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Surface tension of nucleating hadrons using the free energy of an isolated quark
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We report on a new method of calculating the surface tension in quenched lattice QCD, in which an

external field coupled to the Polyakov lines is applied to generate the interface between the confined and
the deconfined phases. The free energy associated with the interface is then computed from an integral
of the average Polyakov line with respect to the strength of the external field. We have tested this new

approach on a 16X16X32 spatial volume, using a temporal size of N, =4 for which all previous at-

tempts at computing the surface tension have failed. A clear signal has been seen, giving

a/T, =0.027(4j, or a=5 MeV/fm . This represents a very small cost in free energy for hadrons to nu-

cleate from a hot plasma.

PACS number(s): 12.38.Gc, 12.38.Mh, 98.80.Ft

I. INTRODUCTION

A major impediment to the identification of the quark-
gluon plasma in heavy-ion collisions is the lack of
theoretical knowledge concerning the time behavior of
the plasma during cooling, especially near the critical
temperature T, where the transition into the hadronic
phase takes place [1]. Although progress has been made
by using relativistic hydrodynamics [2], important as-
pects of the transition remain unknown, in particular
those relative to the hadronization of the plasma as it
reaches T, and below. The mounting numerical evidence
in favor of a first-order transition both in quenched lat-
tice QCD [3,5] and in full QCD with at least three flavors
of light quarks [4,5] suggests that hadronization may take
place through the nucleation of hadronic droplets in a su-

percooled plasma [6—9]. This possibility is all the more
exciting since many features of nucleation processes can
then be related to equilibrium quantities, for whose deter-
mination lattice techniques are especially well adapted.
One example of the relation between equilibrium and
nonequilibrium properties is found in the classical theory
of nucleation, where the surface tension a plays a central
role in determining the nucleation rates [8,9].

The past 2 years have seen the first results from the
computation of the surface tension in quenched QCD, by
numerical methods [10—14] as well as analytically, in the
mean-field approximation [15]. When performed on

'Permanent address.

N, =2 lattices, the numerical studies have produced simi-
lar values: namely, a/T =0.12(2) [10] and 0.24(6) [13]
on spatial volumes of 8'X 16 and larger. Huang, Potvin,
Rebbi, and Sanielevici [10] have followed an approach
where the free energy is obtained from the integration of
the average action in the space of the coupling P= 6/g2
[16]. Kajantie, Karkkainen, and Rummukainen [13],on
the other hand, have calculated the thermal average of a
surface tension operator [12] obtained from a derivative
of the partition function with respect to the area of the
interface. This operator consists of differences of pla-
quettes parallel and perpendicular to the plane of the in-
terface and bears some analogy to those operators that
have been used for the calculation of the energy density
and pressure [17]. The integral method is, in principle,
exact, while the differential method is approximate. In
the latter, one needs as input the derivatives of g with
respect to lattice dilatations [17], which are known only
in the weak-coupling limit. As documented by several
studies [18], the perturbative nature of the coefficients
used in the differential approach severely limits its accu-
racy near the deconfinement transition, known to take
place in the strong-coupling regime on N, =2 and 4 lat-
tices. Moreover, the integral method is more fiexible,
since, as shown below, any external field can be used to
generate the interface provided that it induces the phase
transition. This is a major advantage that has allowed us
to overcome the difficulties previously encountered in the
extension of the calculation to N, =4. The differential
method requires the simulation of QCD at fewer values
of the coupling than in the integral method, where the
range of integration, albeit restricted to a small interval
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around the transition, must nevertheless be filled by a
sufBcient number of integration points. Thus, the
differential method appears a priori less costly in comput-
er time, although such an advantage may be well offset by
the need of working with substantially larger statistics
and bigger volumes to reproduce the accuracy that the
other method can provide with a judicious choice of the
external field.

