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Linear-order stability of the gravitational plane-wave Cauchy horizons

Gregory A. Burnett*
Department of Physics, University of Utah, Salt Lake City, Utah 84112
(Received 28 April 1992)

It is proven that the plane-wave spacetimes cannot focus so strongly that linearized gravitational
waves of compact spatial support become singular on the Cauchy horizons associated with these space-
times. Implications of this result for the collision of gravitational waves are discussed.
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I. INTRODUCTION

An important problem in general relativity is the task
of understanding what happens when gravitational waves
collide. Ideally, one would like to be able to answer such
questions as the following: When gravitational waves
collide, what is the outcome of their interaction? When
do the waves simply scatter one another and when do the
waves interact with one another resulting in something
interesting such as a black hole? Unfortunately, solving
this problem in all generality appears exceedingly
difficult.

Over the past twenty years, insight into this problem
has been gained through the study of the colliding plane-
wave spacetimes [1]. These spacetimes represent two
transversely infinite plane gravitational waves that collide
and interact. The picture that emerges is one where each
wave focuses the other leading (generically) to the forma-
tion of a future singularity [2]. However, the fact that
the waves are exactly planar and transversely infinite
leaves this work open to the criticism that the waves
studied are “‘unrealistic.” Does the behavior these space-
times exhibit offer any indication of the behavior that one
can expect from the collision of more “realistic” gravita-
tional waves as would arise from astrophysical situations?

Yurtsever has shown that the singular behavior the
colliding plane-wave spacetimes (with parallel linear po-
larizations) exhibit is not an artifact of the exact planarity
and infinite transverse extent of the waves [3].
Yurtsever’s argument is simple and worth summarizing
here. Fix a globally hyperbolic linearly polarized collid-
ing plane-wave spacetime (M, g,,) (that is singular to the
future.) Fix a Cauchy surface X therein and a future-
directed timelike curve y that “runs into” the future
singularity (i.e., it enters the interaction region and is fu-
ture incomplete without having a future end point.) Then,
as Yurtsever has demonstrated, the set C=I "[y]NZX is
compact. Since any change of the initial data that the
spacetime induces on 2 — C does not affect the evolution
on D *(C), we see that the singularity encountered by y
cannot be due to the infinite transverse size of the wave.
In other words, two colliding gravitational waves that are
planar over a sufficiently large region (almost-plane waves
[4]) will develop the singularities seen in the colliding
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plane-wave spacetimes.

As a first step in a larger program, we attempt to gain
further insight into the collision of gravitational waves
through a linear analysis of the problem. Of course, if
both waves are linearized there is no interaction between
the waves. So, instead we treat one of the waves as
“weak” and the other as “strong.” The “weak” wave is
modeled by a linearized gravitational wave evolving on a
plane-wave spacetime which represents the “strong”
wave. The interaction between the waves is simply the
effect the plane-wave background has on the perturbation
as it evolves: e.g., the perturbation can be focused by the
plane wave. Further, we shall use only the linear approx-
imation to describe the perturbation. Any higher-order
perturbations this linear perturbation may generate shall
be ignored. Thus, any behavior that occurs in the full
theory that is not seen in this linear analysis is an indica-
tion that the behavior is due to the nonlinearities in the
full theory. In particular, we compare the singular be-
havior such linearized waves have on the Cauchy hor-
izons of the plane-wave spacetimes to the singular behav-
ior found in the study of the colliding plane-wave and
almost-plane-wave spacetimes.

For definiteness, fix a past-complete, globally hyperbol-
ic, plane-wave spacetime (M,g,,) that is a sandwich-
wave spacetime (e.g., all nonzero curvature is confined
between two null planes.) This spacetime is future exten-
dible (as a plane-wave spacetime) with Cauchy horizon
F.

To begin, consider the case that is the analogue of the
colliding plane-wave spacetimes. Here the linearized
wave is plane symmetric (and is not traveling parallel to
the wave of the background spacetime). This case has al-
ready been analyzed [5] and, as one might expect, the
linearized waves are singular on #. So, in this case, at
linear order we see an indication for the development of
the singularities that are present in the full theory.

Yet, are these planar waves singular on the Cauchy
horizon simply because they are transversely infinite? To
answer this we take the extreme case where the linearized
wave is spatially limited (and hence is transversely finite.)
Is such a wave focused so strongly by the plane wave that
it becomes singular on the Cauchy horizon? As a first
step towards answering this question, one might attempt
to use a form of Yurtsever’s argument to show that if the
perturbation were exactly planar over a sufficiently large
region then it must be singular on #. However, as

I [pIN3¥is noncompact for all p €7 and all Cauchy
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surfaces =, Yurtsever’s argument cannot be applied here.
In fact, as we shall prove, all spatially limited perturba-
tions are well behaved on #.

