
pansion of the transition operator. At O(l/mz) various
new terms [4, 5] appear in the electromagnetic transition
Hamiltonian; there are spin-orbit corrections, the accom-
panying two-body currents present in the three-body sys-
tem, and dependence on the binding potential. Kubota
and Ohta [6] studied one of these corrections, the spin-
orbit term, using unmixed oscillator wave functions for
the resonances, and found evidence for it in the photo-
coupling data.

The Koniuk-Isgur calculation was generalized by Sar-
tor and Stancu [7], who studied the effects of using more
realistic radial wave functions with the nonrelativistic
operator, and Forsyth and Cutkosky [8] using a more
general operator. Close and Li in Ref. [4] and Warns,
Schroder, Pfeil, and Rollnik in Ref. [5] performed calcu-
lations with transition operators expanded consistently
in p/m, and with Isgur-Karl model [9—11] wave functions
for the resonances. However their treatment of excited
Pqq and Pss resonances was in error [12],due to the adop-
tion of wave functions which are not orthogonal to the
ground states N(938) and A(1232). A more general issue

is the effect of the truncation of the model space at the
N = 2 band of the harmonic oscillator in the Isgur-Karl
model. Furthermore, the energies of states are formed by
diagonal perturbation theory in the anharmonic part of
the potential; although these perturbations may be sub-
stantial, the effect on the wave functions is not included.

It is therefore of interest to calculate the electromag-
netic couplings in a model which deals with the spin-
independent potential in a more realistic way, such as the
relativized model [13] as applied to baryons [14], and us-
ing a transition operator which includes the relativistic
corrections in a consistent manner. The program out-
lined below has already been carried out (and the prob-
lems with orthogonality corrected) for the Pq~ and Pss
resonances in Ref. [12]. Here this calculation is extended
to other nonstrange baryons, and to electroproduction.

In the relativized model a generalized spectral Hamil-
tonian is solved in a large (to at least N = 7) har-
monic oscillator basis. This Hamiltonian contains the
usual spin-spin hyperfine interaction, treated in a dif-
ferent way, as well as spin-orbit energies; it also uses a
minimum-length string confining potential (plus a color-
Coulomb interaction at short distances) which yields an
approximately linear potential between quarks. Poten-
tials are allowed to become momentum dependent by,
roughly speaking, replacing factors of quark mass with
factors of quark energy. While the spectroscopy is of
similar quality to that of the nonrelativistic model, in
a model which is more tightly constrained, the resulting
wave functions can be expected to be quite different from
those of the nonrelativistic model, especially in their "ra-
dial" dependence.

The electromagnetic couplings of the nonstrange
baryons, for both real- and virtual-photon excitation of
resonances from the nucleon, are calculated here using
these relativized-model wave functions, and the Close-
r i transition operator. The signs of the photoexcita-
tion amplitudes cannot be extracted from the data sep-
arately from the sign of the subsequent ¹rdecay of
the resonance. Photoproduction amplitudes are therefore
quoted [15] inclusive of this sign. There is also an extra
conventional sign in the experimental amplitudes [15, 3]
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of —1 (+1) for the photoproduction of an N' (6'). Ref-
erences [7, 4, 5] adopt the Nisi. gns from Koniuk and Is-
gur [3], although Ref. [3] does not include a tabulation of
the Nor signs for wave functions mixed by the hyperfine
interaction. To avoid diEculties with sign conventions,
etc. , these signs are taken here from a quark-pair-creation
(sPO) model calculation [16],which uses exactly the same
(relativized-model) wave functions as input.

A simple fit to the photocouplings is carried out by
varying the efFective quark mass m', which should be
thought of as the sum of the average kinetic energy
and scalar-binding-potential energy [4] for a constituent
quark in these states. Predictions are also made of the
photocouplings of the "missing" states [17],baryon states
present in the quark model but not in the Nn partial
wave analyses, because of weak coupling [3] to Nm. The
relativized model also allows for the calculation of the
photocouplings of states which first appear when the os-
cillator basis is extended [8] beyond N = 2; the photocou-
plings of the lowest-lying of these states are calculated.

Extension of these techniques to electroproduction am-
plitudes is a much more complicated task. The meth-
ods outlined above are inherently nonrelativistic, and
while this may not present an insurmountable problem
in the spectroscopy, in the calculation of transition am-
plitudes where momentum transfers of a few Gevz are
involved, simple Galilean transformation of center-of-
momentum frame wave functions (and the neglect of the
small components of the quark spinors) becomes ques-
tionable. Constituent quarks should also be given elec-
tromagnetic form factors; however, relativistic effects in
the transition matrix elements [18] and the treatment of
the wave functions lead to Q2 dependence which loosely
resembles that of a (soft) quark form factor. This has
led to the adoption [19] of very soft form factors for
the quarks in the absence of a consistent treatment of
relativistic effects. Other calculations [4, 5] adopt the
approach of using size parameters in the nonrelativistic
wave functions which can simulate such soft form fac-
tors, but which may not be consistent [9—11,8, 14) with
the values needed for a successful spectroscopy.

It is, however, still possible to make predictions for
the Q2 dependence of ratios of amplitudes, which are in-
dependent of many of these issues. In particular states
X with total angular momentum Jx & I can be ex-
cited from protons or neutrons with two different helic-
ity combinations (A~ + A&

———
2 + 1 = Ax), and the

helicity asymmetries (Ai —As )j(Ai + As ) can be
2 2 2 2

formed. For states with J =
2 it is also possible to

reliably calculate Ai /Ai, or ratios of amplitudes with
2 2

those of nearby states (since the neglected relativistic
corrections will have similar effects for states nearby in
energy and with similar spatial structure). Close and
Gilman [20] correctly predicted that the helicity asym-

metries of the Nz (1520)Dig and N2 (1680)Fig reso-
nances would change rapidly with Qz if calculated with
the nonrelativistic transition operator. These ratios have
been studied by other authors in various models [21, 4,
5]; they are reexamined here, and other ratios predicted,

with the model described above. The ratio Ei~ jMi+
in the electroproduction of the 6(1232) has also been
extensively studied [22, 23], and has been examined in
Ref. [24] using the relativized-model wave functions and
the nonrelativistic transition operator; here this issue is
reexamined using the transition Hamiltonian incorporat-
ing the Close-Li relativistic corrections.

This paper is organized as follows. The next section
contains a summary of the new features of the relativized
model used to generate the wave functions, and the elec-
tromagnetic transition Hamiltonian of Ref. [4] is rewrit-
ten in a form convenient for calculation in the basis in
which they are expressed. This is followed by a section
containing a description and discussion of the results for
the photocouplings, and the results for amplitude ratios
in electroproduction. The final section contains the con-
clusions which may be drawn. Details of the calculation
of the matrix elements are included in an Appendix.

II. WAVE FUNCTIONS AND
TRANSITION OPERATOR

A. Relativized-model wave functions

For a complete description of the relativized model see
Refs. [13, 14]; here the main differences with the Isgur-
Karl (nonrelativistic) model are outlined.

As in the nonrelativistic model the Schrodinger equa-
tion is solved in a Fock space made up of valence quarks.
The Hamiltonian is given by

V ~ Vstring + VConl + Vhyp + Vso(cm) + Vso(Tp). (2)

Here Vt„„g is the potential generated by adding the
lengths of the gauge-invariant (Y-shaped) string configu-
ration, and multiplying by the meson string tension ~o.
The string is assumed to adjust instantaneously to the
motion of the quarks so that it is always in its minimum
length configuration; this generates a three-body adia-
batic potential for the quarks [25] which includes genuine
three-body forces. Here Vc „i, Vhyp, V, (, ), and V, (Tp)
are color-Coulomb, color-hyperfine, color-magnetic spin-
orbit, and Thomas-precession spin-orbit potentials. The
color-Coulomb and hyperfine potentials are as in the non-
relativistic model [9,10], except that the interquark coor-
dinate r,~ is smeared out over mass-dependent distances,
as suggested by relativistic kinematics and QCD, and the
momentum dependence away from the p jm -+ 0 limit is
parametrized, as suggested by relativistic dynamics.

In practice this smearing is brought about by convo-
luting the potentials with a function

(3)

where V is a relative-position and -momentum dependent
potential which tends, in the nonrelativistic limit (not
taken here), to
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The o.,~ are chosen to smear the interquark coordinate
over distances of O(1/Mq) for Q heavy, and approxi-
mately 0.1 fm for light quarks. The potentials are made
momentum dependent by introducing factors which re-

place m; where it appears in the nonrelativistic limit by,
roughly, E; .For example the contact part of Vg~~ be-

(m, m ) ~+'-"'
(4)

Here e„„t, is a constant parameter, and a, (r,~) is a
running-coupling constant which runs according to the
lowest-order @CD formula, saturating to 0.6 at Qz = 0.