Both methods have been tried on X, =4 lattices, with
much less success than for X,=2, however, as they failed
to reveal any clear signal for a nonzero surface tension
[10,13,14]. One reason may be the spatial size used,
8 X 8 X 16 (or 40) and 12 X 12 X 24, too small to generate a
measurable discontinuity in the action, i.e., in the vari-
able conjugate to the external field used to induce the
transition [10]. Accordingly, we are proposing here to
take fundamental advantage of the fact that arbitrary
combinations of external fields can be used in the integral
approach, provided they induce the transition, and to
base the calculation of the surface tension on the expecta-
tion values of the Polyakov lines. It is a well-known fact
that the Polyakov line exhibits a stronger discontinuity at
the transition point than the action. This new technique
should therefore be more sensitive to the phase transition
in smaller systems. Our new approach is described in de-
tail in the following section. The numerical results are
described in Sec. III (a preliminary analysis was present-
ed in [11])and are followed, in Sec. IV, by a short discus-
sion focusing on the comparison between the E, =4 and 2
results.

II. EXTERNAL FIELD COUPLED
TO POLYAKOV LINES

The computation of the surface tension is usually car-
ried out by calculating the free energy FlkT associated
with the presence of an interface separating two coexist-
ing phases, in our case the low-temperature (hadronic)
phase and the high-temperature (quark-gluon plasma)
phase. In the integral approach, it is obtained from the
integration with respect to some coupling constant driv-
ing the phase transition. In Ref. [10] the integration vari-
able used was the bare coupling constant; here we will be
using an external field coupled to the Polyakov lines.

Consider the lattice action

tion of free energy of the system can be obtained from the
integral in h space of the thermal average of the Polyakov
line, since

—V/ReL ) =—

—V(lmL ) =—

d lnZ dF/kT
d Reh d Reh

d 1nZ dF/kT
d Imh d Imh

Re h2

As in Ref. [10], the surface tension is obtained by first di-

viding the volume of the lattice into two halves, in which

P and h can be set independently to Pi, P2, h „h2. An
interface between an ordered phase, with a nonzero
(ReL ), and a disordered phase, with a zero (ReL ), is
then created and removed by a suitable path in the space
of the variables P„Pz, h„h2. As shown in Fig. 1, we

start with a homogeneous system in the ordered phase
with h, =hz=h (where we have set Imh =0.0
throughout and introduce the tilde to indicate real values
for h ) and P, =P2=P, where P lies slightly below the crit-
ical value P, . The interface is introduced by lowering h,
adiabatically to zero. In practice, since P is lower than
P„ this should be sufficient to bring one-half of the sys-
tern to the disordered phase. In principle, the eSciency
of the procedure in sampling the disordered phase can be
increased by performing an excursion in P;. A major ad-
vantage of our technique is the freedom of varying the
parameters along a wide class of paths. Finally, the
whole system is brought back to a homogeneous, now
disordered phase, by lowering hz to zero as well, follow-
ing the same path. As in [10], the surface tension of
physical interest is obtained from the difference of the
two paths, in the limits V~ ao followed by h ~0. In ad-
dition, P should approach the infinite volume critical
value P, . In our calculation at finite volume we have tak-
en P sufficiently close to I3, so that we believe this is not a
serious source of error.

It should be pointed out that this procedure can be
used with any external fields in S, provided that they gen-
erate the correct phase transition near the zero-field limit.
In other words, because we are ultimately interested in

S —S~+SE,
where

Sz= —
—,
' g [hL'(x)+h*L(x)] .

Ss, is the standard Wilson action for SU(3) defined in
terms of the compact gauge variables U„(x )

=exp[i A„(x )]. L(x) is the Polyakov line [19]:
N,

L(x)= —,'tr g Uo(xo, x) .
x =]

(3)
~ ~ (o.oo,o.oo)

Re h~
The coupling h is a complex constant, taken to be in-
dependent of P. This new action describes quenched
QCD in the presence of the external field h. The varia-

FIG. 1. Integration path for the computation of the surface

tension.
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FIG. 2. Conjectured phase diagram of quenched QCD with
an external Polyakov field. A first-order phase transition is
represented by a solid line; phase transition of unknown charac-
ter corresponds to dashed lines.

III. RESULTS

The computations were carried out on the Boston Uni-
versity Connection Machine 2, using a —configuration or

the surface tension between the Z3-ordered and -disor-
dered phases at P„and because the external field Sz is

used to generate and stabilize the interface, it is essential
that the correct phase transition be recovered in the limit
of a zero external field. This condition is satisfied with
the use of the Polyakov line (2). The phase diagram of
such an extended QCD can be understood as follows: the
first-order phase transition is well established in the ab-
sence of the external fields (h =0) [3]. It is natural to ex-
pect that this first-order transition point will continue it-
self into the domain of finite h, at least for small enough
h. This line of first-order transition is illustrated in Fig. 2
and defines the values of the coupling h, (or Reh, ). On
the other hand, the line in the range P &P, separates two
different types of ordered states: ( ReL ) & 0 and
(ReL) (0. The whole situation is analogous to the
three-dimensional three-state Potts model [20].