Theorem 1. Fix a globally hyperbolic plane-wave space-
time (M,g,,) that admits a plane-wave extension. Fix on
M any smooth solution ¥, of the linearized vacuum Ein-
stein equation (linearized about g,, ) such that there exists
some Cauchy surface = on which the pair (y,,,V,, 74 ) is
zero outside some compact set C in 2. Then there exists
a perturbation ¥,, related by gauge to y,,, that is
smooth on all of M and is smoothly extendible to #, the
Cauchy horizon of 2 resulting form a plane-wave exten-
sion of (M,g,;, ).

The condition that (y,,,V,, v,,) is zero outside some
compact set C of a Cauchy surface 2 captures the idea
that y,, is ‘“spatially limited.” This interpretation is
greatly reinforced by the fact that 7, meets all Cauchy
surfaces compactly. [In fact 7,, vanishes on D(2—C).]

Theorem 1 suggests, though does not prove, that when
a sufficiently weak gravitational wave collides with a
(nearly) plane gravitational wave no singularities will de-
velop. A result showing that the linear perturbation is
globally bounded (in an appropriate sense) would greatly
strengthen this argument as it would indicate that the
perturbation does not become arbitrarily strong and
hence for sufficiently weak waves it may be justified to ig-
nore the nonlinearities of the full theory.

Our linear analysis of the collision of gravitational
waves seemingly misses the most interesting features of
gravitational wave collisions seen in the full theory of
general relativity. Consider an almost-plane-wave space-
time that is planar over a sufficiently large region. As
Yurtsever has shown, the full theory of general relativity
predicts (generically) the formation of a curvature singu-
larity. Yet, our linear-order analysis of such waves gives
no indication for the development of any singularities:
The perturbation is everywhere finite, even on the Cau-
chy horizon.

Whether the linear-order analysis really misses the
singular behavior seen in the full theory of general rela-
tivity depends on one’s approach to the linear-order
analysis. First, if one views the perturbation y ., as the
first derivative of a one-parameter family of metrics, then
the singular behavior is not seen since this procedure in-
volves taking the limit in which the waves become
infinitesimally weak. For increasingly weaker waves, the
transverse size of the region with exact planarity must be-
come infinite in order for the development of a singulari-
ty to be guaranteed by the Yurtsever argument [3].
Second, if one views the perturbation y,, as a small but
nonzero difference between the true metric and some
background metric (and uses the linearized Einstein equa-
tion for its evolution) then the condition that y ., be finite
is insufficient to indicate that no singularities will be
present in the full theory. After all, if the perturbation
becomes too large, then this approximation breaks down.
Clearly, some criterion (stronger than merely being finite)
for determining when this linear-order analysis gives
answers that are ‘“‘close” to those of full general relativity
is necessary for a successful implementation of this inter-
pretation.
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In Sec. II, the plane-wave spacetimes are briefly re-
viewed and two technical propositions needed for the
proof of Theorem 1 are established. In Sec. III,
Theorem 1 is proved.

Our notation and conventions are those of Ref. [6]. In
particular, all metrics are such that timelike vectors have
negative norm. Further, all fields will be taken to be
smooth, i.e., C”. (This condition can be relaxed, though
we do not do so here.)

II. THE PLANE-WAVE SPACETIMES

The plane-wave spacetimes arise as a special case of the
PP-wave spacetimes for which we now establish a few ele-
mentary results (PP is short for plane fronted with paral-
lel rays.)

Definition 1. A PP-wave spacetime (M,g,,) is a vacu-
um spacetime for which there exists a nonzero null vector
field k¢ such that V k, =0, M = R* and the wave surfaces
(the integral surfaces of k, ) are geodesically complete.

An immediate consequence of this definition is that
Copeak?=0, i.e., the Weyl tensor is type N and k“ is the
principal null direction. Thus, if the spacetime is not
everywhere flat (i.e., not Minkowski spacetime) k¢ is
unique up to a multiplicative constant. Since dk =0 and
M is simply connected, the wave surfaces are convenient-
ly parametrized by U where

k,=(dU), . 2.1)

Two important properties of these surfaces are that they
are geodetic and that for a geodesic that is not in a wave
surface U is a good affine parameter. Both statements are
easily proved as follows: Fix any geodesic with affine pa-
rameter A and tangent vector ¢t and consider

d*U
daz?

where the second equality follows from ¢ being geodetic
and the definition of U. Thus, if the geodesic is initially
in a wave surface (dU/dA=0 at p) then it remains in
that surface [U(A)=U(p) for all A]. If the geodesic is
not in a wave surface (dU/dA0 at p) then dU/dA is
nonzero and constant along the geodesic. Furthermore,
the wave surfaces are flat in the sense that parallel propa-
gation of any vector (in or out of the surface) around a
closed path in a wave surface returns the vector to its ini-
tial state. This follows from the fact that C,,. “x“®=0
for any two vectors x“ and y? in the wave surface. This
property makes the following definition meaningful.

