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It is found that the adiabatic regularized quantum stress-energy tensor for matter in any background
spacetime can be obtained in the framework of stochastic quantization. As an illustration, we investi-

gate the modes of a massive scalar field with arbitrary curvature coupling to the inhomogeneous confor-
mally flat spacetime. The difficulty of the mode-mixing behavior arising from the spacetime inhomo-

geneity is overcome and a simple algorithm is presented to evaluate the adiabatic regularized quantum

stress-energy tensor. The expressions so obtained are useful in formulating the semiclassical theory of
gravity and in the numerical study of the back-reaction effects of quantized fields in inhomogeneous

spacetimes, such as the problems of homogenization in the early universe and the evaporation of a quan-

tum black hole. It can be seen that our prescriptions may be extended to investigate more realistic mod-

els with ferrnions and gauge fields. This will be studied in future papers.

PACS number(s): 03.70.+k, 04.60.+n

I. INTRODUCTION

In the theory of quantum fields in curved spacetime [1]
one treats the gravitational field as a classical background
field, and the expectation values of some matter stress
tensors are regarded as the sources of the generalized
Einstein equation. The back-reaction problem is then de-
scribed by the equation

G„„+Ag„, +A. ,
' "H„,+A, 2

' 'H „„= 8n'G ( T„„—),

"'H„.= J&—gR'd'x, (1.2)pv

'"H „= &—gR, R~ d4x .
6

P" Q g fig P~

Although (T„,) is formally divergent, it can be made
finite by the renorrnalization procedure, as had been
proved for an arbitrary background metric by using the
DeWitt —Schwinger formalism [2] and the point-splitting
method [3]. The renormalizable requirement forces one
to introduce the tensors g„, "'H„, and ' 'H„ in Eq.
(1.1).

However, in this approach the finite part of the stress
tensor is rather difficult to evaluate. On the other hand,
the adiabatic regularization method [4,5], which can be
used to find the finite parts of the quantum stress tensor,
is a particularly efficient method in the numerical study
of the dynamics of quantum fields in curved spacetirne.
The adiabatic regularization method has been developed
for the cases of spatially flat Robertson-Walker, Bianchi
type-I, Gowdy T, and closed Robertson-Walker
universes [4—11].

As noted by Parker and Fulling in their original paper

(1.3)

(1.1)

where A is the cosmological constant, 6 is Newton's con-
stant, and 6„„the Einstein tensor. Two conserved ten-
sors ' "H„and ' 'H„are defined by

[4], the adiabatic regularization method is applicable to
any spacetime which has a metric of suScient symmetry
to allow a decomposition of the quantized fields into
modes. Therefore, when one wants to extend the method
of adiabatic regularization to a more general spacetime
with an inhomogeneity, because the mode solution of the
curved-space field equation (Klein-Gordon equation for
scalar fields) could not be separated when the inhomo-
geneity is introduced, one will immediately encounter the
difficulty of mode-mixing behavior and thus the adiabatic
approximation of mode functions cannot be straightfor-
wardly obtained.

In a previous paper [12] we have shown a possible way
to overcome the difficulty of mode-mixing behavior aris-
ing from the inhomogeneity of spacetime and gave a pos-
sible way to find an adiabatic approximation to the WKB
solution for each mode function. However, our previous
method can only apply to quantum fields in a spacetime
with a small inhomogeneity which is required to have
spatial reflection symmetry. In that paper we also have
adopted the early-time approximation. Therefore the ap-
plication of our previous results is rather restricted. For
example, the problem of how a large spacetime inhomo-
geneity, if it exists in the early universe, will be damped
in the early epoch to a small value which may form the
seeds of the galaxies [13,14] in the present time, cannot
be investigated. Also, the effect of back reaction in
black-hole evaporation [1,15—18], known to have great
significance in the final stage of a quantum black hole,
can be numerically studied from Eq. (1.1) only if the
quantum stress tensor in a generally inhomogeneous
spacetime has been obtained. Therefore it appears
worthwhile to find a method which enables one to evalu-
ate the adiabatic regularized quantum stress tensor for
matter in a general curved spacetirne.