There are two main sources of systematic errors to
worry about: namely, large integration steps and low
statistics. Both give rise to hysteresis effects which will
bias the computation of the Polyakov line averages.
These effects are particularly important near the critical
coupling h, . Hysteresis can be easily revealed in the cal-
culation of the net free energy around any closed loop,
such as the loop ABC in Fig. 1; because on finite size sys-
tems the free-energy is a nonsingular thermodynamic po-
tential, it must have a zero variation around any closed
loop. In order to reduce potential hysteresis effects, it is
best to use an integration measure d(Reh) ten times
smaller near the transition line as the measure away from
it. Likewise, the statistics in the line averages should also
be increased near h, .

TABLE I. The surface tension vs Reh. The error is the com-
bined systematic and statistical errors. The asterisk and dagger
refer to extrapolated values to Reh=0 by using the data of
Reh & 0.006 and Reh & 0.008, respectively.

0.002
0.004
0.006
0.008
0.010
0.020
0.030
0.040
0.050
0.060
0
0

0.004
0.015
0.028
0.032
0.036
0.044
0.050
0.055
0.062
0.070
0.027*
0.029t

0.007
0.007
0.007
0.007
0.007
0.006
0.005
0.005
0.005
0.004
0.004
0.005

16384 processors. In such a configuration, a Metropolis
code written in C updates a 16 lattice in quenched QCD
at a sustained rate of 300 MAops. For the purpose of cal-
culating the surface tension, a lattice of size
16X16X32X4 was considered. On such a space-time
volume, the transition point has been located at
13, =5.690 [3,21]. As shown in Fig. 1, the values of the
Polyakov couplings were taken in the range
0 & Reh &0.06 and the value of the gauge coupling set to
P=5.685. Imh was set to zero throughout the calcula-
tion. The integration steps were of magnitude
d(Reh ) =0.01—0.02 away from h„and d(Reh )

=0.001—0.002 in its vicinity. 8000—15 000 iterations
away from h„and 50000—80000 iterations near h, were
accumulated for each value of the pairs (Reh„Reh2),
measuring ReL every 10 sweeps. At P=5.685, h, is lo-
cated at Reh -0.004.

The update of the lattice configurations were per-
formed with the overrelaxed Metropolis algorithm [22].
The standard checkerboard algorithm cannot be used in
the presence of Polyakov fields in the action because, un-
like S~ which has only nearest-neighbor interactions, SE
spans the full lattice in the temporal direction. The up-
date procedure was therefore performed using the check-
erboard pattern on the space-time plaquettes on time
slices 1,2 and 3,4 separately.

The computation of the surface tension hinges on the
subtraction of the net free energy associated with the legs
AB and BC in Fig. 1, requiring two numbers computed
with high accuracy. At h =0.06, for example, they have
values 5F=0.686 and 0.616, respectively (in units of
a/T ), leading to a surface tension a/T =0.070. An ac-
curacy of 1 part in 10 is therefore needed in such a com-
putation. The calculation of the free energy along the
closed path ABC will require a similar accuracy; in our
example (h =0.06), one obtains 5F=0.002(8) along the
largest closed path available, a value consistent with zero
as expected.

The values of the surface tension for h &0.06 and its
extrapolation to zero Polyakov coupling are displayed in
Fig. 3 and Table I. The statistical errors were computed
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0.08

0.06

0.04

0,02

dinate z, as shown in Fig. 4. Whereas the line develops a
clear and wide plateau in the region of nonzero Polyakov
coupling, such is not the case in the region of zero h,
where no plateau is seen but a broad minimum located at
the midpoint of the half-lattice. Longer lattices are clear-
ly needed to simulate properly a disordered half in the
presence of a polarized one [13]. However, this finite-size
effect has less severe consequences in the integration ap-
proach since only the average of the Polyakov line in the
half-lattice with nonzero strength h (the right half) is con-

0.00
0

].J. . . I .. i

0.04 0.06
R('(h)
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0.225 —
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FIG. 3. a/T, ' vs h. The solid line is the result of its extrapo-
lation to h ~0 from h & 0.01.
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z Z

Z

0.175—

by first using the jackknife method [23] on the data sam-
ple of (ReL ). Jackknife block sizes of N=10—50 mea-
surements (away from h, ) and 750 ineasurements (near
h, ) were ultimately chosen. The statistical error on the
value of the surface tension was then obtained by adding
in quadrature the errors on (ReL ) along the same in-
tegration path.