The color-magnetic and Thomas-precession spin-orbit
potentials are also smeared and allowed to depend on
momentum in a similar way; they also tend, in the non-
relativistic limit, to the spin-orbit potentials which are
calculated (but not included) in the Isgur-Karl model.
Their addition in the nonrelativistic model tends to spoil
the agreement of the model with the experimental spec-
trum [9], especially that of the negative-parity P wave-
states. This is not the case in the relativized model [14].

Nonstrange baryon states are then written as

where C~ is a totally antisymmetric (under the exchange
group Ss) color wave function, P is the fiavor wave func-
tion uud or ddu, and the sum is performed so that the
result is symmetric under exchange of quarks 1 and 2.
The quark-spin states y are the usual spin wave func-
tions of. total spin 2 or z formed from three spins 2, for
a given total J and parity P the individual terms gy
are implicitly L Scoupled. T-he spatial wave functions

Q are made up of solutions of the two three-dimensional
oscillators

VLMnpipnglp

= ) C(lp, lp, m, M m; L, M)—~n~ l~ m) ~n~ lp M—m),

where

(6)

~n~l~m) = JV„,i, o~(op) &e 2 ~ L', (n p )Yj,~(A~),

(7)

and similarly for ~n~ lp M —m), and where JV„i

2n!/I'(n+ l + -', ).
The wave functions of baryon states with total spin

and parity J can be expanded in a basis of (implicitly
I Scoupled) states Q-g; the energies and wave functions
of the baryon states are then formed by diagonalizing the
Hamiltonian H in this basis. Note that the basis mixes
nucleon (I = 2) and delta (I = z) states; the m„= md,

symmetry of H ensures that the resulting eigenvectors
are either delta states (with linear combinations Pgg
totally symmetric under Ss) or nucleons (with mixed-A
symmetry). The basis extends to N = 6 for positive-
parity states [26] and N = 7 for negative-parity states,
where N =

2( n~+ni, ) + i~+ l~, giving of the order of 100
substates [even under (12) exchange] for each JP. Ener-
gies are minimized, state by state, by coarse variation of
the oscillator size parameter o. ; however, in a calculation
of transition amplitudes it is necessary to have all states
expanded with the same a for orthogonality. A measure
of the convergence of the expansion is the n dependence
of these amplitudes, which will be discussed later.

The resulting spectroscopy is comparable to that of
the Isgur-Karl model, with some improvements and some
deterioration. This is a nontrivial test, as the model is
much more tightly constrained; various quantities which
were fit in the Isgur-Karl model (such as band centers
of mass) are now predicted, and the same set of param-
eters [27] fits all mesons and baryons. Spin-orbit inter-
actions are small but not neglected in this model; this is
mainly due to the use of a smaller a„although there is,
as expected, a partial cancellation of the color-magnetic
and Thomas-precession spin-orbit terms, and the spin-
orbit interactions are suppressed relative to the hyperfine
contact term by the choice of e, „t, & e, . This smaller o.,
yields the same contact splittings when the smeared con-
tact interaction of Eq. (4) is evaluated without resorting
to wave function perturbation theory (apart from basis
truncation beyond N = 6).

The wave functions which result from this process dif-
fer substantially from those of the Isgur-Karl model. In
the Isgur-Karl model the efFects of the anharmonic terms
are not included in the wave functions, even though the
pattern of the mass splittings of the positive-parity ex-
cited states [10] is mainly driven by the anharmonicity,
and the effects on the wave functions can be expected
to be large (the splittings are comparable to the oscil-
lator excitation energy a). Since a nonsingular contact
interaction with a smaller n, is used, and all of the spin-
dependent interactions are evaluated more precisely, we

can also expect differences in the configuration mixings
in the wave functions which they cause.

A simple test of the validity of this approach to baryon
structure is to examine the electromagnetic transition
amplitudes which result from calculation with these wave

functions. This should be done with a transition opera-
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tor which includes relativistic corrections in a consistent
manner, such as that of Close and Li [4]. Details of this
operator, and its calculation in the relativized model ba-
sis, are given next.

B. Transition operator

The nonrelativistic transition operator mentioned
above is an O(p/m) expansion of the expectation of the
electromagnetic current between a pair of quark spinors:

3
H"'= —) [

'
(p; A;+A, p, )yprr; ,,B,), (8)

a=1

where m = rn„= mg is the constituent quark mass,
e;, o,/2, and p; = ge;/2m are the charge, spin, and
magnetic moment of the quark i, and A; = A(r, ). At
order (p/m) spin-orbit [28, 6] and two-body [28, 29, 4]
terms must be added to these orbit-flip (convection) and
spin-flip terms. At this order there is also dependence of
the transition operator on the binding potential. Close
and Li avoid explicit dependence on the vector-exchange
part of the binding potential [30, 4] by rewriting the con-
vection term; similarly by formally including kinetic and
scalar-binding energies in the effective quark mass m' the
(equivalent to) scalar-exchange binding potential can be
removed from the transition operator. The result is

3
= ) —er, E +i '

(p, kr; A +r; Ap, k) —per; B,2m'

Ci CTi
i~

~ I

i i iI i
~

(
~

1 cr, g)
2p, , — —[E;xp, —p;xE] +) [e~E~ x p, —e E; x p~],2m' 2m' 2

'
. . 2MTm' 2 2
i&j

(9)

with MT the recoil mass of the baryon system. Since the
hyperfine interaction is itself of O(p/m) the spin-orbit
term should be included in a calculation which includes
the hyperfine configuration mixings. The spin-orbit and
two-body terms must both be included to have gauge
invariance, and they are also necessary [28] if the electro-
magnetic interaction is to satisfy the low-energy theorems
in Compton scattering, and the Drell-Hearn-Gerasimov
sum rule.

In order to calculate the matrix elements of the compo-
nents of Eq. (9), it is useful to write the transition opera-
tors to be used between the quark-model basis states in a
form different from those of Ref. [4]. By insertion of the
usual radiation field for the absorption of a photon into
Eq. (9), and then integrating over the baryon center-of-
mass coordinate, the transverse photoexcitation ampli-
tudes can be written as simple expectation values over
flavor, spin, and spatial internal coordinates

(10)

Here the initial photon has a momentum k]]z, the ini-
tial nucleon has a momentum P, ~~z, and the angular mo-
menta are quantized along i. As the basis states de-
scribed above (excluding the color wave function) are not
totally exchange symmetric, the usual simplification of
replacing a sum over quarks with three times the third-
quark expectation value cannot be applied here. How-
ever, a simple procedure, that of transforming the wave
functions to a basis which has redefined Jacobi coordi-
nates, allows the calculation of the matrix elements of

the Hi and Hz operators to proceed in an exactly sim-
ilar way to that of the operator Hs. Calculation of the
matrix elements of Hs avoids complicated functions of
the relative coordinates in the "recoil" exponential. The
details of this procedure are outlined in Appendix A, and
only third-quark operators are described here.

The operator H3 can be written in the form

H = H"' + H ~ + H" + H

with the nonrelativistic (nr) operator

(12)

Here ko is the 0 component of the photon four-momentum
(equal to k = ~k[ for real photons), and the momenta pz
and pp are conjugate to the Jacobi three-body coordi-
nates p = (ri —r2)/y2 and A = (ri + rz —2r3)/v6.
The derivative operator arises from the usual convection
Hamiltonian

3
H"""= —) '

(p; A, +A, . p,).
a=1

(13)

The difference H ~ between the rewritten convection
term [the first two terms in Eq. (9)] and H'~"" is a rel-
ativistic correction to the transition Hamiltonian due to
the presence of the vector-exchange part of the binding
potential; it can be written in the form
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VP03 ——e3
kp

k+ ———
6 3)

&&+
~~

m* (14)

where P, = ~P, ~. Similarly the spin-orbit (so) operator may be written

and the two-body (2b) operator has the form

k+ ———
6 3)

[k + P,], &~ „—iA:~~A,

) 2
(16)

2M
" c.m. frame,

kp=k= q

Breit frame,
+2(MX+MN )

and, for electroproduction in the Breit frame,

(Q +Mx+ Mrv) —4MXM~
Qz+ 2(Mxz+ M~3)

k2
3

kz
kp —— Mx + —— M~ + —,

4 4'

(18)

where Qz = —(kpz —kz). Note that the photon wave func-

tion normalization g2n'/kp is well defined in the Breit
frame (kp is never zero), although formally the choice of
this normalization does not affect the amplitude ratios
considered here.