In this paper we will show that the adiabatic regular-
ized quantum stress-energy tensor for matter in any back-
ground spacetime can be obtained with the help of the
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stochastic quantization method [19—25]. Although the
prescription presented in this paper could be applied to a
more general metric, for simplicity, we will in this paper
first treat the modes of a massive scalar field with arbi-
trary curvature coupling to a spacetime which is confor-
mally flat. In particular, we will present a simple scheme
and use it to evaluate the adiabatic regularized quantum
stress-energy tensor. Our results are useful in formulat-
ing the semiclassical theory of gravity and in the numeri-
cal study of the back-reaction effects of quantized fields in
inhomogeneous spacetimes, such as the problems of inho-
mogeneity damping through quantum effects in the early
universe and black-hole evaporation. Our prescription
can be extended to investigate more realistic models with
fermions and gauge fields. This will be studied in future
work.

Our present work is one of a series of investigations
about quantum fields in inhomogeneous spacetimes. In
addition to the paper of Ref. [12], we have also studied
particle creation and the Coleman-Weinberg mechanism
in inhomogeneous spacetimes in recent papers [26,27].

This paper is organized as follows. In Sec. II we define
the modes and calculate the associated classical stress-
energy tensor. In Sec. III we first give a brief overview of
the Parisi-%'u stochastic quantization method and then
apply it to our model. It is found that the mode func-
tions will be solutions of a mode-mixed differential-
integral equation, which seems impossible to solve at first
sight, just like using the canonical quantization method
[12]. We thus give a physical argument of how to over-
come this diSculty. Then, with this guide, we can, in
Sec. IV, after a lengthy evaluation, obtain the equilibrium
value (and thus the quantum expectation value) of bilin-
ear product functions. Collecting these results, the adia-
batic regularized quantum stress-energy tensor can be ob-
tained. In particular, we have in this section presented a
simple scheme which will enable one to change the
tremendous work involved in the multi-integrations of
stochastic time variables to just a few simple algebra cal-
cu/ations. We will detail this algorithm with an example.
Section V presents a discussion of the results of this pa-
per. We also mention some future interesting work.

Throughout this paper we use the metric signature
(+,—,—,—) and conventions R~~ ~ =+I ~, &—

7

and R„&=R„&.The units are such that A=c= 1.

ground

S= Jrd'x

=fv —g g—""P„P ——m P —~RP d x,

(2.1)

where R is the Ricci scalar and „denotes a derivative
with respect to x". The scalar wave equation, obtained
by varying S with respect to p, is

Clg+m /+JR/=0, (2.2)

+2/ g„,RQ~ . (2.4)

We consider a model spacetime with an inhomogeneous
conformally flat metric of the form

ds2=C (xo, x)(dxo —dx ) . (2.5)

After introducing a modified wave function

0=C 'x

the wave equation of Eq. (2.2) becomes

X—V X+C [(g—
—,')R+m ]X=0,

where the Riemann-Christoffel curvature is

(2 6)

(2 7)

R=6C Coo —gC;; (2 &)

where HP=g" V„V P=g""P „„. T.he stress tensor is

defined by

2 5S

=(2~-1)~,„~,.+(-,'-2~)g„.g "~,.~,,
2kg„A—(:jd+280;„. ,'g„.m—'—0'+gG„,4'

(2.3)
Using the wave equation (2.2) the stress tensor can be
written as

Tp. =(20 1)4,„—0,.+( ,
' 2K)g—„—,g "p,.4, b

+2@(t.„„—(-,' —2g)g„„m'y'+ gG„„y'

II. MODEL AND STRESS TENSOR

We consider the action describing a massive scalar field
(P) coupled arbitrarily (g) to the gravitational back-

Note that Eq. (2.7) cannot be solved by splitting it into
separated ordinary differential equations, as the space-
time is inhomogeneous.