Table I and Fig. 3 quote the combined statistical and
systematic error on the value of the surface tension. The
systematic error is due to the integration step and has
been estimated to be of order 0.001 (in units of T, ) by
computing the contribution of the next-higher-order term
in Simpson's rule. The effect of such a systematic error is
a upward or downward shift in the data of Fig. 3.

The presence of a break in the slope of the surface ten-
sion in Fig. 3 is a finite-size effect, arising from the inabil-
ity of the system to support a stable interface on a
16X16X32 spatial volume when the applied field h on
the Polyakov loop is too small. This minimum field [16]
h =y is approximately y=0.01 for our lattice. The ex-
trapolation to h ~0 is therefore carried out by fitting a
straight hne in the range h )0.01, for which one obtains
a(h =0)/T, =0.027(4), the value of the surface tension
in quenched QCD with N, =4. Measured in lattice units,
this result is about 40 times smaller than that of the
N, =2 case, thus explaining the difficulties encountered in
the previous studies [10,12—14] which have used the ac-
tion to compute the free energy.

Knowing the value of the surface tension allows us to
estimate the value of y for arbitrary lattice sizes, provid-
ed that y is small and a near the infinite volume limit.
Indeed, the point at which the bulk volume free energy is
approximately equal to Reh X (ReL ) and also equal to
the cost in free energy due to the formation of the inter-
face gives yd(ReL ) =(2S/2V)a/T Applying this . cri-
terion to the results of the present simulation gives a
check on the internal consistency of our calculation, and
indeed gives y =0.01.

Other effects of the finite lattice size within the region
of interface stability can be studied by considering the
profile of the Polyakov line averages with respect to coor-
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FIG. 4. Profiles of the Polakov line (real part) along the coor-
dinate normal to the interface.
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sidered in the integration path BC. In fact, since most of
the calculation has a nonzero Polyakov strength, these
finite-size effects will be minimized because the external
field imposes a well-defined length scale of about N, /2.
Of course, this scale is destroyed by metastability at small
h & y', as shown in Fig. 4.

IV. CONCLUSIONS

Previous simulations on small spatial volumes using
plaquettes as derivatives of the free energy were unable to
get a meaningful value for the surface tension [10,12—14]
on N, =4 lattices. Those results indicate that a much
larger spatial volume, perhaps as large as 24 X48, would
have to be considered in order to see clearly the discon-
tinuity in the plaquette at the transition point. A new
method was presented here as an alternative for medium
sized lattices, where the interface and the free energy are
defined in terms of Polyakov line averages. In addition to
relying on a more sensitive variable at the phase transi-
tion, this method is, in principle, exact and less sensitive
to finite volume effects. By simulating quenched QCD on
a 16X16X32X4 lattice, a value of a/T =0.027(4) was
obtained. This result can be compared with the result
from N, =2 lattices (using the integral approach),
a/T =0.12(2) [10]. No scaling due to asymptotic free-
dom is seen as yet. This situation is similar to the lack of
scaling observed with T, /A&cD, which change by as
much as 60% by going from N, =2 to 8 [19,21]. This

should not be surprising given the relatively strong value
of the gauge coupling P at which the phase transition is
located for N, =2 and 4 lattices. Longer temporal exten-
sions are clearly needed to see asymptotic scaling.

It is interesting to note how small the value of the sur-
face tension is when expressed in physical units. In
quenched N, =4 lattice QCD, T, =200 MeV [4], so that
a=5 MeV/fm . Although the computations reported
here are still far from the continuum limit and did not in-
clude the effects of the internal quark loops, the result in-
dicates that only a very small amount of free energy is re-
quired for hadrons to nucleate from the quark-gluon plas-
ma, thus diminishing the importance of supercooling and
other nucleation effects in plasma dynamics.
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