Definition 2. A plane-wave spacetime is a PP-wave
spacetime such that C,,.? is constant over each wave sur-
face.

The plane-wave spacetimes admit scalar fields (coordi-
nates) (U, V,X %) so that

8ap = —(dU)(dV)y+qop(dX ), (dXP),
+hg(NXXPk, K,

=19, (t*V, U)=1tt"V k, =0, (2.2)

(2.3)

where &, is constant on each wave surface, h,5 =0,
h,*=0, g,z is constant, positive definite, and is used,
with its inverse q"B, to raise and lower lower-case Greek
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indices which serve to label the two X coordinates [7].
The requirement that the wave surfaces be geodesically
complete in turn requires that the fields ¥ and X“ take on
all possible values. U may be bounded from above or
below.

The plane-wave spacetimes admit a five-dimensional
symmetry group whose orbits are the wave surfaces. For
any constant k and any solution K *(U) of the differential
equation

(K®)'—h"KP=0, (2.4)

where primes denote derivatives by U, the vector field
§°=K*9/90X%)°*— (XK, —k)k*® (2.5)

is a Killing vector field. [Since there are four linearly in-
dependent solutions of Eq. (2.4), this gives five linearly in-
dependent Killing vector fields.] Furthermore, all null
geodesics in these spacetimes whose tangent vectors are
not parallel to k¢ are equivalent under the action of the
isometry group [8].

The remainder of this section is devoted to two techni-
cal propositions concerning the plane-wave spacetimes.
In what follows, it is convenient to drop the Greek in-
dices and use the matrix notation: instead of writing
A“p, write A4; instead of writing A% ,B7g write AB; in-
stead of writing 8% write 1; further define the transpose
AT of Avia(AT)%= A5

Set

=inf(U), b= U, 2.6
a=inf (U) Slnl})( ) (2.6)
each possibly being infinite. For each x €(a,b), denote
by A4, [i.e, (A4,)%] that unique (matrix) solution of the
differential equation

A —hA,=0 2.7)
subject to the condition that
A, (x)=0, A (x)=1. (2.8)

Proposition 1. A necessary and sufficient condition that
a plane-wave spacetime (M,g,, ) be globally hyperbolic is
that A, (y), defined by Egs. (2.7)-(2.8), can be nondegen-
erate for all x,y €(a,b) except where x =y.

Proof: The necessity of this condition was shown by
Penrose [8]. Here we establish its sufficiency. Since all
plane-wave spacetimes satisfy strong casuality, (M,g,,) is
global hyperbolic iff the set

JH[pINJ T [q] 2.9)

is compact for all p,g EM. To show that this is indeed
the case, fix any two points p,g EM. In the case
U(p)=Ul(q) is not difficult to see that the region de-
scribed by Eq. (2.9), if nonempty, is simply diffeomorphic
to a closed interval. In the case U(p) < Ul(q), it follows
from the symmetries of the plane-wave spacetimes that
we can take

X% p)=X%q)=0. (2.10)

[To see this, for each p EM denote by g, the two-
dimensional isometry group generated by the Killing vec-
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tor fields £ given by Eq. (2.5) with (4,)% in place of K“
and Xg(p) in place of k. Noting that G, leaves p fixed
and is transitive over all wave surfaces, except U=U(p),
we use §, to fix X%g)=0 and then use §, to fix
X%p)=0.] A series of straightforward calculations then
reveals that J " [p] is given by those (U, V,X“) that satisfy

V=xT(4,4, )X +V(p) .11

and U= U(p), while J " [q] is given by those (U,V,X?)
that satisfy

V<xT(4,4;, "X +V(q) (2.12)

and U < U(q). Thus, the region described by Eq. (2.9) is
given by those (U,V,X%) that satisfy Egs. (2.11) and
(2.12) and U(p)=<U =(q). (To simplify the notation, for
each pEM we have identified 4, with Ay,0U) To
show that this region is indeed compact, we first intro-
duce a number of quantities and point out a few of their
properties.
Introduce the quantity

