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The three-dimensional Gross-Neveu model in a strong magnetic field and at finite density is con-

sidered. It is shown that the phase structure of the model depends crucially on the filling of the thresh-

old levels. In particular, with "asymmetric filling" of the threshold levels, a magnetic field induces a
transition to a phase with broken chiral symmetry.
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I. INTRODUCTION II. VACUUM OF THE GROSS-NEVEU MODEL
IN A STRONG MAGNETIC FIELD

Four-fermion models in (2+1)-dimensional space-time
have been a subject of considerable interest for both
quantum field theory and its solid-state applications.
First and foremost, four-fermion couplings have been
known to induce spontaneous chiral-symmetry breaking
[1] and hence could provide realistic fermion masses in
QCD (see, e.g., [2]) and, perhaps, electroweak theory [3].
Another relevant fact is that given solid-state models (for
example, the S=

—,
' quantum antiferromagnet Heisenberg

model) in the continuum limit reduce to four-fermion
theories [4].

In this paper, we study the influence of a background
magnetic field and finite density on dynamical symmetry
breaking in a very popular four-fermion theory, namely,
the Gross-Neveu model [5). We show that the phase
structure of the model is intimately related to its chiral
properties.

To avoid possible confusion, we remind the reader that
the use of the generally accepted 2 X 2 Dirac matrices in
this model (which are in fact the Pauli matrices) leaves no
room for a chiral symmetry, because there is no other
Hermitian 2X2 matrix that anticommutes with all the
y's. Therefore, to obtain chiral symmetry, one has to
consider 4X4 Dirac matrices [6]. We will study both
versions referring to them as "minimal" and "chiral, " re-
spectively.

The very possibility of undergoing a transition from a
massive phase to a massless one is determined by whether
or not the model is chiral. (Chiral symmetry, if any, is
obviously broken by the presence of a magnetic field. )

However, the finite density of the fermions changes the
situation drastically. The key point here is whether or
not threshold levels [7] in a fermionic energy spectrum
exist and are occupied.

We start with a brief recapitulation of the most impor-
tant features of the Gross-Neveu model.

(i) It describes the dynamics of N fermion species %.
with a —,'g (H') self-interaction. Introducing an auxili-

ary field A, =g%'4 makes the Lagrangian quadratic in %'.

(ii) The model is usually treated by employing a 1/N
expansion. The renormalizability is proven in [8].

(iii) For a sufficiently strong coupling g the field A, ac-
quires a nonzero vacuum expectation value and a dynam-
ical generation of a fermionic mass m=g(A, ) occurs
[»81.

(iv) Since m should be found at the stationary point of
the respective effective potential V,z, m depends on a
variety of external parameters (e.g., finite temperature [9]
and the Aharonov-Bohm background field [10]). The aim
of this investigation is to examine how an external mag-
netic field affects the dynamically generated mass.

The fermionic spectrum in a uniform magnetic field H
is known exactly (from this point on, we assume eH )0):

=eH(2n+1+o )+m

where o.=+1 and n =0, 1,2, . . . . The effective potential
can easily be evaluated by summing c,„over the Dirac
sea. However, there is one subtlety for the minimal mod-
el [7]: the value of o is fully determined by the sign of
energy. One should require o.= —1 for c.)0 and o.=l
for e&0. The computational details are given in [11].
The renormalization procedure is discussed at length in
[8,10]. The resultant expression is
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where g(s, U ) is the generalized Riemann function [12].
In the chiral version, both values of spin o are allowed

for all energies. Consequently, we obtain

~ —
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7T
(4)

The last term in Eq. (4) is nothing but the famous
threshold level energy, co = —m, times its degeneracy
eH/2m per unit area. This term plays a crucial role in
whatever happens at large H. Since the mass m depends
upon H, via the equilibrium condition BV,ff/Bm =0, it is
energetically favorable for m to increase at large H.

If the Dirac sea does not contain the c.o level, then by
analogy with the theory of superconductivity [13) (which
can be considered as a nonrelativistic example of dynami-
cal symmetry breaking), one is led to the conclusion that
there exists a critical value H, such that m (H, ) =0. This
is exactly what occurs in the minimal model. The related
formulas follow.