III. PHOTOCOUPLINGS

A. Fit to photocouplings data

The process of relativization, as described above for
the spectral Hamiltonian, parametrizes the momentum
dependence away from the nonrelativistic limit by replac-

where o'p = (oi r'rz—)/v 2, and kg = (o i+rrz 2o—3)/~6
The electromagnetic amplitudes calculated with these

operators are frame dependent, even in the absence of
the relativistic corrections of Eqs. (14), (15), and (16),
which explicitly depend on P, . The simple dependence
of the operators on k = ~k~ (nonrelativistic kinematics)
means that even the amplitudes calculated with Eq. (12)
are frame dependent. In the next section a comparison
of photocouplings calculated in the center-of-momentum
(c.m. ) frame (where P, = —k) and in the Breit (Br)
frame (where P, = —k/2) is made, in order to estimate
the error introduced by this lack of relativistic invari-
ance. Although the amplitudes arising from individual
relativistic corrections can be strongly frame dependent,
this dependence becomes much weaker once their sum is
formed [4, 12]. The Breit-frame calculation is theoreti-
cally preferable, and accordingly the results for photo-
couplings and electroproduction ratios are given in this
frame. For photoproduction we have

ing factors of quark mass by factors of quark energy, and
introduces quark smearing [Eq. (3)]. The momentum-
dependence parameters of Refs. [13,14] were determined
by fitting the calculations to the wealth of data avail-
able for meson and baryon spectra. A less complicated
procedure is adopted here, given the quality of the data.
For the photocouplings of states made up of light quarks,
and states which are not highly excited, it should be a
reasonable approximation to replace the quark kinetic
energy by a constant effective mass m'. This efFective
mass was formally taken, in the expansion of Ref. [4],
to include kinetic energy terms, along with an average
scalar-binding-potential energy.

The effect of the quark smearing on the amplitudes is
to multiply them by a nonrelativistic form factor which
falls off as a function of the three-momentum transfer.
If the light quarks are smeared as in Eq. (3), the result
is a Gaussian quark form factor which decreases only a
few percent over the range of momentum transfers con-
sidered here. This will have little effect on the photocou-
plings, and cannot affect ratios in electroproduction, and
is therefore neglected.

The photocouplings are then fit by varying a single
parameter, the effective quark mass m" in Eq. (9). The
ratio g/m* is kept constant to maintain a simple additive
explanation of the nucleon magnetic moments, and the
recoil mass is kept at MT = 3m*. Using this procedure
it is found that a modest increase (thirty percent) in the
effective quark mass m* significantly improves the fit to
the measured photocouplings. A useful measure of the
quality of the fit is to form a y2 statistic in the usual

way [31] for the forty-six measured photocouplings [15].
Introducing a "theoretical error" avoids overemphasis in

the fitting procedure of a few very well-measured photo-
couplings.

If, following Koniuk and Isgur [3], the photocouplings
are calculated in the Breit frame with the nonrelativis-
tic Hamiltonian of Eq. (8), Isgur-Karl model [9—12] wave

functions with o, = 0.41 GeV, and rn = 0.336 GeV

(g = 1), a yz of about 132 results. Here, and in all

that follows, the signs of the photocoupling amplitudes
for a particular set of wave functions are obtained by us-

ing those wave functions in a 3Pp (quark-pair-creation)
model strong decay calculation [16], and extracting the
sign of the X ~ ¹rdecay amplitude. Also for each
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quark-model state the decay momentum is calculated
with Eq. (1?) from the experimental mass of the state
for which it is the analogue. Adding the relativistic cor-
rections H r, H', and Hzb significantly lowers [4] yz to
103; most of this improvement comes from adding the
spin-orbit term [6]. If the effective quark mass m' is in-
creased thirty percent to 0.437 GeV (with corresponding
g = 1.3 and MT = Sm* GeV), gz is improved to 89.

A further improvement is obtained when the Breit-
frame photocouplings (and strong-decay signs) are cal-
culated with the relativized-model wave functions. Us-
ing wave functions expanded in a basis with harmonic-
oscillator n = 0.5 GeV, the relativistic corrections once
again improve the fit to the photocouplings, and the same
modest increase in rn" lowers [32] yz to 71. If the same
calculation is performed using a basis with o. = 0.6 GeV,
yz rises by only 2.5, which demonstrates the soft depen-
dence of the calculation on the intrinsic size of the basis
used to expand the wave functions. Calculating in the
center-of-momentum frame results in a g2 which is larger
by 1.0 than that of the Breit-frame calculation. This il-
lustrates that although the individual terms in the sum
in Eq. (11) may be strongly frame dependent, their sum
is not [4, 12].

The Breit-frame photocouplings calculated with the
relativized-model wave functions for the ground state
6(1232) and the low-lying (N=l band) negative-parity
baryons are shown in Table I. The results are shown de-
composed into the pieces from H"' (which is expressed as
the sum of two terms: the convection term and the spin-
fiip term), H"r, H", and Hzb. Table II shows the pho-
tocouplings for those of the positive-parity excited states
in the N = 2 band for which there exist data. These
results are summarized in Figs. 1 and 2. Here we have
plotted, along with the data, the predicted Breit-frame
photocouplings from three models: the calculation with
Isgur-Karl wave functions with a = 0.41 GeV, and the
nonrelativistic transition operator with rn = 0.336 GeV
(g = 1), following Koniuk and Isgur; results for the same
wave functions and parameters but with the relativistic
corrections added, following the Close-Li AP calculation;
and results including all of the relativistic corrections
with m' = 0.437 GeV (and corresponding g = 1.3 and
Mz = 3m'), and using o, = 0.5 GeV relativized-model
wave functions.

As a test of the procedure used to calculate these am-
plitudes and the ¹rsigns attached to them, the calcu-
lation of Ref. [4] has been reproduced for unmixed Isgur-
Karl model wave functions in the center-of-momentum
frame. The results [for all terms in Eq. (11)] agree in
magnitude for all states. The overall multiplicative signs
agree for all but Nz (1710), Nz (1720), b, l (1600),
and A~ (1920). The sign of the Roper resonance

N2 (1440) photocouplings also differs from Koniuk and
Isgur {in agreement with Ref. [4]). In Koniuk and Is-
gur [3] the signs of the N(1440), N(1710), and A(1600)
amplitudes were fixed by choosing the sign of a reduced
amplitude Pp in the strong decay analysis to 6t the pho-
tocoupling data for the Roper resonance. In Ref. [16]
there is no such freedom and the signs are predicted.

The result of the different overall sign of the N(1720)
amplitude (which agrees with that predicted by Kubota
and Ohta [6]) is to bring the calculations of Refs. [3, 7, 4]
in closer agreement with the data.

In the Po model of Ref. [16] only the signs of the

Nn amplitudes of two of these states, b 2 (1600) and

(1620), are sensitive to mixings. When the Isgur-
Karl wave functions are hyper6ne mixed these signs both
change, and they both change back when the fully mixed
relativized-model wave functions are used, as can be seen
in Figs. 1 and 2. In light of this sensitivity, the signs
from the relativized-model wave functions may be the
most trustworthy, as this model allows the initial and
final wave functions the most freedom to mix via the
interactions.

From the individual contributions to y from each res-
onance photocoupling listed in Tables I and II we can see
that one-third of the gz arises from the photocouplings of
the lightest two states, 6(1232) and the Roper resonance
N(1440). The discrepancy between the Roper resonance
photocouplings calculated in this kind of model and the
data has been noted by many authors; their work is re-
ferred to, and this issue discussed, in Ref. [12]. It is signif-
icant that these states are both light and couple strongly
to mN; it is possible that pion loop effects (neglected
here) renormalize their couplings [33]. It is also possible
that the discrepancy is due to our lack of understanding
of the relation between our model predictions and the
resonance photocouplings extracted from the single-pion
photoproduction partial-wave analyses [34].

Other states which have large contributions to gz are
the Ss& state 6(1620) (with J =

z ), the Pss state
b, (1600) (with JP = sz), which is discussed in Ref. [12],
and the Fqs N(1680) (with J =

z ). In the case of the
latter state only the A~a amplitude seems in error. Al-

2
though it is tempting to blame this discrepancy on a large
H'r correction (which has been verified analytically) the
overall Gt to the data is not signi6cantly degraded by
the addition of these vector-potential terms, which must
be present for theoretical consistency [30, 4]. The ex-
pectation value of the H~r term for this A~s transition

2
is strongly dependent on the oscillator-size parameter o;
due to a cancellation.

B. Missing resonances

Baryon states exist in the quark model for which there
are, as yet, no experimental analogues. In particular
there are eleven nucleon and delta states in the N = 2
band which are not seen in the single-pion photoproduc-
tion partial-wave analyses, and not seen (or not con-
firmed) in the Nor analyses. In their strong decay cal-
culation, Koniuk and Isgur [3] found a natural explana-
tion for this: states which are present in the Nm analy-
ses correspond, in both energy and number, to states in
the quark model which couple relatively strongly to the¹rchannel. The missing states have weaker couplings.
The examination of multipion final states (such as b,n,
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TABLE I. Breit-frame photoproduction amplitudes using the o. = 0.5 GeV relativized-model
wave functions of Ref. [14] and the operators H„„H"~, H, , and H2b. Here m* = 437 MeV

1

(g = 1.3 and MT = 3m'). Amplitudes are in units of 10 GeV 2; a factor of+i is suppressed for
all negative-parity states.