Q,=A4]y4,—Af4, . (2.13)
It follows from Eq. (2.7) that ,, is constant, as can easi-
ly be verified by taking its derivative. Evaluating Eq.
(2.13) at p then g we find that

Q=4 (p)=—ApT(q).

o= A, (2.14)

This shows that Q,, is nondegenerate and establishes a
useful reciprocity relationship. Setting

S=Ad,4,'—4,4,", (2.15)
from Egs. (2.11) and (2.12) we find that

XTSX <V(g)—Vi(p). (2.16)
That S is symmetric follows from the fact that Q,, =0 for

PP
any p. Again using the fact that (},, =0, it is straightfor-

ward to show that

AlSA,=Q,, . (2.17)
Setting

S=(detA,detd,)'"’s , (2.18)

X=X/(detA,det4,)"*, (2.19
Eqg. (2.16) becomes

XTSX <v(g)—V(p) . (2.20)

The advantage of Eq. (2.20) over Eq. (2.16) is that the
quantity S is continuous (while S is not) as can be seen as
follows: Although 4,4 p_l is singular at U(p), the com-
bination 4, 4, '(det4,)'/? is continuous when we take
its value at U(p) to be the identity. Further, by Egs.
(2.17) and (2.18),

detS =detQ,, >0 . (2.21)

Since S is positive definite at p, this shows that S must be
positive definite everywhere.
We are now in a position to argue that the set given by
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Eq. (2.9) is compact. Recall that for this set to be com-
pact, those (U, V,X?) satisfying Eqgs. (2.11) and (2.12) and
U(p)= U = U(g) must be a closed bounded set. It is clear
that this set is closed. That it is bounded follows by the
following series of arguments. First, U is already bound-
ed [U(p)=U=<Ul(q)]. Second, since S is positive definite
and continuous and the fact that the allowed U’s form a
compact set implies that the X’s satisfying Eq. (2.20) form
a bounded set. Hence, by Eq. (2.19) the X’s satisfying Eq.
(2.16) also form a bounded set. Finally, that V is bounded
follows from Egs. (2.11) and (2.12) by using the bounded-
ness of the X’s, the continuity of the combination
A, Ap"l(detAp )'72 and the fact that the allowed U’s
form a compact set. Hence, the set given by Eq. (2.9) is
compact.Od

A nice geometrical condition equivalent to the condi-
tion in Proposition 1 can be obtained by using the fact
that

Ropea = —hoglk NdX®),(k AdXP),, (2.22)

and the equivalence of all null goedesics not parallel to k*
under the five-dimensional isometry group. With these
facts it is not difficult to show that the condition in Pro-
position 1 is equivalent to the condition that no null geo-
desic in the spacetime possesses a pair of conjugate
points.

Having established a necessary and sufficient condition
for the global hyperbolicity of a plane-wave spacetime,
we now prove the following.

Proposition 2. Fix a globally hyperbolic plane-wave
spacetime (M,g,,) that is plane-wave extendible to the
future. [By a plane-wave extension we mean an isometric
embedding 6: M —M’ such that (M’',g,,) is also a
plane-wave spacetime.] For any wave surface N in M,
there exists a plane-wave extension (M',g,,) of (M,g,,)
so that (I " [68(N)],g.,) is globally hyperbolic.

Proof: Choosing k“ to be past directed, U increases to
the future. Extend the spacetime (M,g,,) by simply ex-
tending h,g continuously from (a,b) to [b,c) for some
¢ > b [where a and b are defined by Eq. (2.6)]. Using this
extended 4,5 and Eqs. (2.7) and (2.8), extend A4, (y) to all
x,y €(a,c).

By Proposition 1, 4,(x) is nondegenerate for all
x,y €(a,b) except where x =y. In fact, 4,(x) is nonde-
generate for all x €(a,b). [Equivalently, by Eq. (2.14),
A, (b) is nondegenerate for all x €(a,b).] We can see this
as follows. For any a <u <v <b, a straightforward cal-
culation shows that, on (u,b),

(A4, '4,y=—4al4,)7'Q,, , (2.23)
from which it follows that, on (u,b),
A,(x)=4,(x) U"(AuTA,,rldU Au) . (224

