PHYSICAL REVIEW D

VOLUME 46, NUMBER 6

15 SEPTEMBER 1992

Bubble nucleation and growth at a baryon-number-producing
electroweak phase transition

Bao Hua Liu and Larry McLerran
Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455

Neil Turok*
Blackett Laboratory, Imperial College, London S.W. 7, United Kingdom
(Received 1 May 1992)

We discuss the nucleation and growth of bubbles of the broken-symmetry phase of matter at the elec-
troweak phase transition. We show that the bubble walls propagate with a mildly relativistic speed. The
Lorentz y factor depends on the ratio of the Higgs to gauge-boson mass—for parameters allowing for
baryogenesis at the transition (i.e., a fairly light Higgs mass) we find yv ~1. We show that the bubble
wall is mainly slowed by interactions with low-momentum gauge-boson pairs, and compute the damping
rate due to these interactions. The width of the bubble wall is significantly larger than the typical wave-
length of particles which are reflected from it, which allows us to use a WKB approximation for the par-
ticle scattering. The width is also larger than the mean free path for these particles, which means that
the gauge boson fluid remains close to local thermal equilibrium. This situation results in mildly relativ-
istic motion of the bubble wall. As a result, the baryon-number excess produced on the bubble wall is
not much diluted by subsequent diffusion. We compute the effective equation of motion for the Higgs
field, and the approximate shape of the moving bubble wall.

PACS number(s): 12.15.Ji, 98.80.Cq

I. INTRODUCTION

Since the work of 't Hooft [1], it has been known that
the rate for baryon-number violation in electroweak
theory is nonzero. Early work on this problem led to the
suggestion that baryon-number violation might proceed
at a reasonable rate at high temperature or high energy
[2-5]. Only recently has it been convincingly argued
that the rate is large at high temperature [6,7], and the
situation in high-energy collisions is still completely un-
clear [8]. Detailed calculations [9] have shown that, at
temperatures larger than about 100 GeV, the rate for
baryon-number violation in the standard electroweak
theory is large enough to substantially affect the baryon
asymmetry of the Universe.

This raises the exciting possibility that the observed
baryon asymmetry of the Universe was created at tem-
peratures of order 100 GeV, through electroweak physics
which should be experimentally accessible within the
foreseeable future. Since the electroweak theory is a
weak-coupling theory, it should be possible to perform an
ab initio calculation of the baryon asymmetry, taking the
standard hot-big-bang nucleosynthesis calculations of the
abundances of the light elements an important step back
in time, and explaining the value of the one adjustable pa-
rameter in those calculations, the baryon-to-photon ratio.

The conditions for generating a baryon asymmetry in
the big bang were pointed out long ago by Sakharov [10].

*On leave from the Physics Department, Princeton University,
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In addition to B nonconservation, the universe must fall
out of equilibrium and the underlying dynamics must
violate CP. The first condition is easily satisfied in elec-
troweak theory since the phase transition which gen-
erates masses for W, Z, and Higgs bosons is generically of
first order [11-34]. CP is also violated in the standard
model and its extensions. Therefore, in electroweak
theory, all the conditions are satisfied which would allow
for the generation of a baryon asymmetry at the elec-
troweak phase transition. It is then a matter of the de-
tailed dynamics as to whether a baryon asymmetry of an
acceptable magnitude is generated.

It has only recently been recognized that the dynamics
of electroweak theory may generate the baryon asym-
metry of the Universe [16—19]. Much recent activity has
been stimulated since, in a variety of simple electroweak
scenarios, the baryon asymmetry which is produced ap-
pears naturally to be of the same order as that which is
observed in the Universe [20-23].

To refute or confirm these scenarios it is clear that a
detailed understanding of the dynamics of the elec-
troweak phase transition must be developed. While one
has a relatively clear understanding of the nucleation of
bubbles of the broken-symmetry phase [24,25], their sub-
sequent evolution as they expand and sweep up the sym-
metric phase is much less well understood. In a recent
letter, one of us (N.T.) made a start on this problem [25].

It is surprising that the bubble-growth problem in the
electroweak theory was not solved long ago. At first
sight, it appears to be a simple problem in hydrodynam-
ics [26-28]. However, closer inspection shows that one
must understand the microscopic details of the burning
of symmetric electroweak matter into the broken-
symmetry phase at the surface of the bubble. In fact, to
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compute the velocity of the propagation of the bubble
wall, one must necessarily investigate microscopic
entropy-producing processes [27,25].

Let us begin by reviewing the general constraints on
producing and preserving a baryon asymmetry at the
electroweak phase transition. Using the results of Ref.
[11], it was argued in Ref. [20] that, for theories with
multiple Higgs doublets, the effective potential for the
Higgs fields responsible for the symmetry-breaking elec-
troweak phase transitions takes the form

V(¢)=%M2( T)¢2—-5T¢3+%¢4 (1)

where MX(T)~ $g*(T?—T?), and where T, is the tem-
perature at which the curvature of the potential near the
origin vanishes. The field ¢ here is a linear combination
of the fields which at zero temperature generate the phys-
ical scalar particles. The parameter 8 ~(3/32m)g3. We
will take this form of the potential throughout the
analysis in this paper. Improvements of this potential us-
ing, for example, the method of Carrington [15-34],
which includes the effects of ring diagrams and a large
top-quark mass, lead to modifications of our results
which are of order unity, and will be investigated fully in
a later analysis.

Bubble nucleation takes place when the height of the
barrier separating the minima corresponding to broken-
and unbroken-symmetry phases becomes small. As the
Universe cools, the nucleation rate grows until it is com-
parable to the expansion rate of the Universe. After the
bubbles nucleate, they rapidly expand to fill space, all this
occurring in a time of the order of 4X 107> of an expan-
sion time [25].

In the center of the bubbles, the Higgs-field magnitude
is fixed by the parameters in the Higgs potential. These
must be chosen so that the rate of baryon number viola-
tion in the broken symmetry phase is small compared to
the expansion rate of the Universe. This requires that, in
the broken symmetry phase immediately after the transi-
tion, the sphaleron mass is large compared to the temper-
ature. The value of the vector-boson mass for which this
occurs may be estimated using the formula [7]

4 7
a 2My,(T)
r/v= 24 | SW w-’
IV =K /gOT | 25 | NN | o
Xexp[—Es(T)/T] . (2)

In this equation, k(A /g?) is a function of the Higgs self-
coupling scaled by the gauge coupling squared, which
must be numerically evaluated [9]. The factors of N,,
and N, are zero-mode factors evaluated in Ref. [9]. The
factor Eg(T) is the mass of the sphaleron whose value is

My (T

2 )
Ey(T)= A(A/gh), (3)

Ay
where 1.5< A4 <2.7 for 0<A/g?< . For the one-
doublet theory, 4 is very close to 1.5 for the light Higgs
mass we use. Needless to say, in the two-doublet theory,
A may be slightly different.
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Using this formula, and requiring that the sphaleron
rate be smaller than the cooling rate (the expansion rate
of the Universe ~ T /mp ~e ~*°), implies a constraint on
the gauge-boson mass,

My (T)>15a,T . @

This must be satisfied if a baryon asymmetry produced
via anomalous processes is to be preserved after the phase
transition.

In the unbroken symmetry phase, the rate of B +L
violation is large

T~a}, T . (5)

As one passes through the bubble wall, however, the
effective mass of the gauge bosons grows, and the rate for
B +L violation decreases. Comparing Egs. (2) to (5), one
finds that the region of the bubble wall for which baryon
number violation is turned on has

However, this simple picture, in which the sphaleron pro-
cesses occur at the thermal equilibrium rate appropriate
to the local value of My, in the bubble wall, is certainly
too naive—a recent numerical study in 1+1 dimensions
indicates that the relaxation to the vacuum behind propa-
gating bubble walls is inherently a far-from-equilibrium
process [31], with B +L violation actually being driven
by energy stored in the unbroken-symmetry vacuum.
Nevertheless, it is still true that (B +L)-violating pro-
cesses are turned off as one passes through the bubble
wall.

The bound of Eq. (4), the requirement that one
preserve any baryons created by processes occurring in
the bubble wall, imposes a strong constraint on the
effective potential for the Higgs field. As we shall see in
the next section, the Higgs-field expectation value just
after the transition is completed is close to the value
where the minima of the potential are degenerate. We
therefore have

.. 3g}

&( T)ZZIT_ 16mh T

or, using Eq. (4),

@)

2
£ >40 8
240 (8)
This is the same as
M3 /M3,<0.2 )

where we have used the Higgs boson mass My =V 2A¢ at
zero temperature, and the vector boson mass My, =g¢ /2.
Note that we use the value of ¢(7T) at the transition,
which occurs well before the metastable minimum disap-
pears. This makes the upper bound on the Higgs mass
lower by a factor V'2/3, a substantial effect—Eq. (9) cor-
responds to My =35 GeV. Previous treatments of the
one-doublet [16] and two-doublet [13,14] models have not
properly taken this into account.

Strictly speaking, this is the Higgs mass at zero tem-
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perature only in the standard one-doublet model. In
multiple-doublet models, in which CP violation in the
Higgs sector drives baryogenesis, there is no simple
relation—at zero temperature, My /M,,#2V 21 /g. For
our purposes, it is useful to think of this ratio of cou-
plings in terms of a Higgs boson mass which would be the
naive zero-temperature limit of the finite-temperature
theory, and remember that the limits on what we call the
Higgs mass are not those for any physical particle. The
effective bound on the mass of the lightest physical scalar
in the two-doublet model, for example, is weaker, but
only by a factor of 2 or so [14]. We shall for simplicity
stick to the one-doublet model throughout this paper, al-
though it is to be regarded as merely a convenient param-
etrization of the Lagrangian for the multiple-Higgs-
doublet models we are more interested in for baryo-
genesis.