The stress tensors in this metric are given by

T oo[{6$——,')C (C o) +(4g —
—,')C g (C, ) —( —,

' —2$)m +g'C Goo+2g R ]X
J

+(1—64)c 'c,oxx, o+(1 64)c 'y c,JXX,, —,'c '(x,o)'+2K' 'XX, {—,
' —2k)c 'y {x,, )'

J l
T;; =[(4g—

—,')C (Co) +(10$—l)C (C;) +(—' —4$)C g(C . ) +(—,
' —2$)m +gC G.—2g R]X

J
+(2g —

—,')C '{X,o)'+[{2—g)C 'C, ;+4Ã '{C,;)']XX,; —(6k—1)C 'C, OXX, O

+{6/—1)C g C XX . +2$C XX,, +(2g' —1)C (X,. ) +(—,
' —2g')C g(X J)

J J

(2.9)

(2.10)
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where the Einstein tensor 6„=—R„——,'g„R is
—2

Goo= 2C (C ) oo+ [(C ) oo g(C ) ~~]
J

a, x=x,oo+ gx,„-~x+i),
J

where

(3.4)

—3C '[Coo —gC, ],
J

(2.11) A —= C [(g—
—,')RE+m ] . (3.5)

2

6,,
= —2C '(C '};,— [(C ) —g(C ), ]

J

+3C '[Coo —QC)J] .
J

(2.12)

In the quantum theory T„ is divergent and needs to be
renormalized.

III. STOCHASTIC QUANTIZATION

A. Overview

To evaluate the renorrnalized stress tensor we will

adopt the stochastic quantization method. The Parisi-
Wu stochastic quantization [19]for a field x(x„)with the
Euclidean action S[X] is formulated in terms of the
Langevin equation

—X(x, t ) = — +rt(x, t),a fis[x]
at ' fiX(x„,t)

(3.1)

in which an extra variable, t, is a fictitious time variable
(the Langevin time) and g is a random variable with a
Gaussian distribution [19],thus

(rt(x„, t)rt(y„, t)) =25(t —t)fi (x„—y„) . (3 2)

Note that the left-hand side contains a stochastic g aver-
age, whereas the right-hand side represents the standard
field-theoretic vacuum expectation value. The stochastic
quantization was originally invented to quantize a gauge
theory without gauge fixing [19,21]. It has also been used
to quantize a fermion system [22] and gravity theory [23].
Stochastic quantization has also been discussed for Min-
kowski spacetime [24]. More references can be found in
the review article of Ref. [25].

B. Application: Difhculty and solution

The central assertion of stochastic quantization is that in
the limit t~~ equilibrium is reached, and that the
equal-time (t) correlation functions of x become identical
to the corresponding quantum Green functions [19—21],
i.e.,

lim (X( „"',t) X(x„'"',t})

The value of RE is defined in Eq. (2.8) except that the o
here [and also in Eq. (3.4) and hereafter] is now a deriva-
tive with respect to Euclidean time. To solve the
Langevin equation of Eqs. (3.4) we expand the fields x
and g and the function A by

X(x„,t ) =f d k %k(t)e'"', (3.6)

rt(x„, t)= f d k r)k(t)e'"",

A(x„)=fd k A&e' " . (3.8)

(3.7)

Then the mode function 4k will be a solution of the
mode-mixed differential-integral equation

—4„=—k qI„+rt„—(2ir) f d 1 A 4„
t

k —= gk P
p

(3.9)

IV. STOCHASTIC METHOD
IN KVAI.UATING THK ADIABATIC
RKGUI.ARIZKD STRESS TENSOR

A. Method

The above equation exhibits the mixing between the
different modes as the space-time inhomogeneity is intro-
duced, and solving it is a horrible task. We will try to
solve it in some approximations, which will, nevertheless,
enable us to evaluate the exact form of adiabatic regular-
ized quantum stress-energy tensor.

To get an. idea to solve Eq. (3.9) one may consult the
following argument. It is known that the infinity is com-
ing from the large values of k. Therefore, to obtain the
divergences in ( T„,) it is sufficient to calculate the bilin-
ear product functions x, (x o), xx .. . and (x;) [see Eqs.
(2.9) and (2.10)] to some order in k„. We also know that
large k corresponds to the short-wavelength modes, and
short-wavelength modes only probe the local behavior of
the background spacetime. Therefore it is natural to
guess that the ultraviolet divergence may be made softer
by taking into account the terms with higher-order space-
time derivatives. With this guide we can in the next sec-
tion find the regularized quantum stress tensor.

We note that the above idea has been used by Bunch
and Parker [28] to study the renormalization of interact-
ing fields in curved spacetime.