Suppose that 4,(x) is degenerate for some x €(qa,b), i.e.,
that there exists a vector § such that [ 4,(x)]{=0. Then,
in order that [ 4,(x)]{—0 as v —b, Eq. (2.24) demands
that [ A,(u)1£=0 for all u €(a,x). The uniqueness of the
solutions to Eq. (2.7) then impiies that | 4, u)]&=0 for
all u. However, this is incompatible with the fact that
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Ap(b)=1. Hence, A,(x) is nondegenerate for all
x E(a,b).
Set a’=U(W). Since A4, is nondegenerate on (a’,b],

by continuity there then exists b’ €(b,c] such that 4, is
nondegenerate on (a’,b’). Using Eq. (2.24), with u =a’
and v =y, it follows that Ay(x) is nondegenerate for all
x,y €(a’,b’) except where x =y. Thus, taking M’ to be
the region a <U <b’, g,, to be the metric given by Eq.
(2.3) with the extended 4,4, and 6 the natural embedding
of M into M’, then by Proposition 1 it follows that
(IT[6(N)],g.,) is globally hyperbolic.(]

III. STABILITY PROOF

To begin the proof of Theorem 1 construct the pertur-
bation ¥, from ¥, by setting

Yab=Vab T £u8ab 3.1
where v is that unique vector field that satisfies
V, V==V, (y?®—1y, mg®) (3.2)

subject to the condition that the pair (v%V,v?) is zero
on 2. This change in gauge is motivated by the fact that

the perturbation %, satisfies the linear, diagonal,
second-order hyperbolic equation
Vo V% o F2R " "7 e =0 (3.3)

Thus, by the global evolution theorem for such equations
[6,9], 745 is determined by the pair (¥,,,V,,7,,) evalu-
ated on any Cauchy surface. In fact, we note the follow-
ing.

Proposition 3. 7 ,;, =0 on D(Z—C).

Proof: First, we show that (7,,Y,,¥,,) is zero on
3—C. That 7, is zero on 2—C is an immediate conse-
quence of Eq. (3.1) and the conditions that y,, and V,,v¢
are zero on 2—C. That V, 7, is zero on = —C follows
from Eq. (3.1), the condition that V,,y, is zero on =—C,
and the fact that V,V,v,=0 on 2—C. [For any vector
field v such that (v%V,,v°) is zero on a surface S with
unit-timelike normal n,, it can be shown that
V.Vyv,=—n,n,V, V™, onS. By Eq. (3.2) and the con-
dition that V,, ¥, =0 on =—C it follows that V,V,v, =0
on X—C.] Having shown that (¥,,V,,7,) is zero on
2 —C, that 7, is zero on D(Z— C) follows from Eq. (3.3)
and the uniqueness theorem for hyperbolic equations:
7ap =0 is a solution of Eq. (3.3) that meets the condition
that (7,,,9,,7. ) be zero on =—C so, by uniqueness,
¥ ap =0 is the solution on D (2 —C).0O

Choose the time orientation of the spacetime (M,g,,)
so that its plane-wave extension is in the future. Fix any
wave surface N such that CCI1[W]. That such a sur-
face exists follows form the compactness of C. Construct
a plane-wave extension (M’,g,,) of (M,g,,) such that
(I"[6(N)],g.,) is globally hyperbolic, where 6:M — M’
is the embedding associated with this extension. (See
Proposition 2 of Sec. II.) Fix a Cauchy surface X' of
(I*[6(N)],g.,) such that (C)CD™(3'). Again, that
such a surface exists follows from the compactness of C.

Proposition 4. C' =supp[(0*7),, IN[Z'NO(M)] is com-

pact
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Proof: Since supp[(6*¥%),,] is a closed subset of
JT[6(C)]UJT [6(C)] and B(C)C D *(3') the set C’ is a
closed subset of J“[O(C)]N[Z'NOM)]=J " [6(C)INZ".
But, this last set is compact as 8(C) is a compact subset
of D(X'). (See, e.g., Proposition 6.6.6 of Ref. [9].)
Hence, C’ being a closed subset of a compact set is itself
compact.Od

Consider the initial data that (6*¥%),, induces on the
open subset X' N O(M) of the Cauchy surface Z’. By Pro-
position 4, this is zero outside the compact set C’'. Ex-
tend these initial data smoothly, but otherwise arbitrarily,
to all of 2'. [Note that taking the initial data to be zero
on X'NO(M)° is such an extension.] Appealing once again
to the global evolution theorem for linear, diagonal,

second-order hyperbolic equations [6,9] we learn that
there exists a unique evolution ¥, to all of D(Z’) of our
extended initial data. Since y,;, on D(2')N6(M) is deter-
mined by its initial data on ='N6(M), by uniqueness,
Yop =(0*%),, on D(Z')N6(M). Thus, since #=030(M)
CD(2’), (6*%),, (and its derivatives) is smoothly exten-
dible to 7. In particular, the extension is simply y,,
(and its derivatives) evaluated on #.
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