The one-doublet model seems to be ruled out for
baryogenesis, because there is a lower bound on the ratio
(9) from recent CERN LEP experiments, which set a
bound My>57 GeV. This  corresponds to
MH(O)Z/MW(O)2>O.48, which clearly conflicts with Eq.
(9). CP violation in the one-doublet theory also appears
much too small to make the observed asymmetry —we
shall return to this point, and the interesting recent
scenario of [23] below. In more complicated multiple-
Higgs-doublet models, in which there is CP violation in
the Higgs potential, and therefore a better prospect for
generating a baryon asymmetry [19,20], there is more
room to maneuver and avoid the experimental constraint.
In order to preserve the baryon asymmetry, there is a
limit on the lightest-mass Higgs boson, just as in the one
doublet model, but the upper limit is of order My <125
GeV [13,14] (although this may be a little too high, be-
cause of the factor of V'2/3 mentioned above). In the re-
gime of interest in these theories, the potential is quite
similar to the one-doublet potential with the Higgs mass
close to the experimental limit. We shall therefore take
as a reasonable “‘realistic” range of values

M3 /M, ~0.2-0.4 (10)

(corresponding to 35 GeV<My<50 GeV, 0.01
<A <0.02) of course remembering that in extended mod-
els My is not the true zero-temperature value of the

Higgs mass.
The naive “equilibrium” picture of baryon number
violation inside the bubble wall is that for

My (T)<7ay T the sphaleron transitions are strongly
turned on. For 7ay T <My (T)=15ay T, the sphaleron
rates are shutting off, and by the time one reaches the
value M,(T)= 15a T, the rate of sphaleron transitions
is slower than the expansion rate of the Universe. In or-
der to evaluate the amount of baryon-number violation
during the evolution of the bubble wall, one must
translate these mass ranges into length scales within the
bubble wall. Since the ratio of mass scales when the
sphaleron rate is large to that when it shuts off is of order
1, and the value at which it shuts off is close to the vacu-
um value, we expect that the ratio of scales in the bubble
wall is of order unity. We shall also see that the size of

BAO HUA LIU, LARRY McLERRAN, AND NEIL TUROK 46

the bubble wall is of the order of the sphaleron size
L~My(T)"'~1/(ayT), so that the region where the
baryon number violation is strong in the bubble is of the
order of a typical sphaleron size.

The velocity of the bubble wall is crucial for two
reasons. First, if the bubble wall is moving fast then its
width is Lorentz contracted, and when it passes by the
sphalerons its effect should be localized and small. One
might reasonably expect some suppression of the effect
the wall has in biasing the baryon-number-changing pro-
cesses.

The second reason is that if the wall moves too slowly,
diffusion may erase the baryon asymmetry as it is pro-
duced. The baryon asymmetry produced on the bubble
wall may diffuse out into regions where the baryon num-
ber is rapidly violated, and be destroyed—outside the
bubble, and in the outer part of the bubble wall, the rate
of baryon number changing process is large. If we imag-
ine following a quark or lepton carrying B + L across the
bubble wall into the unbroken symmetry phase, there is a
characteristic time for it to last before it participates in a
(B + L)-violating event, and the B +L it carries is des-
troyed. This is given by

tg~1/(a},T) (11

since the total rate of (B + L)-violating processes is given
by (5) and the number density of particles involved is
~T?3. Alternatively, one may compute the chemical po-
tential corresponding to a small excess of B + L, and cal-
culate the resulting bias in the (B + L)-violating process-
es, whose total rate is given by (5). One then finds that
Ty is the relaxation time for a B + L excess in the unbro-
ken symmetry phase.

B + L diffuses outward since the effect of the chemical
potential of the baryons produced by the wall is to make
a potential difference for baryon number. Assuming that
the process is diffusive, we may therefore estimate the
minimum velocity of the bubble walls above which
diffusion will play little role. During one characteristic
(B + L)-violation time tg, the wall must move a distance
(vty) large than the typical diffusion length. The
diffusion length is

d~vAg (12)

where A is the quark or lepton mean free path, much less
than t5. The quark mean free path is determined by
strong scattering,
1
aiT

(13)

since the number density of quarks n ~ T3, and the cross
section o ~a% /T2 The lepton mean free path is larger,

1

A~ .
a4 T

(14)

To preserve the B +L created by the wall, it follows
that a sufficient condition is that

Vyan >d/tg~ay . (15)
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We shall find that this condition is satisfied in the realistic
case, so the baryon asymmetry is not erased by diffusion.

In this paper, we will describe in some detail the struc-
ture of nucleation bubbles propagating into the elec-
troweak plasma. We shall find that the velocity of the
wall is faster than that for which diffusion is important
but slow enough so that it is only mildly relativistic, and
the baryon-number-violating dynamics should not be
very drastically affected.

There is still a good deal of uncertainty regarding the
detailed calculation of the final baryon asymmetry in the
various scenarios which have been proposed. The esti-
mates of [20] for example, are certainly quite crude. In
that paper, it was shown that two different ways of look-
ing at the process—as a biasing of a close-to-equilibrium
rate for B + L violation or as a perturbation to the classi-
cal equations of motion where the CP-violating Higgs po-
tential drives the baryon asymmetry in a completely
deterministic manner—gave the same estimate for the
final asymmetry. Recent (1+ 1)-dimensional simulations
support the latter viewpoint—the process of baryon
number violation appears to be intrinsically a nonequili-
brium phenomenon [31], and they confirm the magnitude
of the earlier estimate. However, these simulations only
include bubble walls very crudely, and it is clear that un-
derstanding the dynamics of the bubble wall is a very im-
portant first step towards a detailed microscopic compu-
tation of the baryon asymmetry.

In scenarios such as those recently advocated in Refs.
[22,23], the baryon-number violation takes place in a re-
gion whose size is of the order of a typical particle mean
free path around the bubble-wall surface. These
scenarios require that the bubble wall have a thickness
much less than a particle wavelength and that the size of
the diffusion region associated with particle scattering be
large compared to the bubble-wall thickness. The typical
wavelength, which is important for the scenarios above,
is of order 1/M (T), where M(T) is a W-boson mass at
the temperature near the transition temperature. We
shall see that these scenarios must be greatly modified
since the typical bubble-wall thickness is about an order
of magnitude larger than the typical particle wavelength
and very much greater than a quark mean free path. (In
some models of electroweak dynamics, it may be possible
to adjust parameters in such a way that the bubble wall is
thin, and arrange the temperature of the transition to be
sufficiently low so that the mean free paths are large.
Such an adjustment we regard as possible but not natural,
and will not further consider it [29].)

The outline of this paper is as follows. In Sec. II, we
briefly review the nucleation process which generates the
bubbles. We compute the value of the Higgs field and the
temperature at which the nucleation rate is fast enough
to fill the universe with a region of the stable broken-
symmetry phase of electroweak theory.

In Sec. III, we discuss the gross features of bubble
growth. In particular, we discuss bubble growth in the
case of slow burning, that is deflagrations, and for rapid
burning or detonations. We argue that the out-of-
equilibrium processes which generate entropy are impor-
tant in determining the speed at which the bubble wall
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propagates. We also discuss the shape of the bubble wall.

In Sec. IV, we discuss the equation which determines
the velocity of the bubble wall. In order that the wall
have a finite terminal velocity, damping forces must arise
which slow the bubble wall, since otherwise it would ac-
celerate to arbitrarily close to the speed of light. This is
because the phase transition releases energy, and in the
absence of damping, all of the energy released would go
into the kinetic energy of the bubble wall. We shall argue
that the dominant term which generates the damping
arises from a buildup of W-and Z-boson pairs in the vi-
cinity of the wall.

In Sec. V, we compute the damping of the bubble wall
in an unrealistic, but instructive, approximation where
we assume that the mean free path for particle scattering
is large compared to the width of the bubble wall. We
use a WKB approximation, and show that in this limit
our computation has the simple interpretation of a pres-
sure generated by scattering from the wall of particles
whose masses change as one passes through the wall.

In Sec. VI, we compute the damping on the wall in the
realistic limit when the mean free path is small compared
to the size of the bubble wall. We discuss the relevant
mean free paths, and a general formalism for solving the
Boltzmann transport equation for the perturbed phase-
space density, which in the end is what determines the
bubble-wall terminal propagation speed. We compute
the deviations from equilibrium distribution functions,
and their effect on the damping of the bubble wall. We
find that parametrically for small coupling, the Lorentz y
factor for the bubble wall depends only on the ratio of
Higgs- to W-boson masses. We find that the bubble wall
Lorentz y factor ~1, but do not at present have a
sufficiently good computation to determine whether or
not the bubble propagates as a detonation or a
deflagration.

In Sec. VII, we discuss our results and compare them
to earlier attempts to compute the terminal velocity of
bubbles in the electroweak plasma.

II. THE NUCLEATION PROCESS
AND GROSS FEATURES OF BURNING

The nucleation process in cosmology for a potential of
the type given in Eq. (1) was outlined in Refs. [24,12] and
applied to the electroweak theory in [20-25]. We will ex-
pand a little on that analysis here. We will review the
computation of the bubble action, and use this to deter-
mine the temperature when the entire Universe is con-
verted into the asymmetric phase. This will be needed in
our later analysis. We shall also discuss a simple varia-
tional ansatz, and a numerical fit which allows for a good
approximate analytic computation of the nucleation rate.

From the analysis of Refs. [24,12], the rate of bubble
nucleation per unit volume is given by
3/2

—~8,/T

r=MH%T) (16)

23
7T

where S; is the three-dimensional O(3)-invariant bubble
action and MX(T)=y(T?—T?) as below.
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Recall that the effective potential for the electroweak
theory from Eq. (1) may be written as

V(¢)=-§(T2—T3)¢2—8T¢3+%¢“ (17)

where ¢=\/§(<I>T<D)l/2, with @ the standard Higgs dou-
blet field and

y=1QML+MZ+2M2)/$3~ ig?

16

when My, ~M, ~M,, and M, is the top-quark mass. The
parameter § was defined previously and is

2M,+ M 3
8= ~ g

3
41r¢(3) 327 ’

Throughout this paper, we will assume that the top-
quark mass is of the order of the W- and Z-boson masses.
Corrections to this should be computed using the method
of Carrington [15-34], but for our semiquantitative
analysis this will not be done. We will also assume a light
Higgs-boson mass, i.e., A is small, g* <<A <<g?, as dis-
cussed in Sec. I.