State

4 2+ (1232)

AN

AP) 7L

1
2

A"'"
3
2

A„,

0—107

0-185

A p A, Agb Total

-108

—186

Expt.

—141+5

—258+19

2.6

6.7

N 2 (1535) A"i
2

2

92+65

-94-30 18

—97

42

34 76 73114

—76+32

0.0

0.1

N 2 (1650) A",
2

A
2

28+25

—28+14

—29

—27

35 48+16

—17+37

0.0

0.2

b, 2 (1620) A"'"
1
2

90-26 —17 81 19+16 5.9

N 2 (1520) A",
2

AA

2

A3
2

All3
2

67-91

—68+35

116-1

—118+13

—14

—24

24

32

—19

57

—15

134

—114

—22+10

—65+13

167+10

—144+14

0.1

1.3

2.2

1.5

N 2 (1700) A"i
2

AA

2

A3
2

AA

2

15—30

—15—1

25+6

-26—64

12

22

—28

18

—30

—22+12

0+19

—2+44

0.2

0.1

0.0

0.3

(1700) A"'"
1
2

A"'"
3
2

58+42

100-1 —10

—12

—21

82 116+17

77+28

1.7

0.1

N s2 (1675) A~i
2

Ai
2

A3
2

A3
2

0—35

0—50 —51

19+12

—47+23

19+12

—69+19

0.6

0.1

0.4

0.4
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TABLE II. Breit-frame photoproduction amplitudes for positive-parity (N = 2 band) excited
states for vrhieh there exist data. Caption as in Table I.

State

N 2 (1440)

AN Avp A2b Total Expt.

11.9

N 2 (1710)

(1910)

N 2 (1720)

Ag
2

AP~

2

Ag
2

APpfL
1
2

A",
2

2

A3
2

0—20

1+32

0—16

—1+21

11+1

26

20

—42

—23

14

15

—16

13

37+19

5+16

—5+23

—12+30

52+39

—35+24

—43+94

2.5

0.1

0.0

0.0

2.1

0.0

0.0

0.3

b, 2 (1600)

b, s2+ (1920)

N s2 (1680)

b 2s(1905)

N ~+(1990)

AP)1L
1
2

AP)fL
3
2

AP)7L
1
2

AP'"
3
2

AP~

2

AA

2

Ap3

2

A7L

2

APgA
1
2

AP~A
3
2

AP~

2

AfL

2

A3

0+41

0+71

—14+26

6—24

49—62

—16+34

69+0

19+0

28—38

0—2

0—14

-22

—13

—18

—28

-23

50

45

20

14

—14

30

13

14

—38

19

56

26

—22+29

1+22

40+30

23+30

—17+10

31+13

127+12

—30+14

27+13

—47+19

24+30

—49+45

31+55

2.2

2.8

0.6

0.1

0.0

0.3

94

0.1

0.0

2.7

0.5

0.5

0.3

Atl

2
0—18 —18 —122+55 3.1
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TABLE II. (Continued)

State A A„, A p Aso A2b Total Expt.

(1950) AP ) fir

1
2

0—32 2.7

AP)7L
3
2

Np, and Nu [17])in new photoproduction experiments at
CEBAF may provide a means to access these states with-
out invoking a factor of this small Nx coupling. Whether
or not a mi.ssing resonance is seen in one of these pro-
cesses (or perhaps in single-pion photoproduction) de-
pends crucially on the strength of its photocouplings.

Table III shows these photocouplings for the missing
states up to N = 2, calculated with the relativized-model
wave functions and the transition operator of Eq. (9),
and the parameters of the best fit above. Also listed
are the order in which these states appear in their par-
tial waves, and their model masses from Ref. [14]. The
photocouplings of these missing states tend to be dis-
appointingly small, as can be seen from a comparison
of Tables II and III. This can be expected as part of

Resonance phot, o —couplings {Br)

zoo ~

100

Q—100 —
p

p—200—

a general trend towards weaker photocouplings as the
mass (and hence degree of excitation) of the resonance
increases; it is also true that the largest nonrelativistic
photocouplings [17] tend to be reduced by the relativis-
tic corrections. For example the 6

& (1990)[F35]g state
1

has A"1 ———38 and Az ———68 (in units of 10 s GeV &)
2 2

when calculated with the nonrelativistic H"', and these
reduce to A"1 ———10 and A& ———28 when calculated

2 2
with Eq. (9).

The situation is not, however, hopeless; there are states
which are well established in single-pion photoproduction
which have photocouplings smaller than those of some
states in Table III. For example it may be possible to
extract a signal for the lightest Ps1 state, hz (1835)
in Ref. [14]. Also there is [15] a two-star experimen-
tal state N(2000)F1s seen in Nn which may be one
of the F1s quark-model states in Table III; the pre-
dicted photocouplings for these states are not negligi-

bly small. The quark-model state A~ (1990)[Fss]q men-
tioned above [the analogue of the two-star state seen in
N)r, 6(2000)F35] has photocouplings which are smaller
than the nonrelativistic expectations but which may still
allow its observation through one of the multipion final
states above. Similarly one or both of the model states
N~s (1870)[P1s]q and N~s (1910)[P1s]s may be visible,
the former perhaps in pion photoproduction as it has [17,
16] an appreciable coupling to N)r.

I l I l l
i-

h, (1232) N(1535) N(1650) b(1620) N(1520) N(1700) h(1700) N(1675) Resonance photo —couplings (Hr)

FIG. 1. Breit-frame photopro duction amplitudes for
E(1232) and the P-wave resonances. Diamonds and squares
are for calculations using Isgur-Karl wave functions with
o. = 0.41 GeV, and H"' and H' respectively, with m(m*) =
0.336 GeV, g = 1, and MT ——3m'; circles are the "total"
amplitudes from Table I. For 4 states A) and A3 (where

2 2
allowed) amplitudes are displaced, with A~3'" plotted to the

right of the correspondingA"~'". For N states with J =
2

A" and A" amplitudes are displaced, with A & plotted to the
2

right of A"~; similarly for N states with J & 2 amplitudes are
2

plotted, from left to right, in the order A"~, A z, A3, and A3.
2 2 2 2

Data points, taken from Ref. [15], are also plotted with error
bars.

100

0

100—

N(1440) N(1710) 4(1910) N(1720) d{1600) d(1920) N(18SO) d(1905) N(1990) d(1950)

FIG. 2. Breit-frame photoproduction amplitudes for
positive-parity excited (N = 2 band) states for which there
exist data. Caption as in Fig. 1.



46 PHOTO- AND ELECTROPRODUCTION OF NONSTRANGE. . . 2873

TABLE III. Breit-frame photoproduction amplitudes for
"missing" positive-parity (N = 2 band) excited states, calcu-
lated using the o. = 0.5 GeV relativized-model wave functions
of Ref. [14] and the full transition operator H' . Parameters
and units are as in Table I, model masses are from Ref. [14].
[Fqs]2, e.g. , is a notation for the second most-massive state in
the Fq5 ¹rpartial wave. A" = A" for 4 states.

State

N 2 (1880)[Pgg]4

N2 (1975)[Pgg]5

(1835)[P31]1

N 2 (1870)[P&3]2

N 2 (1910)[Py3]3

N 2 (1950)[P13]4

N 2 (2030) [P)3]g

(1985)[P33]4

N 2+ (1980)[Fgs]2

N 2+ (1995)[Pgs]3

(1990)[F35)Q

—12

—31

—21

—18

—10

A
2

14

10

22

A3
2

—27

15

—28

A3
2

19

25

—10

C. Other low-lying resonances

There are many well-established states in the Nn anal-
yses which, by counting arguments, have as their quark-
model analogues states which first appear in the N = 3
or N = 4 bands. The situation for the positive-parity
N = 4 band excited states with relatively small total spin
J is dificult, as there are already many lighter states in
their partial waves, some of which are already "missing. "
However, this is not the case for some of the lighter states
with higher J. In the case of the negative-parity N = 3
band excited states there are just one or two states in
their partial waves at N = 1; there are several quite well
established more massive (N = 3 band) states in the N~
analyses [15]. It is therefore of interest to examine the
photocouplings of the low-lying N = 3 band excitations
and some of the higher- J N = 4 band states in the model
which best fits the known photocouplings above.