Due to such successes it is natural to apply the stochas-
tic quantization method to study a quantum field in
curved spacetime. The work described below is just a
preliminary result that can be obtained in this direction
(see the discussions in Sec. V).

We now begin our investigation. The Langevin equa-
tion associated with Eq. (2.7) is

To proceed, let us write Eq. (3.4) as

a, x=x,oo+ gx,„—M'x
J

ao a3
Xo ' ' X3

Qo. a3.
(4. 1)
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where the Taylor expansion of A about the origin is
defined by

(Qp+Q $ +Q2+Q3 )

eral original point.
In terms of the mode functions defined in Eqs. (3.6) and

(3.7), Eq. (4.1) becomes

and

~ —:A, oooo .

x =x =x =x =0
P 1 2 3

(4.2}

(4.3)

—q' = —(k +M )4a
at

Qpp ~ ~ y Q3

ao 1 2+a3
i

A
a t ' g Qp I Q2Q3

oe 3 ~

The summations in Eq. (4.1) are such that
ao+a, +az+a3 &0 with a, a nonnegative integer. Not
that in general relativity we do not have a fixed frame,
and any position may be regarded as the original point
x„=(0,0,0,0). Thus the results obtained below can be

applied to all positions in a spacetime, and not just a spe-

(Qp+Q~ +Q2+Q3 )

k

ak()'ak ) ak22ak, 3
(4.4)

The above equation can be written in a differential-
integral form

(t)—J' dre(r &)(k +M—
)

Qp& ~ ~ ~ 3 Q3

. Q +Q +Q +Q (Qp+Q&+Q2+Q3)t)0 1 2 3

~ ~ . 1,QpQ) Q2Q3 Q Q Q Q' ' ' ' ' ako'ak", ak,"ak," (4.5)

which may be solved by iteration. From such an approximate solution we can obtain the equilibrium values of any bi-
linear field products with the help of Eq. (3.2), and the exact form of the adiabatic regularized quantum stress tensors
are found according to Eq. (3.3).

As the solution will involve multi-integration of stochastic time, for convenience, we will, from now on, adopt the
symbolical notations defined below:

1 (r) —))(k +M ) r1 (r2 —r))(k +M ) rn —1 (r„r„))(k2+M2)—
0 0 0

(4.6)

ak„ak„
(4.7)

pv' ''
Xp =X) =X2 =X3 =0

(4.8)

where F is an arbitrary function of stochastic time and k. Notice that A. .. , defined in Eq. (4.2) is diiferent from
P 1 2 3

A„„.. . defined in Eq. (4.8). (A„, . . . is not a function of stochastic time t or momentum k.} In the following, as we

have used the shorthand notation, the variable k is occasionally neglected. Thus, without confusion, g usually stands
for rtk(t) defined in Eq. (3.7). A summation shall always be taken on the same index in an equation.

Denoting by 0 '"' a solution of Eq. (4.5) which contains spacetime derivatives of order not larger than n, we can, after
a little analysis, obtain the following results:

y (n) y(0)+y(1)+ . . . +y(n) (4.9)

with

qy(0) G ~
(11("=iA„Ga„(G2)),
q(2) = —A„Ga„[A„Ga,(Gq)]+, A„.Ga„a.(Gq),

e")—= —
2 A„Ga„[A.Ga„[A, Ga, (G~ }]I+ 'A„Ga„—[ A „, aG.a, ( ~G)]+ 'A„„Ga—„a.[A,Ga, (Gq)]

(4.10)

(4.11)

(4.12)

——'A„.,a„a„a,(G~),

)I1' '=—A„Ga„[A,Ga I A„Ga [A Ga (G2I}]I]——,'A„Ga„[A,Ga [A Ga,a,(G2))]I

—
—,
' A„Ga„[A „,Ga.a,[ A, Ga, (G2))] I

—
—,
' A„„Ga„a,I A, Ga, [ A, Ga, (G2) }]}

+,A„.Ga„a„[A „Ga,a,(G~ }]+-,' A„Ga„[A.„Ga„a,a,(G~) ]

+-,'A„.,Ga„a„a,[A,Ga, (G~}]——,', A„„„,Ga„a„a,a,(G~) .