Following Turok [25], we re-express the effective po-
tential in terms of a dimensionless temperature
E=x(1—T2/T?), where y=Ay /8*>>1. Notice that for
large temperatures, ¢ is large. At T, corresponding to a
massless scalar particle in the effective potential, £=0.
As § is decreased from large positive values, the effective
potential at first has only one minimum centered at ¢ =0.
At £=2.25, a second relative but not absolute minimum
develops at nonzero ¢. At £{=2.00, the minimum at ¢ =0
and nonzero ¢ become degenerate, and at smaller values
of { the system is unstable with respect to decay into the
system with a nonzero value of ¢. At =0, the local
minimum at ¢$=0 disappears, and there is no barrier
which prevents decay into the asymmetric phase. At this
temperature, the system would spinodally decompose if it
had not already undergone a first-order phase transition.
This would happen only with a large cooling rate—in the
electroweak transition, the cooling rate is the expansion
rate of the Universe, and is very slow.

We now must compute the bubble nucleation rate.
The critical bubble action is the stationary point of the
three-dimensional action functional. It represents the
free-energy barrier to the creation of a macroscopic re-
gion of broken symmetry phase. It is a maximum with
respect to changes in the size of the bubble, so that small-
er bubbles collapse, but larger bubbles grow. It is a
minimum with respect to other changes, however, so it is
a classical solution with one unstable mode. To calculate
the bubble action, it is convenient to express it in terms of
a dimensionless radius, x =(8/V'A)Tr, and a dimension-
less field strength g =(A/8T)¢$. We will assume an O(3)-
symmetric bubble gives the stationary three-dimensional
action which interpolates between the phases, so that
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2 1/2

S,/T=4x

2

2
1

2

dg 1 4 _g
X 2 “s 2 — 3+ 2
[ g | 78t e T 5e

(18)

so the bubble action is proportional to V'8%2/A° times a
function only of §.

The three-dimensional action has been computed nu-
merically by Turok [25]. We will expand upon that
analysis here. In the relevant regime, the “thin-wall” ap-
proximation is not good, but a Gaussian approximation is
reasonable.

To begin with, we use the following Gaussian ansatz,
~x2/x(2)

g(x)=ggpe (19)

where g, and x, are the two variational parameters. It is
straightforward to compute the bubble action and ex-
tremize with respect to g, and x,. The result is that (18)
is given by

17.3/2 82 172 1 5 )
S3/T=—§3_/§— F 25/2(3+I )lgog
8o 1
373 —
+gol ED) 3372 } , (20)

where the dimensionless size of the bubble x,=1/§ 172
with / given by

1= L @1

[1—(2/3)"%g, /612

and the value of the field at the center of the bubble given
by

172
8

_ 3¢
go*‘/—-j -

> (22)
42

This ansatz works well for {< 1.5 or so, and gives the
small-§ dependence found by Linde [24]

3V3m? 8
2572 3372

Sy/T~ &% for {0 (23)
with the coefficient approximately 5% higher than
Linde’s numerical result. Unfortunately, the Gaussian
ansatz fails as § approaches 1.68 from below, since x
diverges.

The true solution begins to approach the “thin-wall”
behavior beyond this point, which is described for exam-
ple in [24]. The idea is that the bubble should be com-
posed of an interior, in which ¢ takes the false-vacuum
value, and a wall, within which ¢ interpolates from the
false to the true vacuum. The energy per unit area of the
wall is taken to be that of the static domain-wall solution
to the theory at {=2, when the two vacua are degenerate.
The sole variational parameter is the radius of the bubble.
Extremizing, one finds
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172
83/2 1

81 (2—¢)

82
S3/T=4m |-5 (24)

The dimensionless radius of the bubble is given by
x=(V8/3)2—£)"L

We have plotted he results of the Gaussian approxima-
tion, the “thin wall” approximation, and an accurate nu-
merical calculation in Fig. 1. The region of interest is
around {~ 1.6, where it is seen that neither are particu-
larly good. Over the interval 1.3 <¢ < 1.8, the numerical
results are well approximated by [25]
52 172

}\,3

_C
2—¢)»

where C=30, a=1.6 and the factor in square brackets is
unity for M =50 GeV, our “realistic” case.

If the bubbles grow at a speed v, then the fraction of
the Universe remaining in the unbroken phase at a time ¢
is given by

S3/T=10.13 (25)

Sfu=exp (26)

—f'dt'4—"v3(t—t’)3r‘(t')
0 3

with ¢ the cosmic time. To a good approximation the
time dependence of the prefactor in I' may be ignored,

T'=~t Ymp /T, exp(—S;/T)
~t %exp(160—S,/T) .

Now change variables to

E=x(1—T2/T*)=x(1—t/t,)

||

I

S/ T

Ll

FIG. 1. The bubble free energy S, /T plotted against the di-
mensionless temperature § defined in the text. The solid line
shows the results of an accurate numerical evaluation. The dot-
ted line shows the results based on a Gaussian ansatz for the
field profile, and the dashed line the results of the “thin-wall”
approximation. At {=2, the broken-symmetry vacuum be-
comes degenerate with the unbroken-symmetry vacuum. The
bubble action is infinite. As the Universe cools, the bubble ac-
tion falls. The phase transition happens around {=1.6. These
results correspond to My =50 GeV, or A3/8*=0.13.

and expand S;/T about the point where it equals 160,
S;/T(§')=160+D(§'—&,), with  {y=1.65 and
D =160a /(2—§,)~730. The phase transition occurs
close to this point. The £’ integral is dominated by a sad-
dle point, and the exponent in (26) grows to unity at a
value of {=~&o+D 'In[v?/(D,)*]=1.6. As noted in
[25], at this value of ¢, there is no possibility of phase
coexistence, and the system converts entirely to the asym-
metric phase of electroweak matter.

At the saddle point of the integral, {'—{~3/D, corre-
sponding to the ratio of the bubble radius to the horizon

v(t—1t')/2t~3v/(2D,)=4X10"% .

So when the bubbles collide and fill space, they are very
much smaller than the horizon, but very much larger
than the correlation length my(T) !=10T '=~10" 1z
During the growth of these bubbles, the temperature of
the Universe decreases due to the expansion of the
Universe by approximately 4X 1073, a negligible effect.
Such bubbles do generate density fluctuations, but of
quite small amplitude ~10~%, and on a mass scale of or-
der 10'? kg—roughly the mass of a small mountain! The
density fluctuations are not likely to be large enough to
significantly affect nucleosynthesis.

III. PROPAGATION OF THE NUCLEATION BUBBLES

The theory of phase-transition bubbles expanding into
a thermal plasma has been studied in Refs. [26,27]. In
that analysis, it was assumed that the phase-transition
bubble propagates without generation of hydrodynamic
instability. In many types of phase transitions, the
growth of nucleation bubbles may be unstable, and the
proper solution to the problem does not involve bubbles
with well-defined surfaces. This problem certainly
deserves attention in the context of the electroweak phase
transition, and has been addressed somewhat for the
QCD phase transition [30]. In this paper, we will assume
propagation of stable bubble walls, and leave the problem
of understanding the various types of instabilities which
might develop for later work.

Assuming stable propagating bubbles, there are two
types of solutions, called deflagrations and detonations.
As the names suggest, deflagrations correspond to slow
burning, and detonations to rapid burning.

These bubbles are best analyzed using local energy den-
sity, as measured in the rest frame of the fluid, and the lo-
cal rapidity of the fluid

1 1+v
= — 7
(C] 5 In = 27
and the space-time rapidity
1 t+x
=—In |—= 28
y=s In pp— (28)

We assume the bubble starts at t =x=0. The fact that
the solution depends only on the ratio of ¢/x is a well-
known scaling property of hydrodynamic equations, and
is applicable when the bubble is large compared to a mi-
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croscopic distance scale.

The typical bubble configuration for a deflagration is
shown in Fig. 2. On the far left in this figure, the matter
is at rest and is in the broken-symmetry phase. There is a
discontinuity in the flow velocity and energy density of
the fluid when the matter is converted from symmetric to
asymmetric matter. The energy released due to the latent
heat of the phase transition is converted into motion of
the fluid in front of the surface of discontinuity. This
fluid propagates with a uniform velocity until a second
supersonic shock-wave discontinuity is encountered. On
both sides of the shock front the matter is in the sym-
metric phase. The matter is compressed and accelerated
by the shock front. To the right of the shock front, the
fluid is at rest.

A typical detonation bubble is shown in Fig. 3. To the
right of the fluid the system is at rest. There is a discon-
tinuity which corresponds to the phase transition as we
move in from the right. To the left of the surface of
discontinuity, there is a similarity rarefraction wave
where the matter slows down and is rarefied. At the posi-
tion y, the energy density and velocity are continuous,
but there is a discontinuity in the first derivative of the
velocity.

From the figures, it is obvious what is happening physi-
cally. In a deflagration, the velocity of the deflagration
front is sufficiently slow so that the matter distribution in
front of the phase-transition region may be compressed
and accelerated. For a detonation, the region of the
phase transition propagates so rapidly that there is no
time for the fluid in front of the shock to be accelerated.
It is similar to the difference between a supersonic and
subsonic perturbation in a fluid.

The mathematical criterion which distinguishes a
deflagration from a detonation may be analyzed in the
rest frame of the phase boundary. We show a picture of

(a)

Ydef Ysh

} } y
Y gef Ysh

FIG. 2. (a) The flow velocities of the matter distribution for a
deflagration bubble. (b) The local energy densities for a
deflagration bubble.
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(a)

Ys Ydet

€2

+ + y

Ys Y det

FIG. 3. (a) The flow velocities of the matter distribution for a
detonation bubble. (b) The local energy densities for a detona-
tion bubble.

the phase boundary in Fig. 4. For a deflagration, the ve-
locity of the fluid to the right, v,, is less than that to the
left, v, <v,. For a detonation the opposite is the case,
Uy 2.