As there are many states which appear in these higher
bands, and as the photocouplings tend to diminish as the
degree of excitation increases, the calculation is limited
to the first few states above the N =2 band in each par-
tial wave. These photocouplings are listed in Tables IV
and V; as a rule of thumb only those states with at least
one photocoupling at least as large as 10 (in units of

1
10 s GeV 2), or for which there are experimental ana-
logues in Nvr, are tabulated. There are some (rather

uncertain) photocoupling data for some of the negative-
parity states, which are listed under the predictions for
the quark-model state which is best assigned to the ob-
served state (in the spectroscopic and strong decay mod-
els of Refs. [14] and [16]).

In Tables IV and V it is encouraging that the N = 3
band model states with the largest predicted photocou-
plings correspond to those states for which there are some
data listed in Ref. [15]. It might be possible to improve
the experimental situation for these higher band states,
and provide serious constraints for models, by an analy-
sis of new photoproduction data using single and multi-
pion final states. It may also be possible to discover new
N = 3 and N =4 band states in such experiments, such
as the model state b, ~ (2370)[Fs7]q, which essentially
decouples [16] from Nn.

IV. ELECTROPRODUCTION RATIOS

Despite problems with the treatment of relativistic ef-
fects in the boosting of the center-of-momentum frame
wave functions, and in the treatment of the quark spinors,
it is still possible to reliably predict the Q2 dependence
of certain ratios of amplitudes. These ratios should be
largely independent of these difficulties when taken be-
tween amplitudes for exciting the same resonance from
different targets or with different final helicities, or be-
tween amplitudes for states nearby in energy and with
similar spatial structure. Problems in the treatment of
light-meson degrees of freedom, which may be responsi-
ble for the discrepancies between the extracted photocou-
plings of certain states and the model predictions, should
be less apparent at higher Q2. Accordingly the helicity
asymmetries (A~ —As )j(Ap + As ) for proton and

2 2 2 2
neutron targets are predicted for negative-parity states
in the N = 1 band and some low-lying positive-parity
excited states, using the relativized model above which
yields the best fit to the photocouplings data.

For negative-parity states with J = z, certain ratios
between their helicity-2 amplitudes and those of nearby
states are also predicted. For J =

2 states it is also
of interest to examine the Q~ dependence of the ratio
A&/A"z. Calculations are all made in the Breit frame

2 . 2
to minimize recoil eKects. For comparative purposes ra-
tios are also calculated with the following models: H"'
and pure-oscillator or hyperfine-mixed wave functions,
to illustrate the changes brought about by mixing in the
Isgur-Karl model [40]; and with mixed Isgur-Karl model
wave functions and the corrected H™(with m' = 0.336
GeV, g = 1) following Close and Li, in order to see the
sects of use of the relativized-model wave functions and
the increased effective quark mass.

Most of the data for electroproduction of baryon reso-
nances have been collected for 6(1232) and a few of the
lightest ¹'s. In the following a comparison is made
between the calculation and the data for the helicity
asymmetries of N2 (1520) and N2 (1680), and the
ratio between the A"z amplitudes for Nz (1520) and

2
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TABLE IV. Breit-frame photoproduction amplitudes for some negative-parity N = 3 band
and positive-parity N = 4 band excited nucleon states, calculated using the o; = 0.5 GeV rela-
tivized-model wave functions of Ref. [14] and the full transition operator H' P. arameters and
units are as in Table I, model masses are from Ref. [14]. Data are from Ref. [15]; a factor of +i is
suppressed for all negative-parity states.

Model state

N g (1945)[Spy]g

N g (2030) [Sl 1]4
N g (1960)[D13]3

N ~g (2055) [Dzg]4
N gg (2095) [Dgg] g

N g (2080) [Dgs] g

N~g (2095) [Dis]g
N-, +(2390) [Fyv]g

N ~~ (2410)[Fgp]g

N g (2090) [G&7]&

N g (2205) [Gyp] g

N-', + (2345) [Hig] g

N g (2215) [Gyg]y

Nor state

N(2090) *

N(2080) so

N(2190) ***+

N(2220) *+**

A"»
2

12
20
36

—20+8
26+52

16
9

—3
—2

—14
1

—34
—55
—30
—16
—29

0

—15
—3

7+13
53+83

—18
8
9

22

5
—15

10
—42
—85

13
16

—14

—43
17+11

128+57
0

—14
—14
—6

—11
—1

28
81

180
4

13
1

2

27
—53+34
100+141

0
1

9
29

7
18

—14
-126

7
—10
—8

—17

Ref.

[35]
[36]

[37
[38

Ns (1535). Electroproduction of the Roper resonance,
which has poorly predicted photocouplings in this model,
is compared to that of the b, (1232).

A. a(1232)

In the absence of the tensor part of the color-hyperfine
interactions, which mixes D-wave components into the
wave functions of b (1232) and N(938), the nonrelativis-
tic model predicts a pure Mq+ transition between these
two states. A nonzero Eq+ transition amplitude can

therefore be considered evidence of the existence of the
tensor interactions. For this reason there has been much
theoretical and experimental interest [22, 23] in the ratio
Eg+/Mg+ ——(v3A& —As)/(v 3A& + 3As). Figure 3

2 2 2 2
illustrates the effect of inclusion of the relativistic cor-
rections to H"' on this ratio, which has been calculated
with hyperfine-mixed Isgur-Karl wave functions, and the
fully mixed relativized wave functions.

With the Isgur-Karl wave functions Eq+/Mq+ is a
rapidly increasing function of Q, with a value of —0.4%
at the photon point [41] when the nonrelativistic H"' is

TABLE V. Breit-frame photoproduction amplitudes for some negative-parity N = 3 band and
positive-parity N = 4 band excited delta states. Caption as in Table IV.

Model state

b. g' (2035) [Sgg]g

(2140) [S31]3
(2080) [Dgg]g

(2145) [Dgg] g

(2155)[Dgg] g

A —",
+ (2370) [Fsy] &

(2460) [F37]2

(2230) [Gg7] y

(2295) [H39] g

4 '~'+ (2450) [Hs, g g] g

Nvr state

6(1900) ***

b, (2150) *
b, (1940) *

A(1930) ***

A(2390) *
A(2200) *
A(2400) **
Q(2420) g g g g

gPpA
1
2

20
—4+16

29+8
4

—20
—36+58

0
11

—30+40
—33

24
14

—14
13

gP) Yl

3
2

—6
—31+12

10
19

—10+35
—42

30
—4

—17
—16

[39
[35]

[35]



46 PHOTO- AND ELECTROPRODUCTION OF NONSTRANGE. . . 2875

0.00

—0.01

—0.08
+

—0.03

S(1232)P„
s ~ a a

]
a a s ~

[
a ~ s 0.0

l:
L

—0.5

—1.0

N(1520)D, s/N(1535) S„
a a a s

l
s a

I
a a

proton

—0.04

-0.05 I ~ a ~ a ! a a a a I ~

0 1 2
(Gev )

~ a a I

M
CO

A

—1.5

0.5
eutron

FIG. 3. Ratio Eq~/Mqy for electroproduction of
E(1232)Pss, calculated in the Breit frame. The dashed curve

is calculated with mixed Isgur-Karl model wave functions

(o, = 0.41 GeV) and H ', the dashed-dotted curve with the
same wave functions and the full H', and the solid curve

with the relativized-model wave functions (o; = 0.5 GeV) and
H' with m' = 0.437 GeV (g = 1.3, MT = 3m')

0.0

—05

—1.0
I s s ~ l a a a a ] a a a a ]

1 2 3
Q (Gev )