(4.13}

(4.14)
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We will separately calculate each term in the following
expansion:

()I( )p ) —()Il(0))II (0) ) + ()I((1))II()) ) +2()p(2))I((o) )k

+ ( )P( &))Ii (& ) ) +2 ( )P(3 ))I( ( ) ) ) +2 ( )Ii(4))P (0) )

+terms with higher-order spacetime

B. Simple algorithm

Step 1. From the following relations:

&yg)= fd kd k(%„(t)%„-(t)&e""+"'",

&XX,„&=-,'&X') „, t =0, 1,2, 3,

(yg„„)=f d k d kk„k„()Ilk(t)'I(k(t))e'"+"'

(4.16)

(4.17)

(4.18)

where

derivatives, (4.15) (y~„)=f d k d"k k„k„(+k(t)%'k(t))e'"+"'",

(4.19)

y (n) y(n)

In Eq. (4.15) we have neglected the terms containing an
odd number of derivatives, as they will become zero after
performing the k„and k„ integrations (see the discussion
of step 3 in Sec. IV 8). Now, because each term in the
above equation contains multi-integration of the stochas-
tic time and several derivatives with respect to k„, a
tremendous amount of work seems to be needed to work
them out. Thus we will present a simple algorithm to cal-
culate them.

we see that, despite the several types of bilinear field

products which appear in the stress tensor [see Eqs. (2.9}
and (2.10)], it is, in fact, only necessary to evaluate

Step 2. From Eq. (4.16) we see that, because of the k
and k integrations we can use integration by parts for
each derivative B„ in Eqs. (4.11)—(4.14) when performing

the stochastic g and g averages. In addition, the surface
terms will become zero in the limit t ~ &x .

Step 3. Using step 2 and defining T;
—=~, —~, &

it is

seen that the functions to be evaluated have a general
form

( T, 'GT~'G T„"GrIT, 'GT~'G T Gri)
1 n —1 Q

I Q2 a (r —t)(k +M )
dr, dr) ' ' ' dr( )rt) (rp r)) ' ' ' (r„r„))"e "

g), (r„)
0 0 0

fd)f z f d~() —
) (z—)) (m —

m )}
0 0 0

(r —t)(k 2+M2)
Xe " e(„-(e„))

t t t a~ a2 n n t)(k +M )dr„dr& dr, (r) t } '(rz —r—)) ' (r„r„))"e —" r)k(r„}
3 2

t t Q) Q2x dr dr, dr)(r) —t} '(rp —r))
r3 r2

a (r —t)(k +M )X(e e„,)
"e e(„-(e„))—

t al Q2 andr„. dr~ dr~ dr, (r, t) '(r~ —r, )
' — (r„—r„,)"

t t Ql Q2X f dr )
. . f draff dr, (r) t) (1) r)) ' (r~ 1~ ))

n r3 r2

2(r —t )(k +M )
{4.20}

To obtain this equation a relation

( rI„(t)rt„(r) ) =32~'5'(k+ k-)5(t —r),
which is a consequence of Eqs. (3.2) and (3.7), has been used. Thus Eq. (4.16) becomes

& y' &
=32~ f d k (%'„(t)%„(t)) .

(4.21)

(4.22)

This equation tells us that the terms in ()Ilk (t))'pk(t) ) with an odd number of k„will not contribute to (g ).
Step 4. Despite the several useful properties that have been obtained it is still very complicated to perform the calcu-

lation directly from Eq. (4.20). Thus let us find a useful form and its properties. We define D;—:r, —t and find that
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(D, 'GD2'G . D„"GgD, 'GD2'G . . . D Gg)
(~ —t )(k 2+M2)

dr& de . . . dT& 7& t 'T2 t ' ' 'T„ t e 'gk in
0 0 0

t 1 m —1 611 mx d~, d~, dv (~, t—) '(~,—t) ' (~ t)—
0 0

(~ t)(k 2+M2)
Xe

t a& a2 a (~ —t)(k +M )= f d~„ f d~ f d~(~, t) —'(~, —t) ' (~„—t) "e "
rt (~„)

t t t ir) n2 if (V. —t)(k +M )x d~ d~, d~~(~, t) —'(~, —t) ' . (~ t) e — ri„-(~ )
0 '3 '2

t and~„d~, dr, (~, t) —(~,—t) (~„t) "—

t t t 8) if2 am
X dr, -d~, d~~(~, t) '(~—, t) '— (~ t)—

tt 3 Y2

2(r —t )(k '+ M')
Xe " 32vr 5 (k~+k„) .