The velocities and energy densities in the cases of a
deflagration and a detonation front are determined entire-
ly by energy and momentum conservation and by the
amount of entropy production across the surfaces of
discontinuity. In the rest frame of the surface of discon-
tinuity, we have constant energy flux and momentum
flux,

9, T*=9,T*=0 (29)
and
9,5s*=0 (30)

where we use the perfect-fluid form for the stress-energy
tensor

TH=(e+Plutu”—Pgh¥ (31)

so (29) becomes

FIG. 4. The flame front in the rest frame of the front.
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T*=(e+P)y2v=const ,
(32)
T*=(e+P)(y,v)*+P=const ,

and
st=sut (33)

where s is the entropy density in the rest frame of the
fluid. The four-velocity of the fluid is u* and satisfies
u?=—1. If the number of particles is conserved, we
should have another equation

9,n*=0 — nyv=const (34)
where n# is the number current, given by
n*=nut (35)

and 7 is the number density in the rest frame of the fluid.
The local energy density is €, the pressure is P, and the

entropy density is s. Integrating (29) across the discon-

tinuity gives for the velocities of the fluid

(P,—P,)(e,+Py)

(61_62)(€1+P2)

v? (36)

and
(P1 _Pz)(€1+P2)
(61_62)(€2+P1)

Il

v} (37

If we boost to the frame where v, =0, we find the velocity
of the fluid on the right of the front to be

(Pl _Pz)(el'_ez) 172

(€,+P,)e,+Py)

(38)

Uret

These equations are not sufficient to determine the en-
ergy densities and velocities. If particle number is not
conserved, we have three unknowns: the temperature
and velocity of the fluid behind the phase boundary, and
the velocity of the phase boundary. But we only have
two equations (29). Likewise, if particle number is con-
served, we have an extra equation, (34), but also an extra
unknown: the chemical potential behind the phase
boundary. Another equation is needed in order to deter-
mine the velocity of the phase boundary, which will then
fix everything. This extra equation may be taken to be
the equation of motion of the Higgs field [25], and its
solution will, as we shall see, depend strongly on the de-
tails of the microscopic physics. It will be the objective
of subsequent sections to derive an equation for the
motion of the bubble wall.

IV. THE EQUATION WHICH DETERMINES
THE VELOCITY OF BURNING

In the preceding section, we saw that the hydrodynam-
ic equations alone are not sufficient to determine the ve-
locity of the phase boundary. To do this, we must under-
stand the microscopic dynamics governing the motion of
the Higgs field.

Before proceeding with this, we first observe that the
change in the temperature across the burning front is
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negligible. This is because the latent heat of the transi-
tion is very much smaller than the specific heat of the
plasma. The only effect of the phase transition is to give
small masses to a few of the particles. For all of the
quarks except the top quark, the mass is very small. For
the Higgs boson, the generated mass should also be small,
and for the W- and Z-boson mass it is of order T /3,
which is small compared to the average kinetic energy,
which is about 37. Gluons and photons remain massless.
When explicitly computed [25], the resulting temperature
change is very small; 87 << 1. In this circumstance, it
will be a good approximation to neglect the change in
temperature for the fluid as a whole across the phase-
transition boundary (although as we shall see, there is an
effective temperature change in the distribution of W bo-
sons alone which is important).

For similar reasons, the change in the velocity of the
fluid across the wall is very small—the medium has very
large inertia, and the force is small. To leading order, it
is a good approximation to ignore the change in fluid ve-
locity across the bubble wall when computing the
effective equation for the Higgs field. Once the velocity
of the bubble wall is known, one can use the equations of
the preceding section to determine whether the phase
boundary is a detonation or a deflagration. Roughl
speaking, if the phase boundary moves faster than 1/V'3
times the speed of sound then it is a detonation. If it
moves slower than the speed of sound it is a deflagration.

The dynamical equation which determines the motion
of the bubble wall is the scalar field equation. To first
nonzero order in the loop expansion, the scalar field
equation is

%
8¢

The one-loop Feynman diagrams for = are shown in Fig.
5. These include contributions from the Higgs bosons,
the W and Z bosons, and from quarks and leptons. In
the diagram, the propagators are taken to be at finite
temperature in the presence of the external scalar field
which forms the phase boundary. For the gauge bosons
getting their mass from the Higgs field, for example, =
may be thought of as the average of the square of the

—3%(x)+ - (x)+ [d*x'Z(x,x")$(x")=0 .  (39)

\
+ / . Q,L

FIG. 5. The contributions to the self energy kernel for the
scalar field equation. All propagators are in the background
fields associated with the phase transition boundary. (a) The
contribution of Higgs particles. (b) The contribution of the W
and Z bosons. (c) The contribution of quarks and leptons.
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gauge fields, the average being taken in the appropriate
thermal state.

Needless to say, the solution of this equation is very
hard due to the dependence of the loop diagrams on the
external field. However, if we expand the loop diagrams
in powers of the external field, the equation simplifies.
This expansion should be reasonable when the tempera-
ture is large compared to the mass. In particular, it
should be excellent for all quarks and leptons except
perhaps for the top quark, and for the Higgs boson.

The leading-order contributions to £ when M /T <<1
are shown in Fig. 6. These diagrams have been written as
phase-space integrals over the finite-temperature distribu-
tion functions

1
fpx)= W—— (40)

*F1

where the plus sign is for fermions and the minus sign is
for bosons. The integration is a three-dimensional in-
tegral taken on mass shell for the lines which have been
cut in Fig. 6. The factors of y and of v refer to the veloci-
ty of the electroweak fluid, which we allow to be moving.

The integration for X in the Feynman diagram of Fig.
6 has measure d>P /E which is Lorentz invariant, so that
even if the electroweak fluid is moving, to leading order
there is no dependence on the velocity of the fluid.
Therefore, to leading order in the mass expansion, the re-
sult for = is just the finite-temperature modification of
the scalar-particle mass. This converts the derivative of
the scalar potential in the above equation almost into the
derivative of the finite-temperature effective potential.

The terms in the scalar field equation arising at one-
loop order combined together with the derivative of the
scalar potential would be precisely the derivative of the
three-dimensional effective potential if we also included

H
a
W, 2
b
X
;
s
7
s
¢ — Q,L
\
\
N
\
X

FIG. 6. The leading contributions of = when the mass is
much less than the temperature. (a) The contribution of Higgs
particles. (b) The contribution of W and Z bosons. (c) The con-
tribution of quarks and leptons.
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one higher-order term in the mass when expanding the
loop diagram. This would naively generate the contribu-
tion to the effective potential, which is of order ¢°T.
Higher-order terms in the expansion of loops in this
effective mass could be ignored if the coupling constant
were small, since such contributions contain no factors of
T.

For the moment we therefore concentrate on the con-
tribution which is of order ¢>T. This term arises only
from the contribution of the boson loops. The fermion-
loop contribution therefore only contributes to a mass re-
normalization as long as an expansion in M /T is sensible.
This will be the case for all fermions except for the top
quark. We will here assume that the top quark is of
sufficiently small mass that this is true, but in reality a
good computation should include this contribution, and
should as well include contributions of order 3T arising
from higher-order terms in the loop expansion. This has
been done by Carrington [15-34], but we shall not con-
sider these effects further here. In the last section of this
paper, when we consider wall motion in the limit that the
scattering length is small compared to the size of the
phase-transition bubble wall, we shall attempt to estimate
the effect of top quarks to the damping of the bubble-wall
motion.

In these approximations, the only important contribu-
tions arise from boson loops. Assuming that the Higgs-
boson mass is small compared to that of the Z and W bo-
sons, My (T) <<My(t), we can as well ignore the contri-
bution from Higgs bosons. The only contribution there-
fore arises from W- and Z-boson loops.

To leading order in the mass expansion, the dominant
contribution is given by the tadpole diagram of Fig. 7.
This contribution would also be of order ¢4, if it were not
for the infrared singularity associated with the Bose-
Einstein distribution function. However, if we compute
this contribution by expanding, we find a result which is
not independent of ¥ and v, so that we must be careful
about the electroweak fluid velocity. This is particularly
important when the electroweak fluid has a different ve-
locity on either side of the wall. In the next section, we
describe how to properly compute for this case. Notice
also that the formal expansion in the external field gen-
erates a loop contribution for the scalar field equation
with a nonzero imaginary part corresponding to Landau
damping.

For the rest of this section, we shall describe the solu-
tion to the scalar field equation when we assume that the
loop corrections only transform the scalar potential into
the finite-temperature effective potential. In this case, for
£ <2, the bubble will accelerate indefinitely, with the bub-

FIG. 7. The tadpole contribution to the scalar self energy
kernel =.
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ble wall approaching the speed of light. This follows be-
cause the energy released from undergoing the phase
transition must go into the acceleration of the bubble
wall.

The effect of damping is therefore to make the wall ac-
quire some finite velocity. We therefore expect that when
the damping effects are properly included, the solution of
the scalar field equation will take the form

o=¢(y(x —ut)) . (41)

For the classical equation without damping, we can see
that such a solution which interpolates at large distance
between the local minima of the effective potential is not
possible. The equation

—(y(x —oeN+ (x)=0 42)
8¢
becomes
d? 8V,
dTZdJ(TH- 8¢(T)_0’ (43)

where 7=vy(x —vt). This equation describes a particle
rolling in an inverted potential — V. If the potential is in-
verted, the only allowable solutions which are nonsingu-
lar at infinite 7 are bounce solutions or trivial solutions.
There is no solution where the field is in one minimum at
large positive 7 and in the other minimum at large nega-
tive 7.

When damping is included, such solutions become pos-
sible. For example if the equation becomes

d? d d &V
dt2¢+ndt¢ dx2¢+ 8¢ 0 “4

the ansatz (41) leads to an equation for a particle with
damping coefficient nyv. It is then clear from a standard
“undershoot-overshoot” argument that an appropriate
value of the damping coefficient exists such that the parti-
cle begins at the true vacuum at minus infinite 7 and rolls
to the false vacuum at plus infinite 7. This value deter-
mines the final velocity of propagation of the bubble wall.
In fact, by multiplying the equation by d¢/dr and in-
tegrating, one obtains

nyv [drd¢/dr=AV 45)

with AV the potential-energy difference between the two
vacua. This is a sort of virial theorem—the left-hand
side represents the rate of loss of energy per unit distance
the wall propagates, per unit area, due to the damping
term, and the right-hand side the energy density
difference between the false and true vacua. This kind of
argument will be useful when more general damping
forces are included.

In the preceding section, we argued that the parameter
& which characterizes the effective potential is about
§{~1.6 which is close to the value of {=2 where the
effective potential is degenerate at the two minima. In
this case, we expect that when damping is included, the
deviations away from the limiting case of £=2 should be
small. The left-hand side of (45) would then be calculated
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using the bubble-wall solution which holds at {=2, and
would determine the velocity v. The solution takes the
approximate form (41) with ¢ the static domain-wall solu-
tion. The main effect should be to narrow the apparent
thickness of the wall by a factor of 1/y and have it move
with velocity v.