1.0

0.5

0

N(1520)D, s

a s

I
a

proton

~ ~ s

]
s a ~ ~

~~~ ~

FIG. 5. Ratios of Ay electroproduction amplitudes with
2

proton and neutron targets for N(1520) Dqs/N(1535) Sq q, cal-
culated in the Breit frame. Legend for the calculation as in
Fig. 4; experimental ratios from Burkert [42] with data from
Refs. [43-45].

0.0

—0.5
N(1700)D is

~ M0
~ M

S

1.0

0.5

1.0

0.5

0 1
s s a a

]
a

2 3
s s ~

0.0

—0.5

0.0

—0.5
proton

—1.0 s, , ] a ~ ] a ~ ~ a ]

—1.0
0.0

0 1 2
Q (Gev )

—0.2

—0.4
neutron

FIG. 4. Proton and neutron-target helicity asymme-
tries (A1 —As )/(A1 + As ) for electroproduction of

2 2 2 2
N(1520)Dqs, calculated in the Breit frame. The dotted and
dashed curves are calculated with 0"' and unmixed- and
mixed-oscillator wave functions (a, = 0.41 GeV), respec-
tively, the dashed-dotted curve with mixed-oscillator wave
functions and the full H', and the solid curve with the
relativized-model wave functions (a = 0.5 GeV), and H'
with m' = 0.437 GeV (g = 1.3, MT = 3m'). Experimental
ratios from Burkert [42] with data from Ref. [15] (Q = 0),
Ref. [43) (diamonds), Ref. [44] (open squares), and Ref. [45]
(solid squares) .

—1.0

—1.2
0

1 ~ a a a I a a ~ a l a s s s

Q (Gev )

FIG. 6. Proton and neutron-target helicity asymmetries
for electroproduction of N(1700)Dqs, calculated in the Breit
frame. Legend as in Fig. 4.
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N(1700) D,3/N(1650) S„ 6(1700)D
D.D I ~ I I

i
I 1 I I 1.2

1.0

—0.8

—1.0

I a s i i I s s ~ ~

1 2
Q (Gev )

E
E

C

0

0.8

0.6

0.4

0.2 l
/

0.0
0

I I I I

Q (Gev )

l a ~

FIG. 7. Ratio of A"~ electroproduction amplitudes for
2

N(1700)Di3/N(1650)Sqq, calculated in the Breit frame. Leg-
end as in Fig. 4.

FIG. 9. Helicity asymmetry for electroproduction of
6(1700)D33 calculated in the Breit frame Le. gend as in

Fig. 4.

used. However, inclusion of the relativistic corrections in
Eq. (9) reduces the photon-point value to essentially zero,
with the largest cancelling contribution coming from the
spin-orbit term. Given the theoretical necessity for the
spin-orbit term in Eq. (9), and the evidence for it in
the fit to the photocouplings, it would appear that a
nonzero Ei+/Mi+ at the photon point cannot be at-
tributed to hyperfine mixing. The behavior as a func-
tion of Q is largely unchanged. When the calculation
is made with the relativized-model wave functions and
the corrected transition Hamiltonian, Ei+/Mi+ remains
small at Q = 0 and develops very weak dependence on
Q2. This weak dependence with the relativized-model
wave functions was found (with H"') in Ref. [24]; the
effect of the corrections to H"" is to further reduce the
ratio at higher Qs. The experimental situation [23] for
this ratio is too uncertain to distinguish between these
(and other) models.

B.Negative-parity states

Figure 4 shows the helicity asymmetries (Ai
2

As )/(Ai + As ) for N2 (1520), with both proton
2 2 2

and neutron targets. There is an obvious improvement

in the agreement with the proton-target data when the
nonrelativistic wave functions are mixed, s,nd again as
the relativized-model wave functions and larger rn' are
used. The latter is not unexpected given the improved
agreement with the photocouplings for this state evident
in Table I. The neutron asymmetry is strongly affected
by the addition of the relativistic corrections to H"', it
regains a Q dependence similar to that of the nonrela-
tivistic model when calculated in the relativized model,

The ratios between the Ai amplitudes for N2 (1520)
2

and N z (1535) are plotted along with the proton-target
data in Fig. 5. Although none of the curves appear to
fit the data at the higher Q values [1,4], there is again
an improvement with the relativized-model calculation.
This is an instance where, as suggested by Close and Li,
it appears that higher configurations in the /CD mixed
wave functions become important.

Model predictions for the helicity asymmetries of the
second Dis resonance N2 (1700) are shown in Fig. 6.
The proton-target amplitudes are both zero when calcu-
lated with H"' and unmixed-oscillator wave functions;

N(1650) S I I

1 I I I

[
I I I I

)
I ~ I I 1.0

6(1620)S,/6(1700) D

I 1 ~

0.5

0.0
0.0

—0.5

I ~ I I [ I ~ E E I ~ I ~ I l

0 1 2 3
Q (Gev )

—0.5
a a ~ a I

0 1

I I I 1 I I l

q' (GeV')

FIG. 8. Ratio A i /A"~ for electroproduct ion of
2 2

N(1650)Sqq, calculated in the Breit frame. Legend as in

Fig. 4.

FIG. 10. Ratio of A ~ electroproduction amplitudes for
2

b.(1620)S3$/b. (1700)D33 calculated in the Breit frame. Leg-

end as in Fig. 4.
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hyperfine mixing gives a substantial A~s )) Az, and

relativistic corrections reverse this to A"~ & A~&. The
2 2

relativized-model wave functions and smaller effective
mass yield an A"z )) A~& for smaller Qz. A precision

2 2
measurement of this asymmetry, while difBcuh (the am-
plitudes are relatively small, see Table I), could easily test
for the presence of hyperfine mixing and these relativistic
corrections. For neutron targets the amplitudes rapidly
settle into a ratio close to —13/14, the value obtained [in
the "SU(6) limit" ] using H"', and without mixing in the
wave functions.

The ratio between A"~ for N 2 (1700) and that of the

second Sqq resonance N2 (1650) is shown in Fig. 7; note
both amplitudes are zero when calculated with unmixed-
oscillator wave functions and H"'. Once again substan-
tial changes are seen when the wave functions are mixed
and when relativistic corrections included in the transi-
tion operator, with a larger (and increasing) ratio for the
relativized-model calculation. The situation for neutron
targets is complicated by electroproduction amplitudes
for N&~ (1650) [and N2 (1700)] which have zeros at Qz

values between roughly 1.0 and 2.0 GeV; accordingly
A

&
/A~& is plotted in Fig. 8. Proton-target amplitudes for

2 2

the only other N =1 band ¹ state, N~z (1675)Dqs, are
zero in the SU(6) limit and stay small when mixings and
relativistic corrections are applied. The neutron-target
asymmetry also remains close to the SU(6) limit of —s.

0.0

N(1440)P „/6(1232)Pe~

—0.5

—1.0

—1.5

—3.0 ] I I I I 1 I I I

Q (Gev )

FIG. 12. Ratio of A ~ electroproduction amplitudes for
2

N(1440)Pgg/E(1232)P33 calculated in the Breit frame. Leg-
end as in Fig. 4.

Figure 9 shows the helicity asymmetry for the Dss res-

onance Az (1700) (note that for all b, states A" = A").
At the real-photon point Az and As are roughly equal,

2 2
while A1 dominates at larger Qz, and all of the calcu-

2.
lations give similar results. The ratio between Ar for

2
the other N = 1 band b, resonance, Az (1620)Sst, and

that of b, z (1700) is shown in Fig. 10; when the wave
functions are mixed and when relativistic corrections are
added, the 6&~ (1620) amplitude changes sign at higher

Qz, and is initially larger. Note that the b, z (1620) am-
plitude is not well predicted at the real-photon point, as
can be seen in Table I.

N(1680)Fig N(1720) P ie
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FIG. 11. Proton and neutron-target helicity asymmetries
for electroproduction of N(1680)Eq5, calculated in the Breit
kame. Legend as in Fig. 4.

FIG. 13. Proton and neutron-target helicity asymmetries
for electroproduction of N(1720)Pq3, calculated in the Breit
frame. Legend as in Fig. 4.
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C. Positive-parity excited states

The helicity asymmetries of the N f (1680) are shown
in Fig. ll along with the proton-target data. Hyper-
fine mixing in the wave functions improves the agree-
ment with the data when H"' is used; however, both
calculations using the corrected H' yield too-rapidly
changing asymmetries, and also miss the photon-point
value. The Close-Li calculation shows better agreement
with the data for this ratio; the present calculation (us-
ing H' and mixed Isgur-Karl wave functions) is unable
to find agreement with their analytic calculation (AMi)
of the photocouplings of this state, or the helicity asym-
metry (calculated, as in Ref. [4], with o, = 0.3 GeV). The
neutron-target amplitudes are roughly equal at the real-
photon point, with the Ai amplitude rapidly becoming

2
dominant at higher Q . The approach to the SU(6) limit
(where A~& ——0 and the asymmetry is 1.0) is slower in

. 2.
the relativized-model calculation.

The model predictions for the photocouplings of the