II

From this relation one can easily derive a reduction formula and an integration formula

(4.23)

(D, 'GD2'G D„"GgD, GD2 6 D Gg) = (D~ 6 D„"GgD, GD2 6 D Gg)a)+1
=[(a, +1)(a&+1)]

(D'GgD Gg) ~ ( —1)( —2) [—(a+a )][2(k +M )] '+ +"32m 5 (k„+k„) .

Note that the functions of T; and D, used, respectively, in Eqs. (4.20) and (4.23) have a relation

(4.24)

(4.25)

g T, =D, . (4.26)

This relation implies the following derivative formula:

(D 'GD '6 D„"6)„=2k„(TiD 'GD '6 D "6+D 'GT D '6 . D "6+
+Di'GD 'G . T„D„"G)

(4.27)

C. Example

& Ga„[Ga.a,(6&)]Ga,(Gg) &
=

& (6 „6).„Gg(6),Gg &

=((2k„DGG) „qGg2ksDGGg)

=((25„eGG+4k„k„DGDG) gGg2ksDGGg)

=
& (45„.k,DGDG+45„,k.DGDG+45.,k„DGDG+ 8k„k„k„DGD'6 )6~2k, DGG~ &

=(85„k~ks+85„~k,ks+85 ~k„ks)(DGDGGgDGG71)

+16k„k„kgks(DGD GGgDGGg)

,'(5„P,k, +5„,k.k—,—+5.,k„k, ) & D'6.)D '6~ & ;k„k.k, k, & D'G~D——'6~)

=32m 5 (k„+k„)I 360(5„k—),k +s5„gk„k +s5„gk„k )[2s(k +M2)]

+4032k„k„kqks[2(k +M )] (4.28)

Using the reduction formula, integration formula, and derivative formula we could simplify our calculation. Let us
see this in the following example in which the calculations are performed step by step:
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D. Results

We can now evaluate each term in Eq. (4.15}by just some simple algebra. The results are as follows.

&e"'I "')=32m 5 (k„+k„)[2(k +M )]

(0'"4 "')=32~'5'(k„+k„)I—6A„A„[2(k'+M')] '(4k„k,, )],
(4'~%'o')=32m 5 (k„+k„)(A„A„[[2(k~+M )] (25„,) —3[2(k +M )] '(4k„k„)]

—
—,'A„„[[2(k +M )] (25„„)—2[2(k +M )] (4k„k„)[),

&=32~5 «„+k„}(A„A.AgAsI20[2(k'+M')] '(45 „5gs)—105[2(k +M )] (85 k~k +85 k k

+630[2(k +M )] (16k„k,kqks)I

(4.29)

(4.30)

(4.31)

—,'(A„A„Ass+ A„„AgAs)[10[2(k +M )] (45„„5qs) 40—[2(k +M~)] 7(8—5 kqks)
—45[2(k'+M') ]-'(85„k k. )

+21o[2(k'+ M') ] (16k„k,k k ) ]

+-.'(A..A.s }[~I 2(k'+M')] '(45„.5&, }—20[2(k'+M')]-'(85„,k„k, +85„,k k }

+80[2(k'+M')] (16k k, k k )I), (4.32)

+252[2(k +M )] '(16k„k„kqks)I
—

—,'(A„„AgAs)[ —45[2(k +M )] (85„„kqks)

(4' 't"'}=32m. 5 (k„+k„)(A„A„AgAs{—84[2(k +M )] (85„„kqks)—63[2(k +M )] (85„gk„k +s85q k„ks)

+420[2(k +M )] (16k„k,kqks)I
—

—,'( A„Ag A)s[
—45[2(k +M )] (85„kqks+85„qk„ks+85qsk„k„)

—30[2(k +M )] (85„qk„ks+85,~k„ks)