In the case when {=2, the solution for the static
domain wall is a kink. The dimensionless effective poten-
tial is then

Vix,t=2)=1g%g —2) (46)

with the kink solution being given by

X

g=1+tanh V3 (47)
1 172

=1-+tanh "2—}\' 8Tr 48)

where we have reexpressed the result originally in terms
of the dimensionless variable x in terms of the physical
coordinate .

The width of the wall is ~2m(T)™!

V2A
L~—ST (49)
__4 My (50)
3ay My T
~(15=-25)T"', (51)

where in the last equation we used the bounds on the
Higgs mass discussed in the introduction. The width of
the bubble wall is therefore of the order of L <20/T and
is typically very large compared to a thermal wavelength
or a W- or Z-boson mass near the transition. When the
bubble-wall motion is accounted for, the width shrinks a
little by a factor of 1/v, but for mildly relativistic motion
this is not a big effect. The limit appropriate for describ-
ing the bubble dynamics is therefore that of a thick bub-
ble wall, not a thin one. In this case, the WKB approxi-
mation is good, and particle scattering off the wall is well
described by the classical limit, the bubble wall being ei-
ther reflectionless or transmissionless depending on the
particle kinetic energy.

It is useful to compare the size of the bubble wall to an
estimate of the mean free path for the particles which
scatter off the wall. The dominant contribution to the
damping term must come from W and Z boson loops as
was argued above. This is true because fermions have
small masses except for the top quark, and the top-quark
contribution for intermediate values of the top-quark
mass will only effect the finite temperature contribution
to the scalar boson mass. The Higgs boson contribution
is small since the Higgs mass is small. We therefore must
discuss the degree of thermalization of W and Z bosons.

The mean free path for a W or Z boson is of order

Ay~ —— (52)

on
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where o is the cross section for scattering and n is the
density of particles off of which the W and Z bosons
scatter. Since we are interested in effects generated by
the bubble wall, and this effects primarily particles with
energy of order My, we expect that the cross section
should be of order

o~2Mr—— . (53)

To derive this formula, we have assumed that Coulomb
scattering is dominant at momentum transfers of order
M,,. We expect that Coulomb scattering will dominate
the cross section at small momentum transfers.

The density is given by the density per species times
the number of species N. The factor N is the number of
particles participating in the Coulomb scattering.
Remembering that for each fermion there is only one hel-
icity which participates in the weak interactions, particle
and antiparticle, two doublets, three families, and a quark
and lepton which can scatter weakly, the factor N is

N =48 (54)

for fermions alone. There is an additional contribution
for W, Z, and Higgs bosons which corrects this by about
20%, which is small because of the small number of such
particles compared to the number of fermions. The num-
ber density per fermion is on the other hand about
T3 /72, so that we have approximately

n~5T?. (55)
The mean free path is therefore about

My,

Ay~ —— . (56)
' 10ma3, T?
Using My, ~T/4-T /2, we have
A~ (2-8)T 1. (57)

This estimate gives a mean free path which is not very
much less than the width of the bubble wall. We expect
therefore that the effects of deviation from equilibrium
will be of order 1 and must be carefully estimated.

It should also be noted that in models where scattering
from a bubble wall is responsible for generating a baryon
asymmetry, the effect must arise because of a difference in
the reflection coefficients for top quark and antiquark.
This can only happen if there are nontrivial values of
both reflection and transmission coefficients and therefore
the momentum of the top quark must be of order M,. In
this region, as we previously noted, the WKB approxima-
tion should be good, so that the deviations from triviality
must arise from exponentially suppressed contributions
of order e ' ~e %, where L is the size of the phase-
transition bubble wall. This exponential suppression can
be to some degree ameliorated by requiring that the
momentum of the top quark be tuned so that when the
quark passes over the bubble wall, its momentum is very
small so that it effectively sees a thin wall. This puts a
strong constraint on the phase space, and leads to
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suppressions by powers of 1/LM,. Moreover, the mean
free path for Coulomb scattering of such a low-
momentum quark is much smaller than that estimated in
Eq. (57), being determined by strong scattering, with
cross section ~wak/M?. This yields A~0.4/T <<L.
Both of these conclusions contradict the assumptions
made in Refs. [22,23].

V. BUBBLE-WALL DAMPING IN THE LIMIT A ¢, = L

In the limit that the particle mean free path is large
compared to the thickness of the bubble wall, the calcula-
tion simplifies greatly. We will later study the limit
where the mean free path is small compared to the wall
size, and find that this is the more relevant limit. The
computation here is, however, sufficiently simple and is
related directly to previous attempts to compute the
bubble-wall velocity. It also illuminates the approxima-
tions needed to compute in the more realistic small-
mean-free-path case.

To solve this problem, we will work in the rest frame of
the bubble wall. In this frame, the electroweak fluid is
moving, and the scalar field is a function only of its spa-
tial coordinate x. The profile of a bubble wall is as shown
in Fig. 8, and in the frame where the fluid would be at
rest, the bubble wall would be moving to the left.

As discussed above, we will consider the contribution
to the scalar field equation arising from loops with only
W and Z bosons. The contributions of fermions and
Higgs bosons will be taken only as that which gives a
finite-temperature redefinition of the scalar-particle mass.
Finally, we will assume that the wall perturbs the system
only slightly. We will therefore assume that to leading
order in the computation of the wall velocity, the fluid on
either side of the phase-transition bubble wall has the
same temperature and the same velocity.

The contribution of the W and Z bosons to the scalar
field equation of motion is given by the Feynman diagram
shown in Fig. 7. This contribution is local in coordinate
space and may be written as

plx)=1g%p(x)n(x) , (58)
where
n(x)=3 (af(x)ay(x)) . (59)
N

In this equation, the sum over N is a sum over all energy
eigenstates in the field generated by the scalar potential ¢.
The brackets mean to weight the sum with some statisti-
cal ensemble which corresponds to the temperature and
velocity of the fluid. Notice that because of the depen-
dence of the sum on the scalar field ¢, this equation intro-
duces nonlinearity in the evaluation of ¢ from its equa-
tion of motion, and the problem of computing the sum
for arbitrary ¢ is incredibly difficult.
In the statistical matrix, we assume a weight function
given by
f(p,x)= SR S (60)
eBr

(ENAUP,{,)_1
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where we have chosen the bubble wall to be along the z
axis. This would be the sum we would choose for a mov-
ing fluid. The index N refers to the Nth energy eigenstate
of the scalar field in the presence of the wall.

Of course the sum as it stands does not make sense,
since in the presence of the external field ¢(x), the solu-
tions for the W and Z wave functions are not eigenstates
of P?. This results in two different problems. For the
geometry of Fig. 8, there are two types of waves which
are right moving. There are those with a momentum
insufficient to go across the domain wall, and there are
those with sufficient moment. For those with insufficient
momentum, the solution for the W and Z equations of
motion is a sum of a left-moving and a right-moving
wave. We interpret this as a right-moving wave plus a
reflected left-moving wave. We identify the momentum
as that of the right-moving wave measured far to the left
of the bubble wall. For waves with sufficient momentum
to cross the barrier, we also identify the spatial momenta
of such right-moving waves as that measured far to the
left of the wall. For the left-moving wave, which origi-
nally come from the far right of the wall, we measure the
momentum as that of the left-moving wave measured far
to the right of the wall. These identifications of the wave

i

6(px)

6(—py)
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b (x)

bo

FIG. 8. The profile of the bubble wall, in its rest frame, with
the fluid flowing to the right.

momenta are consistent with a picture where the right-
moving waves arise from a heat bath far to the left of the
wall, and the left-moving waves from a heat bath far to
the right of the wall. These heat baths far to the right
and left are assumed to have the same temperature and
velocity. Notice that here we are making a crucial as-
sumption that the length scale for thermalization, that is,
particle mean free paths, are large compared to the bub-
ble size.

With this identification of the momenta, the sum for 7
becomes

YR (XY (x) 61)

(x)= —_—
K % eﬁy(EN—u\/E,%,—p,z)_l

BrEy+vV EL—pt—M?)
e

—1

where we are now using M, =M. In this equation, the wave function for the W and Z field in the presence of the back-
ground scalar field is denoted by 1. We have chosen to label our states by energy and by transverse momentum p,. For

the states with positive p,, we require that Ey > |p,|, and for negative p® that Ey >/ p2+M?2.

The previous equation as it stands would be very difficult to evaluate, since there is an implicit dependence in the
wave functions on the scalar field ¢. However, it can be evaluated in the WKB approximation. This approximation as-
sumes that the scale size of spatial variation of the wall is large compared to the scale of variation of the wave function.
The relevant momenta are k ~M, and the size of the bubble wall is L ~1/a, T. This requires that M >>a, T, a condi-
tion which appears to be satisfied.

We can now determine the wave functions. For 0=<p*=<M, the WKB wave functions are standing waves. Defining
E, =\/E,%,—p,2, we have

4E, |
L,

1

(x)= —_—
¥n(x Vql(z)

e *icos [fzdz'q(z’)-—ﬂ'/4 . (62)
20

In this equation, the space-dependent WKB momentum is
q(2)=VE}—MXz) . (63)

The parameter L, is a length along the z axis in which we choose to quantize the system. It is necessary for counting
states, but will drop out in the end of our computations. The value of z; is the z coordinate where the WKB momen-
tum vanishes; that is the turning point for the reflected wave. The WKB quantization condition is here

27N
E, =—L”— : (64)

For the case where the W- and Z-boson fields have energy sufficient not to be reflected by the barrier, there are two
solutions corresponding to left- and right-moving waves. There are
—_— 172
ZEH‘/E__ﬁ M 1 e Fiex [+ifz dz'q(z')
L(E,+VE}-M?* | Vq(z) P

"IJN(X =
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In this equation all quantities are as defined for the reflected wave. The WKB quantization condition is here

27N

)=L

B +VE M (66)
We can now insert these expressions for the wave function into the expression for 7(x). In doing this the reflected-
wave term squares to an average value plus a rapidly oscillating value. We ignore the contribution which is rapidly os-

cillating as this will average to zero in the sum over states. After some algebra, the sum over states may be written as

1 d% 1 1
n(x)= 2f (277.) 9( |k| ‘/kz 2( ) BY(}kl—ka)_l

2k, 1 1 o 1 k,
x| 22 By (k| —vk,) z 22272 YRV TR
Vk2I—M¥z) e — Vk2+M? V kst +M?*—M(z)

We can understand this WKB evaluation in a simple way. We observe that the contribution of the tadpole term to
the equation of motion is

+0(M —k,)0(k,—M(z)) (67)

p(x)=1g?p(x)n(x) (68)
_ dM*(x)
dgn) n(x) . (69)

To determine the contribution of this term to the equations of motion, we can integrate with respect to ¢(x). In doing
this, we will be interested in the potential difference between different sides of the bubble wall. We will get a stable solu-
tion when the velocity-dependent effects allow for a degenerate value of the potential far from the bubble wall. We
therefore need only integrate for 0 < M(z) <M. Integrating with respect to ¢(x) to determine the tadpole diagram’s
contribution to the equation of motion,

1 d3k
Via== [ —L-6(k,
tad 2f(21r)3

1

z By(lk|—vk,)
e v 2 —1

k,
—k

+0(M —k,)6(k,)
Tk

+6(—k,)

This expression can be rewritten as the sum of two terms,

Vtad=PR +PL ,

where
d3k 1
P =
* f(21r)3 JEZIEE

and

- d3k 1 .
PL—f (27T)3 BY(E, +vk,) E, e(k (\/k +M k ).