Roper resonance Nz (1440) are incompatible [12] with
the values from the partial-wave analyses [15]. When
we go away from Qz = 0 the amplitudes are increas-
ing functions; they rapidly reach the SU(6)-limit ratio of
A~i/Ai

———2/3 (with Ai ) 0). The ratio between A"i
2 2 2 2

for N(1440) and b, (1232) is plotted in Fig. 12; these re-
sults imply that if the Roper resonance is a conventional
three-quark state, as Qz is increased it should eventu-
ally be visible in the electroproduction data [42]. This
appears to be at odds with the inclusive cross-section
data [46], which show no sign of the Roper resonance at
modest values of Qz. The rate at which it increases is,
in the relativized model, slower than the roughly linear
behavior [1]obtained using unmixed-oscillator wave func-
tions. There are some confiicting results from analyses
of the data for the sign of A"i for N(1440) at Qz values

between 0.5 and 1.0 GeV~ (see Ref. [42]); better data
for the electroproduction of this state will help decide

0.0

N(1710)P„

—0.8

a j l l I & t \ r t

0 1 2
q' (G v')

FIG. 14. Ratio A z /A"~ for electroproduction of
2 2

N(1710)Pqq, calculated in the Breit frame. Legend as in

Fig. 4,

if a conventional explanation of its nature will suffice.
The analysis may be complicated by a large width for
the Roper [47, 16]. It may be possible that pionic eKects
are responsible for the discrepancy between the extracted
photocouplings of N(1440) [and 6(1232)] and the quark-
model calculation; these eKects should disappear when a
higher-Q~ photon is used as a probe.

Two other low-lying positive-parity excited states
which may be accessible at the new experiments are the

Pis state N2 (1720) and the Pii state N2 (1710). The

helicity asymmetries for N ~~ (1720) are shown in Fig. 13;
there are substantial changes near Qz = 0 when the rel-
ativistic corrections are added to H"' (see Table II), and
the Q~ dependence is markedly changed in the relativized
model. Figure 14 shows A i /A"i for N 2 (1710);the ratio

2 2
at the photon point (of two rather small photocouplings)
is quite difFerent from the SU(6) value of —si in the pres-
ence of hyperfine mixing, and the trend at higher Q is
altered significantly by the adoption of the relativized-
model wave functions.

V. CONCLUSIONS

The results of this study confirm the conclusions of
Close and Li—that consistently treated relativistic cor-
rections improve the agreement of the electromagnetic
couplings with the data —and demonstrate that the use
of the relativized model further improves this agreement.
This is due in part to the use of a larger efFective mass
in the relativized-model transition operator, and in part
to the more realistic treatment of the wave function and
inter-quark potentials in the relativized model. There are
also improvements due to the use of an ab initio ( Po)
model for the calculation of the strong-decay signs at-
tached to the photocouplings.

One important result of the use of a large basis to
expand the wave functions is to remove the strong de-

pendence of the wave function, and the electromagnetic
couplings of the state it represents, on the (harmonic-
oscillator) size parameter of the basis. It is also con-
firmed that although, as we have seen above, the com-

ponents of the O((p/rn)z) relativistic correction may be
large, the average expectation value of their sum is con-
siderably smaller than that of the nonrelativistic term.
Rather than rely on such (p/m) expansions, the point
of view taken here is that Eq. (9) contains a minimum

set of tensor terms required by gauge invariance, and
so if their coefficients are viewed as free (subject to
other constraints like the nucleon magnetic moments)
the physics of the transition operator will have been effi-

ciently parametrized.
The result is that the pattern of photocouplings of

the nonstrange baryon states is predicted quite well. , al-

though with a few notable exceptions. It is significant

that the predicted photocouplings of the lightest positive-

parity excited states, 6(1232), N(1440), 6(1600), and

N(1680), agree poorly with those extracted from the
data. Before giving up on a conventional three-quark as-

signment for some of these states more should be under-



46 PHOTO- AND ELECTROPRODUCTION OF NONSTRANGE. . .

stood about the extraction of resonance photocouplings
from the data, and the efFects of virtual baryon-meson
loops on the theoretical predictions. Ideally, the analysis
of the data and electromagnetic and strong decay models
should be linked.

The situation should be greatly improved vrith the ad-
vent of new experiments at MIT/Bates and CEBAF, es-
pecially because of their ability to explore in detail these
couplings for virtual photons. The results described here
for the Ei+/Mi+ ratio in the electromagnetic production
of b, (1232) imply that nothing can be learned about the
quark-quark interactions in these models from studying
photoproduction. For electroproduction the results de-
pend strongly on whether nonrelativistic or relativized-
model wave functions are used, and are not as sensitive
to the relativistic corrections in the transition operator.
This calculation shows some improvements in the agree-
ment with the (rather uncertain) electroproduction am-
plitude ratios for %(1535) and N(1520), and a worsening
in the case of N(1680). The model predicts that the cou-
plings of the Roper resonance N(1440) grow relative to
those of b, (1232), although at a slower rate than was
predicted in nonrelativistic models; by Q2 = 2 GeVz,
if it is a radially excited three-quark state, it should
couple as strongly as 6(1232). This, like the photo-
couplings, appears to be counter to the experimental
situation; however, the Roper resonance may be very
broad which would make it difficult to see in electro-
production. There are other low-lying states which have
quite model-dependent electroproduction amplitude ra-
tios. The study of these ratios in new experiments would
help to determine if the improved fit to the photocou-
plings found here in the relativized-model calculation also
extends to electroproduction.

{SL n~ l~ ni lp ) (S refers to spin wave function
type and not only total quark spin). Then to deal with
the minimal (12)-exchange symmetry of the basis note
that

(A1)

where the H~ are defined in analogy to Hs in Eq. (11).
Since rs = — sA+ R/3, where R is the center-of-mass

coordinate, evaluation of the Hs term is simple.
Calculation of the Kz term becomes simple if the wave

functions in this basis are rewritten in terms of a new
set (in')}, which have spatial wave functions expressed
in terms of p' = (23)p = (ri —rs)/y 2 and A' = (23)A =
(ri + rs —2r2)/~6, and the spin wave functions A

= (23)A'~, and g" = (23)y". Here (23) is the
operator which transposes the labels of quarks 2 and 3;
note this set is larger than (io.)) since we must include
both (13)-exchange symmetries. Then

(A2)

and the calculation of the matrix element of Hz in the
primed basis is identical to that of Hs in the usual basis.
The problem reduces to the simple one of calculating the
overlap matrices (cryo. ') (one for each basis set with a
given J ).
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APPENDIX: CALCULATIONAL DETAILS

1. Exchange symmetry

Label the states in the basis described in Sec. II
by (in)), where o. is a shorthand for the notation

As an illustration of the techniques used to calculate
the matrix elements of the operators in Eqs. (12), (14),
(15), and (16), consider the substate to substate matrix
element (o.(J, A)iHi2&biP(~i, A —1)) of the two-body oper-
ator, needed to form the helicity amplitude Af for the
electromagnetic excitation of a resonance with total spin
J from a nucleon. The states in(J, A)) and iP(z, A —1))
are elements of the bases described above with specific
i JM) values and parities. In particular focus on one part

of Hi~, that proportional to (op, /2)pal+exp( —ik sA, ).
Then

= C(L, S~, M, A —M; J, A)C(Lp, Sp, M —1, A —M; z, A —1)C(Sp, 1, A —M, O;S, A —M)

(A3)
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where the reduced matrix elements of op/2 are listed
below. The spatial wave functions are then expanded
using Eq. (6), and orthogonality in the p oscillator in-
voked to reduce the result to a A-oscillator expecta-
tion value. This can be further reduced by insertion
of a complete set of A-oscillator spatial wave functions