The equilibrium equation is
' 1/2

mo+
eH +1 =0.1 m

(5)
2 2' 2eH

This implicitly defines the function m(H) with
m (0)=mo (plotted in Fig. 1). For weak fields eH « m 02

1 eH
m=mo 1 ——

mo

The critical field is

2
mo

eH, =
2

=0 92mo
g (1/2)

Here, g(s) is the Riemann zeta function [12]. Recall
that the phase transition is, in a sense, just a formality
since the massless theory has no more continuous symme-
try than the massive one. For the chiral model, a thresh-

FIG. 2. The dynamical fermion mass m as a function of the
magnetic field H in the chiral model; tana =0.2.

old mode exists [see the last term in Eq. (4)]:
1/2

2

+1 + =0.2' 2eH 2m

eH
mo+

2
(8)

Consequently, for the weak field (eH « m 0 ),
2

1 eH
m =mo 1+ m'

and, for the strong-field limit,

m =keH, (10)

where the factor k =0.2 is the root of the following equa-
tion

v'2k h —;—= 1 .
1 k
2'2

The corresponding m vs H behavior, shown in Fig. 2,
clearly demonstrates that the chiral symmetry will not be
restored. Even if we set mo=0, any nonzero H induces
the fermion mass, m =keH [see Eq. (11)) and hence
breaks the symmetry.

III. HIGH-DENSITY PHASE TRANSITION
IN A STRONG MAGNETIC FIELD

Thus far we have assumed that the particle density is
zero. Let us examine the way in which finite density p
modifies the theory. In this case, several positive-energy
levels are added to the Dirac sea, including the threshold
energy level so + =m (unlike the eo one, it does exist for
both versions). As a result, the minimal model acquires a
threshold level. In contrast, the two levels co+ "cancel
out" of the chiral model. So, we expect the properties of
the models to be interchanged.

We proceed with the minimal version first. Assume
that N positive-energy levels [see Eq. (2)] are completely
filled and denote the fractional filling of the n =X level by
v(0& v&1) so that the density is

eHp= (X+v) .
277.

(12)

FIG. l. The dynamical fermion mass m versus the magnetic
field in the minimal model; eH, =0.92m 0.

The total energy (which is V,s plus the sum of E&0
over the occupied levels) should be minimized as a func-
tion of m yielding



46 BRIEF REPORTS 2739

1/2

2 2' 2eH

eH veH

+m +2eHN

To the lowest order in eH/m p, we obtain

m 4~p eH 2m p2-' 2 2
mp mp mp Qm2 —4~p

=0.

(13)

(14)

Obviously, there is no chiral-symmetry breaking in this
case. Such a behavior of the dynamical mass should be
understood as a manifestation of a well-known spectral
asymmetry [7]. Note also that, in a zero magnetic field,
when a "band" structure of the spectrum dissolves, one

has m =Qmp —4irp and there is a critical density

pp=mp/4' [9].
Finally, let us turn our attention to the chiral model.

It is convenient to separate the contribution of the op+
level and denote its filling by vp (0 & vp & 1). The particle
density is given by

Now we take a closer look at the positive threshold lev-
el. For p=0, it is empty and there is a critical field given
by Eq. (7). If we inject fermions, the cp+ level contrib-
utes to the total energy, and a divergence would prevent
us from setting m =0 in Eq. (13). Instead, all the parti-
cles in the strong field (eH ))m p with p kept fixed} occu-

py the lowest level, cp +, where N =0 and

v=2'/eH && 1. This implies m 2 ~ eH.

p= (vp+2N+v),eH
2m

where v is the fractional filling of the top level; 0~ v~ 2,
due to spin degeneracy.

To consider the spontaneous symmetry breaking, one
should again evaluate the total energy and minimize with
respect to m. The respective stationary equation,

2 (1—vp)eH (1 5& p)veH-
2m p+ 2eH g —, +N+1 + 5& p—

2 2eH m +2eH(N+1)
(16}

defines the dependence of m on density p and the magnetic field H. (Here 5&p is the Kronecker delta. ) The weak-field

expansion (eH « m p ) is of the form

m
'~

2m.p + 1 eH

mp mp 6 mp

mp

Qm'p —2~p

if vp=1 .

(1 vp)eH—
2

mp
'2

(v —1)
1 eH 2

4 mp2

if N=v=O,

(17)

Notice that the magnetic field breaks the chiral sym-
metry, whereas the finite density tends to restore it. (In
zero field, the critical density is p, =mp/2n. ) The total
effect can readily be traced in Eqs. (16) and (17). Unless
the positive threshold level is exactly filled, the dynami-
cally generated mass m grows linearly with H, and setting
m =0 in Eq. (16) makes the third term diverge. At larger
densities (vp= 1) the contributions of sp+ cancel so that
the chiral symmetry can be restored. If, for example, N
positive-energy levels are exactly filled, the critical values
are

IV. SUMMARY

We have studied the (2+1)-dimensional Gross-Neveu
model in a uniform magnetic field. It was demonstrated
that strong field behavior of dynamical fermion mass m
crucially depends on the existence and the filling of the
threshold energy levels op+. When only one of these two
levels is filled (asymmetrical filling) the influence of mag-
netic field results in the increasing of m even if the bare
mass mp=0. Thus we have formulated particular condi-
tions under which a magnetic field in 2+1 dimensions
can induce the broken-symmetry phase.

2mp2

eH, =
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