(74)

We can easily interpret this result. The first term Py is
the pressure arising from right-moving particles coming
from the left. The factor of k,/|k| is the flux factor of
particles from the left. The factor in brackets is the
change in momentum for particles with momentum large
enough to pass over the bubble wall (first factor), and for
those with insufficient momentum which are reflected
from the wall (second factor). The term P; is the pres-
sure from left-moving particles coming from the right of

z TRy 1
— _Z — 2 My
M) ke =V kS M)t

—1
k,

2 2
————\/k — (VK +M*—k,) . (70)
(71)
(72)
k,] (73)
[
the bubble wall.

It is now straightforward to perform these integrations
to obtain an effective potential. The result for small v is
computed to be

M?*T? M3T

- _3
24 127

m

Vtad = (75)

The total contribution to the effective potential comes
from summing over spin and charge states of the W and
Z bosons, which gives an overall factor of 9.

The change in the thermodynamic potential due to the
tadpole term generates the quadratic and cubic terms in
the finite-temperature effective potential, up to a correc-
tion which is
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AV=-—38—:T¢3 . (76)

The main effect is to rescale the parameter § by a
velocity-dependent term. This will increase the effective
value of &, £.g=C/(1—3v/m)%. The wall will cease to be
accelerated when degeneracy of the two vacua occurs—
i.e., when { =2, or

v=—131(1—1/z‘7§) . (77)

For the value appropriate for bubble nucleation, {=1.6
so that

v~0.1. (78)

We should note that this estimate assumes maximum
deviation from thermal equilibrium—we have used the
unperturbed distribution functions far to the left and the
right of the wall. This is reasonable only if the mean free
path for particle scattering is assumed large compared to
the size of the bubble wall. On the other hand, in the ful-
ly equilibrated limit, the analysis above and that in Ref.
[25] show that the bubble wall is not stopped. Therefore,
the above estimate provides a lower bound on the velocity
of the bubble wall. In the next section, we assume that
the distribution of particles is actually quite close to equi-
librium, and will compute it in an expansion in the mean
free path divided by the size of the bubble wall.

VI. THE WALL VELOCITY WHEN A, /L <<1

We now want to compute the effect of the tadpole term
on the scalar field equation of motion in the more realis-
tic limit where the deviation from equilibrium is small.
Recall that the function 7(x) for each particle species
may be written as

d3
ﬂ(x)-:fﬁ%f(p,x) , (79)

where f(p,x) is the single-particle Wigner distribution
function. This may be proven formally by using the
definition of the single-particle Wigner distribution func-
tion, by taking the expectation value {$?) for a free field.
It includes the WKB result which we discussed above as
a special case. This result may also be derived using
real-time response theory and relativistic kinetic theory
[32].

As discussed above, we expect that the most significant
deviation from local thermal equilibrium arises from W

J
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and Z bosons. The only possible large fermion contribu-
tion comes from the top quark. As we discussed above,
this contribution must be treated specially for large top-
quark masses, but for small top-quark mass has no
infrared-singular part and is expected only to add a finite
temperature correction to the scalar mass. In addition, if
the deviations from equilibrium are small, the top quark
due to its strong interactions should be closer to equilibri-
um than the W and Z bosons. The Higgs boson may be
ignored since the small Higgs mass implies only a small
coupling through the tadpole in the scalar field equation.

The single-particle distribution functions satisfy the
Uehling-Uhlenbeck (Boltzmann) equation of relativistic
kinetic theory [32]. For a boson distribution function
f (x,p), this equation is

[p-3, +M(x)F-3,1f (p,x)=C (x,p) . (80)

In this equation, F* is a covariant force term, and C(p,x)
is a collision integral which will be discussed below. All
dot products are over covariant four vectors. Notice that
if we think of the distribution function as only a function
of p, then only spatial derivatives with respect to momen-
tum appear. The above equation may be derived assum-
ing the constancy of particle number flux through a time-
like three-surface.

The force on each particle is found from energy conser-
vation in the wall rest frame

k2+ M (x)*=const (81)

so that the spatial component of the four-force

F=dk/dris given by
1

F=— M*(x) . 82

M) VM(x) (82)

In the limit where the mean free path for collisions is

small, the collision term in the Boltzmann equation

forces the distribution functions to take the local thermal

equilibrium form:

1
fea P X) = o E S top ) =] J
e v x —1

where the temperature B, the fluid velocity v and (in the
case where particle number is conserved) the chemical
potential may depend on x. It is straightforward to com-
pute the net pressure exerted on the wall by particles in
this distribution colliding with the wall, by integrating
the number density of particles across the wall multiplied
by the force the wall applies on them [the relevant force
in the wall frame is F=dk /dt = —(1/2E)dM*/dx ]:

(83)

o . dM*x) ¢ d’k 1 1
Pcoll= f_wdx dx f

(27) 2E PRIINE =0 (k) =plx)] |

for bosons, and similarly for fermions. Changing vari-
ables to k, =y ,(k, —v(x)E) one finds that the velocity
dependence completely disappears. While the apparent
number density of particles in the rest frame of the wall
rises (due to Lorentz contraction), they have higher ener-

(84)

r

gy, and the wall is more transparent to them. These op-
posing effects exactly cancel [25].

In the regime of interest, where kmfp /L << 1, we expect
the phase-space density to remain close to the above local
equilibrium form. The general procedure for solving the
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transport equation in this case is as follows. As the
zeroth-order solution, we take the limit when the mean
free path goes to zero, and the collision term forces the
distribution function into the local equilibrium form.
The temperature, velocity, and chemical potential
(nonzero only if particle number is conserved) are allowed
to depend on x. However, the three equations of energy,
momentum, and particle-number conservation discussed
above, (32) and (34), are enough to completely fix these as
a function of M2, and therefore of x. We then expand the
distribution function around the local equilibrium solu-
tion

f(p,x)=feq(p,x)+56f (p,x) (85)

while imposing the following conditions on §f(p,x):

3
ST~ (s [ SO pk k=0, (86)
o
1 d’p
8T"’=(7—)§f—;:—8f(p,x)k"E=O , (87)
T
3
sn’fzﬁf %ESf(p,x)kX=o , (88)
m

which are necessary in order to ensure that the perturba-
tion still obeys the conservation laws. These equations
are also just enough to uniquely determine the solution to
the transport equation—they eliminate perturbations
corresponding simply to a shift in the temperature, veloc-
ity, or chemical potential of the fluid as a whole.

Now if we substitute (85) into the transport equation,
the lowest-order equilibrium distribution functions make
the collision term vanish. The collision term is therefore
only nonzero beginning with the first-order deviations
from the thermal equilibrium distribution functions. On
the other hand, the left-hand side of this equation gen-
erates derivatives on the lowest-order thermal equilibri-
um distribution function. These derivatives are therefore
of first order in smallness. The perturbation parameter is
Amip/L.

In our case, there are several simplifying approxima-
tions. As discussed in [25], the latent heat of the transi-
tion is of order ey ~(5-20)X 10~* of the specific heat of
the fluid as a whole, where e=8/A%30/m*N,4) and
Y=Ay /8% is the dimensionless parameter used in Sec. II.
So we do not expect the temperature of the fluid as a
whole to change significantly. Also, the pressure and en-
ergy of the two phases at the same temperature differ by a
fraction of order €, so from Eq. (38) above, we expect the
change in the fluid velocity across the bubble wall to be of
order €, and therefore insignificant.

Processes which change the number of W bosons
include the s- and t-channel processes W+quark
—gluon+quark. Straightforward calculation of these
rates in the Born approximation yields a mean W lifetime
r~(4/mNa,ay)” [1+21n(T/My)] "' =30T " Soto
a first approximation one should treat the number of W’s
as conserved.

This means that the zeroth-order solution has a chemi-
cal potential. Assuming number-conserving processes
such as we consider below maintain good thermal contact
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with the fluid the W’s would have a constant temperature
and velocity, but would develop a chemical potential
across the wall. The chemical potential is easily calculat-
ed by expanding the formula for the number density » in
M}, and p and setting n to be constant. One finds
Mj 3

H:-—T_E—ﬁiln(T/MW) (89)
which may then be used in the formula for the pressure
due to collisions (84) to deduce the enhancement to the
pressure caused by this buildup of W ’s:

8Pcoll:.MgV 1 3 1n2( T/MW) (90)

6t
(obtaining a factor of 1 by integrating over M 2, with
< M?) per W degree of freedom (of which there are 9).
It is then straightforward to check that in the regime of
interest, this (velocity-independent) term is substantially
smaller than the driving force on the wall.