+168[2(k +M )] (16k„k„kqks)I

+ —,'(A„,qAs)[ —20[2(k +M )] (85„„kgks+85„qk,ks+85,gk„ks)

+90[2(k +M )] (16k„k„kgks)] },
(4' '4'' ') =32' 5 (k„+k„)(A„A„AgAs [4[2(k +M )] (45„„5qs)+3[2(k +M )] (45„g5,s+85„s5„g)

—24[2(k +M )] (85 „kqks)
—18[2(k +M )] (85„qk,ks+85,qk„ks}
—15[2(k +M )] '(85„sk„kq+85„sk„kg+85gsk„k„)

+105[2(k +M )] (16k„k„kqks)]

—
—,'(A„A, Ags)I4[2(k +M )] (45„„5qs)

(4.33)

+3[2(k +M )] (45„q5„s+85„s5 q)
—20[2(k +M )] '(85„,kqks)

—15[2(k +M )] (85„qk ks+85 qk„ks+85„sk„kq

+86 ~k„kq+ 86~qk„k )

+90[2(k +M )] (16k„k kqks)I
—

—,'(A„A ~As)I3[2(k +M )] (45„„5~s+45„„5s+85„s5„q)
—15[2(k +M )] '(85„,k~ks+85„~k ks+85 ~k„ks)
—12[2(k~+M~)] '(8 „5k„sqk8+5„sk„kq+85gsk„k, , )

+72[2(k'+M )] '(16k„k,,k~ks)I
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—
—,'(A„Ai As)[3[2(k +M )] (45„5»)+2[2(k +M )] (45„i5 s+85„s5,i)

—15[2(k'+M')] '(85„+iks)

—10[2(k +M )] (85„ik ks+85 ik„ks)
—8[2(k +M )] (85„sk ki+85„sk„ki+85»krak„)

+48[2(k +M )] (16k„k kiks)]

+ —,'( Aq A»)[3[2(k +M )] (45„5»)+2[2(k +M )] (45pi5„s+85„s5„i)
—12[2(k +M )] (85„+iks)
—8[2(k2+M )] (85„ik,ks+85,ik„ks

+85„,k,k, +85.,k„k&+85»k„k. )

+40[2(k'+M')] '(16k„k„k„k,) j

+,'( A„g») I 3[2(k +M )] (45„„5»+45~i5„s+85„s5„x)
—12[2(k2+M2)] 6(85„„kiks+85„ik„ks+85 ik„ks

+85„sk„ki +85„sk„kg +85»krak „)

+ 60[2(k'+M'}] '(16k„k„k&ks)]

+—,'(A„„iAs)[2[2(k +M )] (45„„5»+45qx5,s+85„s5„i)
—8[2(k2+M2) ] (85„„kiks+ 85„~k„ks+85„~kpks )

—6[2(k +M )] (85psk„ki +85„sk„ki +85»k„k„)

+30[2(k +M )] (16k„k„kiks}}
—

—,', A„,is[2[2(k +M )] (4 „5„5»+4 „5i,5+s8„5s,5)i

—6[2(k +M )] (85„,kiks+85„ik„ks+85„ikpks

+85„sk,ki +85,sk„ki +85»k„k„)

+24[2(k2+M )] (16k„k,kiks)]) . (4.34}

Substituting these results into Eq. (4.15) and using the
relations Eqs. (4. 16)—(4. 19) we can, from Eqs. (2.9) and
(2.10), evaluate the adiabatic regularized quantum stress-
energy tensors.

U. REMARKS, DISCUSSIONS,
AND FUTURE RESEARCH

In this paper we have used the Parisi-Wu stochastic
method' to quantize a scalar field in an inhomogeneous
spacetime. Our purpose was not just to present an a1ter-
native method to find some results which have been ob-
tained in other approaches. In fact, we showed that the
stochastic quantization method may be used to find the
regularized stress-energy tensor in an inhomogeneous
spacetime, which is unable to be gotten by any other
quantization method (at least in the present time).

Our prescription and results need further remarks and
discussion as stated in the following.

(1) From the above results we see that the ultraviolet

divergence is softer in the terms containing more space-
time derivatives. Thus to regularize the divergence ap-
pearing in the quantum stress tensor we only need to sub-
tract the terms with small powers of spacetime deriva-
tives, i.e., we only need to find the approximate solution
of Eq. (4.5) and this will be sufficient to find the exact
form of the adiabatic regularized stress-energy tensor.