in~ i~m)(n~i~m] = 1, with the result that the
spatial matrix element in Eq. (A3) can be written in
terms of products of various Clebsch-Gordan coeKcients,
the reduced matrix elements of pg, and the matrix ele-

rnents of the phase exp( —ik IA, ). These reduced ma-

trix elements are also listed below.

3. Reduced matrim elements
To form the matrix elements of the operators in

Eqs. (12), (14), (15), and (16) the values of the reduced
matrix elements of the quark-spin operators o s/2, crp/2,
and cr~/2 are needed. With rows and columns in the
order yss, yPi, and pi we have

2 2 2

v5 0 —2

(A4)
2v2 0 —1

where the rows correspond to 8 values, the columns to
Sp. Similarly we have

and

0 0 1
0 —1 0

—~2 0 1
(A6)

= io,C(l ., 1,0, 0;l, 0)(n l
i in —l ) (A7)

(and similarly for (nq lq ]]pq[]nqp lpp)); here
(n l]ip/o. [n'l') is a radial integral which is nonzero only
when l' = t —1, where it takes the values

(nl],
. pi„, l 1)

— n+l+ —,
' if n'=n,

Qn+—1 if n' = n+1,
and when l' = l + 1, where

~n if n' = n —1,
(n i]i—in'l+1) =

n n+l+ 3 if n'=n.

( 8)

(A9)

Also required are the reduced matrix elements of the
operators pp and pq between p- and A-oscillator wave
functions, respectively. These are

(np lp iippiinp lp )

(~ II 2' Il~~) = 2(~ II 2 II~P)

0 1 0
0-1

0 —1 0
(A5)

The various transition operators are also proportional

to the phase factor exp( —ik sA, ), whose A-oscillator

expectation values are

(ng li. mie '"~&" ]nppl), pm) = 2tpp + 1
(2K + 1)C(leap, K, m, 0; lg, m)

2t

where the last factor is a radial integral, with

z d sinhz
x C(K, l),p, 0, 0; l), , 0) (n), l),.i „[nip leap),zdz z ~=-~a

(A10)

(n~. l~. [f(~)[n~, 4, ) = &...i..&...i., OO
L

1

d(oA)(oA) +'"~+'"pe "L„„~ (o. A )f(A)L„„(n A ) (A11)

Note that K is restricted to even (the radial integral is real) or odd (the radial integral is pure imaginary) values by
the parity rule for the second Clebsch-Gordan coefBcient.

[1] L.A. Copley, G. Karl, and E. Obryk, Nucl. Phys. B18,
303 (1969).

[2] R.P. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev.
D 8, 2706 (1971).

[3] R. Koniuk and N. Isgur, Phys. Rev. D 21, 1868 (1980).
[4) F.E. Close and Zhenping Li, Phys. Rev. D 42, 2194

(1990); Zhenping Li and F.E. Close, ibid. 42, 2207 (1990).

[5] M. Warns, H. Schroder, W.P. Pfeil, and H. Rollnik, Z.
Phys. C 45, 613 (1990); 45, 627 (1990); M. Warns, W.
Pfeil, and H. Rollnik, Phys. Rev. D 42, 2215 (1990).

[6] T. Kubota and K. Ohta, Phys. Lett. 65B, 374 (1976).
[7] R. Sartor and Fl. Stancu, Phys. Rev. D 81, 128 (1985);

88, 727 (1986).
[8] C.P. Forsyth and R.E. Cutkosky, Phys. Rev. Lett. 46,



46 PHOTO- AND ELECTROPRODUCTION OF NONSTRANGE. . . 2881

576 (1981); Z. Phys. C 18, 219 (1983); C.P. Forsyth,
Ph.D. thesis, Carnegie Mellon University, 1981.

[9] N. Isgur and G. Karl, Phys. Lett. T2B, 109 (1977); T4B,
353 (1978); Phys. Rev. D 18, 4187 (1978).

[10] N. Isgur snd G. Karl, Phys. Rev. D 19, 2653 (1979).
[11] N. Isgur, G. Karl, and R. Koniuk, Phys. Rev. Lett. 41,

1269 (1978); Phys. Rev. D 25, 2394 (1982).
[12] S. Cspstick, Phys. Rev. D 46, 1965 (1992).
[13] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[14) S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
[15] Particle Data Group, J.J. Hernandez et al. , Phys. Lett.

B 239, 1 (1990).
[16] S. Capstick and W. Roberts, CEBAF Report No.

CEBAF-TH-92-05 (unpublished) .
[17) N. Isgur, in Proceedings of the CEBAE/8URA I88) Sum-

mer Workshop, Newport News, Virginia, 1984, edited by
F. Gross and R.R. Whitney (CEBAF, Newport News,
1984).

[18] C. Hayne and N. Isgur, Phys. Rev. D 25, 1944 (1982).
[19) F. Foster and G. Hughes, Z. Phys. C 14, 123 (1982).
[20) F.E. Close and F.J.Gilman, Phys. Lett. 38B, 514 (1972).
[21] S. Ono, Nucl. Phys. B1OT, 522 (1976).
[22] S.S. Gershtein and G.V. Dzhikiya, Yed. Fiz. 34, 1566

(1981) [Sov. J. Nucl. Phys. 34, 870 (1981)]; Isgur,
Karl, snd Koniuk [11]; M. Weyrauch snd H.J. Weber,
Phys. Lett. B 171, 13 (1986); M. Bourdeau and ¹C.
Mukhopadhyay, Phys. Rev. Lett. 58, 976 (1987); S.A.
Gogilidze, Yu.S. Surovtsev, and F.G. Tkebuchava, Yad.
Fiz. 45, 1085 (1987) [Sov. J. Nucl. Phys. 45, 674 (1987)];
see also references in Ref. [24].

[23] For a review of the experimental end theoretical situa-
tions see N.C. Mukhopadhyay, in Excited Baryons 2988,
Proceedings of the Topical %orkshop, Troy, New York,
1988, edited by G. Adams, N. Mukhopadhyay, and P.
Stoler (World Scientific, Singapore, 1989), p. 205; C.N.
Papanicolas, ibid. , p. 235; V. Burkert, in The Hadron
Mass Spectrum, Proceedings of the Conference, St. Goar,
Germany, 1990, edited by E. Klempt and K. Peters [Nucl.
Phys. B (Proc. Suppl. ) 21, 287 (1991)).

[24] S. Cspstick and G. Karl, Phys. Rev. D 41, 2767 (1990).
[25) H.G. Dosch and V. Miiller, Nucl. Phys. B116, 470

(1976); R.E. Cutkosky and R.E. Hendrick, Phys. Rev. D
16, 786 (1977); 16, 793 (1977); J. Csrlson, J.B. Kogut,
snd V.R. Pandharipande, ibid. 27, 233 (1983); 28, 2807
(1983).

[26] In Ref. [14] the J = z~ states were expanded to N = 8;
however, in decay calculations it is preferable to have the
initial and final states expanded to the same level, and.

there is little change in the energies of these states in
going from N = 6 to N = 8.

[27] A good fit to the baryon spectrum was obtained in
Ref. [14] with all of the parameters the same as in the
meson physics calculation of Ref. [13].Our best fit used
a string tension which was reduced 15'Fo from the meson
value.

[28] S.J. Brodsky and J. Primack, Ann. Phys. (N.Y.) 52, 315
(1969);F.E. Close and L.A. Copley, Nucl. Phys. B19,477
(1970); F.E. Close snd H. Osborn, Phys. Rev. D 2, 2127
(1970); R. Faustov, Nuovo Cimento 69A, 37 (1970); G.

Feinberg snd J.Sucher, Phys. Rev. Lett. 35, 1740 (1975);
J. Sucher, Rep. Frog. Phys. 41, 1781 (1978).

[29] K. Ohta, Phys. Rev. Lett. 43, 1201 (1979).
[30] R. McClary snd N. Byers, Phys. Rev. D 28, 1692 (1983).

1
[31] A theoretical error of 20, in units of 10 GeV 2, is

added in quadrature with the experimental errors quoted
in the Particle Data Group summary [15] for each photo-
coupling amplitude; g is then formed by summing over
all (forty-six) measured photocouplings.

[32] Raising the quark mass more than roughly thirty per-
cent from the nonrelativistic value results in only minor
reductions in y . Because of the generally small size of
the two-body terms, changes in M& have little efFect on
the fit.

[33] I. Guiasu and R. Koniuk, Phys. Rev. D 36, 2757 (1987).
[34] R.M. Davidson and N.C. Mukhopsdhyay, Phys. Rev. D

42, 20 (1990); R.M. Davidson, N. C. Mukhopadhyay, snd
R.S. Wittmsn, ibid. 43, 71 (1991);T.-S. Harry Lee (pri-
vate communication).

[35] N. Awaji snd R. Kajikawa, in Lepton and Photon In
teructions at High Energies, Proceedings of the 1Qth In-
ternational Symposium, Bonn, Germany, 1981, edited by
W. Pfeil (Physikalisches Institut, Bonn University, Bonn,
1981); H. Fujii et aL, Nucl. Phys. B197,365 (1982).

[36] R.C.E. Devenish, D.H. Lyth, and W.A. Rankin, Phys.
Lett. 52B, 227 (1974).

[37] R.L. Crawford, in Baryon I980, Proceedings of the
4th International Conference on Baryon Resonances,
Toronto, Canada, 1980, edited by N. Isgur (University
of Toronto, Toronto, 1980).

[38] I.M. Barbour, R.L. Crawford, and N.H. Parsons, Nucl.
Phys. B141,253 (1978).

[39] R.L. Crawford snd W.T. Morton, Nucl. Phys. B211, 1
(1983).

[40] Here and in what follows we have usai a = 0.41 GeV
when calculating with the Isgur-Karl model wave func-
tions, which is the value used by Koniuk and Isgur in
their fit to the photocouplings [3] and by Close snd Li in
their AM photocouplings calculation [4], and is compat-
ible with the spectroscopy in this model.

[41] Isgur, Karl, snd Koniuk [11];note that a definition of the
multipoles which difFers from the usual one was adopted,
i.e., E = (As —v 3A1)/2, M = (~3A3 + Al )/2, so that

2 2 2 2
their ratio E/M is y3Eq/Mq+. —

[42] V. Burkert, in Excited Baryona 1g88 [23], p. 122; in ¹

cleon Resonances and Nucleon Structure, edited by G.
Miller (World Scientific, Singapore, in press).

[43) H. Breuker et al. , Z. Phys. C 13, 113 (1982); 1T, 121
(1983).

[44] E. Evangelides et aL, Nucl. Phys. BTl, 381 (1974).
[45] W. Brasse et a/. , Nucl. Phys. B110,410 (1976);B139,37

(1978); V. Gerhardt, Int. Report No. DESY-F21-79/02,
1979 (unpublished); R. Haidsn, Int. Report No. DESY-
F21-79/03, 1979 (unpublished).

[46] P. Stoler, Phys. Rev. D 44, 73 (1991).
[47] R.E. Cutkosky snd S. Wang, Phys. Rev. D 42, 235

(1990).