One can also do the same for top quarks, which are
another natural candidate for slowing the wall, being
strongly coupled to the Higgs field. The analogous calcu-
lation to that above yields

6P

gt 3 2

ol =M, - In“(2) 91)
per top degree of freedom (of which there are 12) which is
enough to stop the wall only if M, is substantially larger
than M. A complication here is that the number-
changing processes appear stronger than for W’s. For
example, there is top-antitop annihilation and
top +lepton/quark — bottom +lepton/quark through -
channel W exchange. The mean free time for the latter
process is approximately (1/24X(T /My, Y(mray ) *T™!
~T 7! so it is short. This means that left-handed top
quarks will mix strongly with left-handed bottom quarks,
eventually reducing the chemical potential for the top
quarks. In addition there are strong-interaction annihila-
tions of top quarks into gluons and light-mass quarks.
The sum of these diagrams is difficult to compute with
precision since it is not clear what momenta to use in the
estimate—the cross section depends strongly on the
momentum of the quarks, with the low-momenta quarks
which dominate the collisional pressure (91) being most
efficiently annihilated. The situation is further complicat-
ed by strong-interaction-induced mass gaps. We have
naively estimated these effects however and find that the
mean free path for annihilation appears to be less than
that typical for W- and Z-boson scattering. At the end of
this section we will estimate the effect of top quarks on
the damping of the bubble-wall motion and argue that
their effect is at best of order 1 relative to that of the W
and Z bosons, and is probably in fact much smaller.

It is important to note that these chemical-potential-
induced pressures are independent of the wall velocity,
quite unlike the velocity-dependent forces of the previous
section. If they stop the wall at all, they do so at zero ve-
locity. In this situation, the wall can only propagate
through particle annihilation. In the rest frame of the
medium, if the particles involved have an annihilation
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time 7, then the wall velocity will be determined by
yv~L /7, the factor of y arising from Lorentz contrac-
tion of the wall width. This particle-burning limited situ-
ation is interesting, and deserves separate investigation.
It may be relevant to the electroweak theory at large
top-quark mass.

Since these chemical potentials are probably not
enough to stop the wall, we need to examine the depar-
tures from thermal equilibrium in detail.

As argued above, we should be able to ignore shifts in
the temperature and velocity of the fluid, and the chemi-
cal potential for W'’s is small. Thus we take as our
zeroth-order distribution function

_ 1
fO(p’x)- Br,(E—vp,) ’ (92)
e —1
where
E=Vp*+M3¥x) 93)

and we assume that the temperature T and the velocity of
the fluid v may be taken to be independent of x.

The distribution function f;, when inserted into the
equation for the tadpole diagram 7(x) just produces the
#3(x) and ¢*(x) terms in the finite-temperature effective
potential. The deviations from this effective potential are
given by &1.

The left-hand side of the transport equation arises from

J

d3P2 d3P3 d’p,
(2m)2E, (2m)R2E, (27)2E,

C(x,pl)‘—’— f

|M (s,0)]?
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the derivative with respect to momenta and coordinate
on f,. A little algebra gives

(p+3, + MF-V)fo(p,x)

sz BY(E—UPX)

dx (PrETRI_gp

. %3,,1, (94)

Now the right-hand side of the transport equation in-
volves a scattering integral. This part of the equation in-
volves §f.

As a function of momenta, this scattering integral is
Lorentz invariant. Therefore we may Lorentz boost all
momenta, holding coordinates unboosted. In these new
variables, the transport equation is

1 dM? ePE
C(x,p) 2B7/v dx (PE_17 - (95)
Now in the tadpole equation, we may also Lorentz
boost the momenta, keeping coordinates fixed, so that the
integration for 77(x) may be trivially reexpressed in terms
of the boosted momenta. Therefore, we have reduced the
problem of computing §f to that for a fluid at rest in the
presence of the bubble wall in its rest frame. All the
thermal distribution functions will therefore be evaluated
in this rest frame.
The collisional integral is

X(2m)*8(p; +py—P3 — PO ENSf L EN1Ef3(E3)][11f4(E,)]

—[{ENfJEDNES(EDIESH(E)]

In the above equation, the * is plus for bosons and minus
for fermions. The distribution functions f; are those ap-
propriate for bosons or for fermions.

For the processes we consider, the W and Z bosons will
have small masses added to them which as a function of x
perturb the distributions from local thermal equilibrium
distributions. For high-momentum particles, these devia-
tions are not so large, and such particles should be able to
approach a solution of the transport equation by low-
momentum-transfer processes. For low-energy W and Z
bosons, the scattering will be dominantly low-momentum
transfer. We therefore expect that the dominant contri-
bution to the scattering term in the transport equation
will come from low-momentum-transfer Coulombic
scattering. (By Coulombic, we mean W- or Z-boson ex-
change.) This is the only way that the deviations from
equilibrium can be parametrically small since in this case
the factors of coupling constant in front of the scattering

(96)

term are largely compensated by the infrared Coulomb
singularity.

We now will take the expression for the collision in-
tegral and expand it to first order in small deviations
from equilibrium. As discussed above, the distribution
function f (p,,x) will correspond to a W or Z boson. The
dominant process will be Coulomb scattering from fer-
mions. We therefore take f; to correspond to a Wor Z
boson. The functions f, and f, correspond to fermions.
These fermion distribution functions only change slightly
due to the presence of the wall, and should be well ap-
proximated by their local equilibrium distribution func-
tions. Expanding to first order in §f and defining

e BE

af(E)=A(E,x)(—eEE_—l—)2

97

the transport equation becomes
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1 dM? dp, _d’py  d’p, 1+ /% (E;)
1 Byv= M(s,t)[*(2m)*8(p, +p,—p3—
2 ax Prv=1 (mIE, (22K, (2maE, M &OF@T e try—ps PO 0(E,)
XfOAEN1—f (EDIAE,,x)—A(E;,x)] . (98)
!
We have used f3 as notation for the local thermal equi- [ d’p, d’p, d’p,
librium distribution function for bosons and fermions re- 1=p 3 3 3 n(s,1)
spectively. (2m)2E, (2w)2E; (2m)2E,
Now note that we take the temperature of the fermion [1+£%(E;3)]
fluid to be fixed—as argued above, the W ’s will not heat X(2m)*8(p, +p,—p3—Ps )T— (104)
it significantly. Similarly, we take the velocity of the fer- [1+f5(E)]
mion fluid to be fixed. This actually eliminates the per- XfOAE)[1—fO(E)][k(E,)—k(E;)] .  (105)

turbations corresponding to an overall shift in the tem-
perature or velocity of the fluid as a whole. However, the
fluid of W ’s may independently experience a temperature
or velocity shift in their distribution. The energy and
momentum flux constraints in (86) are then enforced by a
very small shift in the background fermion fluid tempera-
ture and velocity.

Since the collision term conserves particle number, Eq.
(98) only determines the quantity A(E) up to an overall
constant. This constant is the chemical potential for the
W and Z bosons. Recall that as we go across the wall, in-
elastic particle production takes a longer time, so we ig-
nore it.

To determine the chemical potential, we use the last
equation of (86), requiring that the number density of W
and Z bosons be conserved across the bubble wall. In the
variables which have been Lorentz transformed so that
the fluid is at rest, this requires that the number density
of particles be constant across the bubble wall. The
chemical potential is therefore determined by

[d*p8fp,x)=0. (99)

To further specify the solution to this equation, we
must determine the squared matrix element |M (s,?)|2.
This is just the Coulomb portion of the W and Z scatter-
ing with the fermions. The Coulomb matrix element
squared per particle from low-momentum-transfer high-
energy processes is [33]

s
(t —M?*)?
where g is the electroweak coupling strength. Now there

are Ny =48 left-handed fermion degrees of freedom, so
we define

M (s,1)|*=2g* (100)

0=24may)*Ng (101)
and
52
n(s,t)=m . (102)
Defining further
A(E,x)=id3i23“yvx(E) (103)

we can reexpress the transport equation as

Notice that in this form of the equation, all dependence
on coupling, velocity, and spatial coordinates through
M?*(x) has disappeared. Note further that the perturba-
tion to the distribution function is (up to a constant
chemical potential) automatically zero outside the bubble
wall.

The equation above is analyzed in the Appendix, where
we compute the behavior of k at energies E >>M. We
have also been able to convert the twelve-dimensional in-
tegral equation for « into a one-dimensional integral
equation with a known kernel. The derivation and
analysis of this equation will be the subject of a later pa-
per, and will not be presented here.

The contribution relevent for its effect on the equation
for the scalar field is the behavior of the function «(E) for
E ~T. For this range of energy, we show in the Appen-
dix that

k(E)=—202mP———=
In( AE2/M?)

where B is determined by the constraint that the flux of
W and Z bosons is conserved and A is an undetermined
constant of order 1. We therefore find

B, (106)

E

m_ 1 v | ——————+B
In( AE%/M?)

dM?
AE)=——
(E) 4a2WNF dx ﬁ4

(107)

Notice that if we assume that yv ~ 1, take M ~T /2, take
E~T, and assume the wall thickness is about
L ~1/ayT, we find that A~ .5 so that indeed the devia-

tions from equilibrium, as far as the distribution func-
tions are concerned, are small.

Using the condition that the flux of W and Z bosons is
conserved, we find that

~__ 3T
In(AT?/M?)
Including a factor of 9 for the various spins and charge
states of the W and Z bosons, we find therefore that
1 Byv dM?

(16m) afyNp In(AT?/M?) dx =

(108)

(109)

n(x)=

Finally, we obtain the modification of the scalar field
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equation to be

2(2 y— 1 __m—¢2__¢_ .

(110)
N In(AT?*/M?)

We can now use the scalar field equation to derive a
virial theorem as in Eq. (45) above. Multiplying by
d ¢ /dx, integrating over x, and assuming that a large pos-
itive x we are in the true asymmetric phase, but at large
negative x in the false asymmetric phase, we obtain

9 1 Bzv 2 —
= —AV .
8 TN, (T2 /0%) Jaxs ]
(111)

In this equation, AV is the change in the potential energy
between the phases, and is approximately
4
AV~— %— T*
for {= 1.6 corresponding to the value of { appropriate
for nucleation.
On the other hand, using the fact that for {~2 the
solution for the scalar field is a kink

=%Z[1+tanh(V1/2k8Tx)]

(112)

(113)

we find that

2
d 8 — [1+tanh(x)]?
dx ¢* 4a¢ =—V1/2AT* [ dx+————
Bf x ¢ dx} A4 / f x cosh*(x)

(114)

Performing the integral over x gives

2
5
ﬂ =§8—‘/1/2)\T4 .
dx

538 (115)

B[adx ¢’

Finally, combining all the terms together, we get

M}

~ 2 2

Yv 27N,.—ln(AT /M )MvSV
M3

1
M, (116)

Using our “realistic” values for the Higgs mass, corre-
sponding to the one-doublet-model mass 35
GeV <My <50 GeV, we see that the velocity is mildly
relativistic, and

yo~1-2. (117)

Due to the cubic dependence on the Higgs mass, this
value could also be substantially lower if the effective
value of My were lower.