(2) Note that (4' ~4' ') contains terms of order k(4"'4"') contains terms of order k, (4' 't' ') con-
tains terms of order k and k, (4' 't' ') contains
terms of order k ', k ', and k ', (4' ~4"') con-
tains terms of order k ', k ', and k ' while
(4' '4' ') contains terms of order k, k ', k ', and
k ' . Therefore in the evaluation of the regularized
stress tensor [see Eqs. (4. 16)—(4. 19)] not all terms will
appear ultraviolet divergent. However, our calculations
have contained all terms up to fourth spacetime deriva-
tives which may contribute a finite value. The reason is
similar to that discussed in the original paper of Parker,
Fulling, and Hu [4,5], in which it has been shown that the
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original mode sum can be renormalized by subtracting
from it the quantity calculated to fourth adiabatic order
which contains a finite term. In other words, the explicit-
ly finite terms must also be subtracted from the quantum
stress tensor in the renormalization process. We leave for
the future a more detailed discussion and an explicit
proof. In fact, one can check that our result will produce
that evaluated by Bunch [7] who explicitly presents some
adiabatic regularized bilinear field products in a
Robertson-Walker universe. (Notice that to compare our
result with Ref. [7] we must integrate the variable ko. )

Note that, in our method, as the adiabatic regularized
stress tensor involves not only a derivative with respect to
time but also to space, we may call this method the "gen-
eralized adiabatic regularization method, " and thus the
subtracted terms involve all that to the fourth spacetime
derivative.

(3) Our results can also be applied to n-dimensional
theory. Simply replace 32m 5 (k +k ) in the above results
by 2(2m)"5"(k+0 }. Then, a check of our results in two
dimensions (cf. Ref. [7]) is very simple.

(4} Our final results can be applied to Minkowski space
by simply adding a negative sign to any term carrying a
double derivative with respect to the Euclidean time.
(There are no terms with odd derivatives with respect to
the Euclidean time according to the discussion in Sec.
IV.) It is worthwhile to investigate the stochastic quanti-
zation for a field theory in curved Minkowski spacetime
[24].

(5} In the stochastic quantization method one can ob-
tain adiabatic regularized bilinear field products in any
curved spacetime, as we have found, but it is unable to
find the WKB solution of mode functions, even in a
homogeneous spacetime. On the other hand, in the
canonical quantization method one can obtain the WKB
solution of mode equations in a homogeneous spacetime

but cannot get that in a generally inhomogeneous space-
time. We conjecture that there may exist a method of
directly obtaining the adiabatic regularized bilinear field
products without knowing the WKB solution of mode
function in any curved spacetime, within the framework
of canonical quantization method or path integral quanti-
zation. It would be interesting to find such a method.

(6) A remarkable result of the stochastic quantization
method is that the gauge-invariant observables can be
computed without fixing the gauge [19,21]. Such an ad-
vantage is expected to survive for a gauge field theory in
curved spacetime. This is the next area we plan to study.
We also plan to investigate a theory containing a fermion
field [22].

(7) It is well known that quantum fields have a pro-
found influence on the dynamical behavior of the early
universe (e.g., the avoidance of the initial cosmological
singularity [10,29—31], the isotropization of an aniso-
tropic universe [6,32,33], and the infiationary universe
scenario [14,34]. As we have presented a method to find
the adiabatic regularized stress-energy tensor, the above
studies may be extended to an inhomogeneous spacetime.
This is a more realistic cosmological problem, because
not only anisotropy but also inhomogeneity will exist in
the early universe [13,14].

Finally, to study the back-reaction problem it is neces-
sary to numerically solve the Einstein equation Eq. (1.1)
and mode equation (3.9) [or Eq. (4.4)] with l3ldt 4=0 and
(71)=0. However, if the generalized adiabatic regulari-
zation method proposed here is to be useful in the study
of the semiclassical theory of gravity, there must be a
clear algorithm [9] to get the finite term by subtracting
certain terms of the solution obtained by the numerically
calculated exact mode function. This is an important
field of investigation.
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