The previous expression for the bubble-wall velocity
should be accepted with some caution. In the derivation
we used {=1.6, the value which is appropriate for nu-
cleation. If we keep { as a free parameter, then the
dependence upon the Higgs mass is much more compli-
cated.

We can now check to see what is the magnitude of the
top-quark contribution to the scalar field equation. The
tadpole diagram gives

4g2¢(x)n,(x) (118)

where g, is the top-quark Yukawa coupling, and the fac-
tor of 4 comes from computing the trace over gamma
matrices from the top-quark propagator. The function

_ d’p
()= f(z Y2E

We now assume that the top quark is, up to a chemical
potential for the number of top quarks plus antiquarks, in
local thermal equilibrium. The chemical potential for top
plus antitop allows for the possibility that the annihila-
tion diagrams may be weaker than the scattering dia-
grams which preserve the number of top plus antitop.
The scattering diagrams should lead to mean free paths
much less than typical wall sizes, but the case with an-
nihilation and chemical equilibrium of topness is less
clear.

To estimate the effect of scattering, we replace the col-
lision term in the transport equation by

C(x,p)=8f/Tamn »

5f(p,X) . (119)

(120)

where 7,,, is the annihilation time for top quarks. The
left-hand side of the transport equation is as before so
that we find a chemical potential for top plus antitop to
be

1 aM 12
B =3 TandBY OV (121)
This gives
_ 1
n,(x)—z;;y,T (122)
which modifies the scalar field equation as
16a?TTannBrv¢2%f : (123)

The relative magnitude of the top quark contribution to
that of W and Z bosons is therefore

or 1 1
R~— 124
64 Npaf TTann (124)
15T
~ . (125)
Tann
In the above equation, we have taken a,~ . We see

that the W and Z contributions are larger if the typical
scattering length for annihilation is less than about 15/T,
which should be reasonable, but if the scattering length
for annihilation is longer, then the velocity of the wall
will be damped primarily by top quarks and will be less
than what we have estimated.

Having determined the velocity of the phase boundary,
as discussed in Sec. III, we may in principle solve for the
entire pattern of fluid flow in the expanding bubble.
However, since we have some fairly crude approxima-
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tions on the way to our final result (117), we shall not
pursue this here. A more accurate solution of the trans-
port equation would be needed to definitively establish
whether the bubble walls are detonation fronts or
deflagrations. If (117) is correct, it would seem that, de-
pending on the Higgs mass, both may well be possible,
especially in multiHiggs theories.

VII. SUMMARY AND CONCLUSION

We have seen that it is possible to compute the velocity
of the bubble wall in various approximations. The best
approximation is that of small departure from local equi-
librium. We found an expression for the Lorentz y factor
of the bubble wall, and it was of order unity. Unfor-
tunately, to get a precise value involves going beyond the
approximations which we made for the scattering kernel,
i.e., it is dominated by low-momentum-transfer boson ex-
change. Since a more precise value will eventually be
needed if the electroweak phase transition does generate
the baryon asymmetry of the Universe, a more lengthy
analysis along the lines developed in this paper would be
useful.

Several qualitative results of this analysis are worth un-
derlining:

1. The Lorentz y factor of the bubble wall is not enor-
mous, so that analysis based on nonrelativistic bubble-
wall propagation is probably semiquantitatively correct.

2. The bubble walls are thick. Approximations using a
thin-wall bubble for computing reflection and transmis-
sion coefficients for the wall are not valid, save for excep-
tional tunings of parameters in a theory. To compute
reflection and transmission coefficients, a WKB approxi-
mation may be good, but the difference in reflection
coefficients between say a quark and an antiquark should
be exponentially suppressed by e ~ L where M is the par-
ticle mass and L is the bubble-wall size, except for a small
range of momenta where the wavelength of the top quark
is large compared to the bubble wall just at the edge of
the bubble wall. In such a situation, there will be a
power-law suppression of any effects associated with
simultaneous reflection and transmission due to the small
range of allowed phase space.

3. The motion of particles near the bubble wall is
diffusive. The typical mean free path for particles with
momentum close to that of the mass generated by the
phase transition will in general be small compared to the
wall width. Therefore, the thickness of the diffusion zone

d3P2 d3P3 1

1+ f% (E5)

n(x,t)2a8(E,+E,—E;—E,)e
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around the bubble wall is the same order as that of the
wall itself. (For exceptional parameters in some models it
may be possible to arrange the phase-transition tempera-
ture to be so small that the diffusive zone is larger.)

4. Due to the cubic dependence of the velocity on My,
the results are sensitive to this parameter. Therefore the
precise result will be sensitive to details of the Higgs po-
tential and to as yet undetermined parameters in the
theory.
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APPENDIX A: AN ANALYSIS
OF THE TRANSPORT EQUATION FOR §f

In the text of the paper, we derived that the deviation
from the local thermal equilibrium distribution function
could be written as

1 szB“ ePE

o} =— .
f(p,x) e dx v(eBE_l)ZK(E) (A1)
The quantity «(E) solves the integral equation
dJP d3 d}
1=B3f 32 f3 54 7(s,1)
(27m)2E, (2w)°2E; (27w)2E,
[1+ /% (E3))]
XQ2m)*6Hp,+py—p3—py) o (A2
P1 7Py~ P3 P4 [1+f0+(E1)]
XfOAEN1—fO(ED]K(E,)—k(E;)] . (A3)

We would like to turn this into a one-dimensional in-
tegral equation in the energy.

We begin by doing the integration over d°p,. The re-
sult is

_[3EZ

(K(E)—k(E})] . (A4)

1=
b f Qm)R2E, 2m)RE, 2(E\+E,—E;) 1+f%(E,)

In this last equation, we have approximated the fermion statistical factors by their Boltzman-statistics counterparts.
This should be a good approximation since the energy of the fermions will in general be large E ~3T, and here the
Boltzman weight factor should be accurate to a few percent.

The integration over |p,| may be done by approximating that the momentum transfer is small compared to the fer-
mion energy. We find after some algebra that the equation becomes

2pips 1+/%(Ey)

(—1E3) 1+ /2 (E m(s,ne‘ﬁ’”[x(El)—K<E3>1, (AS)
3 + £y

__ B
1 dp,dQ.,dS)
8(21)> f PR
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where
D= —! . (A6)
2[E,—E;—P,(p,—ps)]
We now do an angular decomposition where
PrP=z, (A7)
PipPs=z", (A8)
Py Py=zz' +V1—22V1—2z"cos(¢) . (A9)

The integration over ¢ may now be done by the method of stationary phases expanding around the two values of ¢
which make p, infinite,

E,—E;—pz+pyzz’

cos(¢g)= —_—— (A10)
%o p31/1—221/1—z’2
Doing the integration over ¢ we find that
2 P3 1 1+ f%(E3)
1= dpydz dz' —— (A1D)
(27r)4f P3 E; (t—M?*? 1+f%(E))
(E,—p,z)
ViV M )]
This equation is integrated over values of z and z’ such that the sin(¢,) is real.
Finally, we may do the integration over z', with the result that
2 1+ % (E3)
1=%fdp3a’z & s f(')* 3 d s [HE,+Ey)?—2pipi(1—23)][«(E|)—k(E;)] . (A13)
4(2m) E;lps—pi® 1+£%(E)) (t —M?)

This equation can be integrated over z to obtain a one-dimensional integral equation for x(E). We are here however
interested only in processes which involve small momentum transfer. If large momentum transfer is involved, then our
approximations are incorrect. We will also see that the solution to this equation for x(E) goes like E for large E up to
logarithms of E. Therefore in the integrations in the tadpole contribution the dominant contribution arises for energies
much larger than M. In this case, we expect that the momentum transfers will be small compared to the energies of ei-
ther the fermions or the W and Z bosons. To get the leading contribution to the above equation, we may therefore
write p;=p; +q and expand for small g. Upon changing variables from p; to g, we find

1 1+£%E)

1
= dg d
a4 “E'q¢ 1+,%E) (1'—M?)
X{t'"(E+E')+MNE+E)E—E')’?—q*p*+(p+q)?]+ig*}[x(E)—K(E")], (A14)
where
E=Vpra i, (A1)
t'=2M?+2p*+2p-q—2EE’ . (A16)

If we expand up to and including terms of second order in g, the equation for k becomes after much algebra

2 2BE 2p42 2
1=—3— [dgdr—1— | | —1+2? |14+t |- HM | de g 2dK (A17)
8(2m) g*+M 1| ¢*+M? | dE, dE

In this equation, the upper limit of integration should be taken as of order E,, since when g becomes of this order, all of
the approximations we have used assuming the dominance of low-momentum-transfer Coulombic processes breaks
down. Fortunately, the integral, although logarithmically divergent at the upper end, gets its contribution to leading

order in logarithms of energy from the region of integration where
M <<q <<E, (A18)

so that our analysis is consistent.
Performing the integrations over g and z gives a differential equation for «:
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1 BE |dk E d’k
1=— In(E*/M?) | |[1——F—— | == — = (A19)
2(27)? ePE—1 |dE 2 d’E
For energies M << E << T, the solution to this equation to leading order in In(E) is
k(E)=4Q27)’In[ AInB (E /M)]+C . (A20)

Here A and C are integration constants which are formally undetermined in this energy region but do not affect the
asymptotic solution. The constant B reflects the uncertainty over the precise value of the cutoff in the integration over
q. This contribution is largest for large energy.

In fact the dominant contribution to the equation for the scalar field arises for E ~ 7. In this case, to leading order in

logarithms

E
————+B
In(AE“/M*)
In this equation the constant B is an integration constant which does not affect the asymptotic behavior. Its values is

determined by requiring that the flux of W and Z bosons is conserved across the bubble wall. The constant B reflects
the ambiguity associated with properly determining the cutoff in the integration over g, and also does not affect the

k(E)=—2(27)} (A21)

asymptotic nature of k.
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