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Signal analysis of the post-Newtonian gravitational wave form of coalescing binaries
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In this paper we compute the signal-to-noise ratios for gravitational wave signals from coalescing
binaries in the post-Newtonian approximation using matched-filtering techniques. We find that, up to
the second post-Newtonian order, on the whole the signal-to-noise ratios are reduced for broadband
detectors. For a binary with a mass parameter —1MO and detection frequency range of 100—2000 Hz
the signal-to-noise ratio can go down by as much as 15%. This is basically due to the reduction in in-

tegration time of the signal. We compute the signal-to-noise ratios in the standard recycling case for a
wide range of parameters which include the orientation of the detector and source. Useful semianalytic
formulas are derived. Numerical results are displayed for the fu11 wave form for various orientations of
the binary system.

PACS number(s): 04.30.+x, 04.80.+z, 06.50.Dc, 97.80.Fk

I..INTRODUCTION

The question of gravitational radiation (GR) emitted
by matter has always been one of the central problems of
the general theory of relativity (GTR). With the latest
technological advances which have brought the detection
of GR within the realm of modern scientific instrumenta-
tion, this central problem of the GTR has certainly be-
come one of the most important problems of present-day
science. The firm detection of GR will allow us to not
only conduct far-reaching tests of the GTR in the
strong-field regime of the theory but also to explore the
history in time of the Universe to unprecedented epochs
in the past. Such problems of astronomy as the theory of
galaxy formation and the formation and existence of
black holes, to name two, would be amenable to definitive
tests which could then be expected to select one of the
many alternative scenarios.

This radiation, which is basically a transverse, quadru-
pole wave (a ripple on spacetime) propagating at the
speed of light, is generated when a time-dependent mass
quadrupole is produced by the motion of matter. The
gravitational waves thus produced, if incident on a laser
interferometric gravitational wave detector, effectively
change the arm lengths of an interferometer. The dimen-
sionless amplitude h of GR is then related to the response
of the laser interferometer as It -51//, where / is the
proper distance between prearranged test masses of the
detector and 5l is the change in that distance caused by
GR incident on that detector. A typical value of h ex-
pected from a strong astrophysical source such as a su-
pernova is —10 ' —10 ', indicating that a change of
order ~10 ' cm would be produced in a detector that
has test masses about 1 km apart. Needless to say, the
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most important sources of GR would be then those in
which the quadrupole moment of matter changes rapidly
and, therefore, produces radiation (of suKcient intensity
and amplitude) which could be detected using such detec-
tors. It is then imperative for us to explore the possible
strong sources of GR.

As an example, a supernova explosion could be a
strong emitter of GR if the collapse and subsequent ex-
plosion of its progenitor star were asymmetric, resulting
in a rapid change of the quadrupole moment of the ex-
ploding star, and hence, in an associated burst of GR
with typical dominant frequency —1 kHz. An expected
dimensionless amplitude of GR from such a source, at a
distance of about —15 Mpc, is then & 10 '. But super-
nova explosions can be highly symmetric and, therefore,
be poor emitters of GR. Nonetheless, historically, these
were the most important sources of GR considered for
detection by the early bar detectors.

A new class of GR emitters was considered by Clark
and Eardley [I) in the form of coalescing stars of a binary
system. A binary should be a strong emitter of GR if the
component stars are compact, say, two neutron stars, a
neutron star and a black hole, or two black holes. Since
the mass quadrupole of a binary system continually
changes as the component stars rotate around their com-
mon center of mass, a continuous wave of GR would be
emitted by the system. However, as more and more of
the gravitational binding energy of its orbit gets liberated
to GR, the binary coalesces faster and faster. Thus, both
the amplitude and the frequency of the emitted radiation
will continually increase as the coalescence advances.
The resultant wave form, now famous as the chirp, is
therefore inherently broadband in nature. Since any in-
terferometric detector could be made to operate over a
range of frequencies, it would be ideally suited to detect
the chirp. It was Thorne [2] who emphasized the impor-
tance of such inherently broadband sources for the
present-day laser interferometric GR detectors.

For a narrow-band detector, it is possible for a signal
of the burst type to stand above the detector noise. But
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even here, for bar detectors, a maximal signal-to-noise ra-
tio is obtained by using optimal filters [2,3]. However, it
is certain that a broadband signal of the coalescing binary
will be buried deep in the noise of a broadband detector
because it is always difficult to suppress any wideband
white noise compared to narrow-band white noise. Con-
sequently, a special technique, matched filtering, needs to
be used to detect such signals. Since the GR wave form
emitted by the binary is known to high accuracy, the
cross correlation of the expected wave form with the
detector output would peak depending on how "closely"
the filter "matches" the signal picked up by the detector.
That is to say, when the detector output and a "prepared
filter" (expected wave form) are cross correlated, those
values of the parameters (used in preparing the filter)
which closely correspond to the "actual" or the signal
values would maximize the cross correlation.

The energy and the angular momentum losses of the
binary to GR have long been calculated by Peters and
Mathews [4] and Peters [5] in the Newtonian approxima-
tion. Based on this, a Newtonian approximation to the
wave form was obtained by Clark and Eardley [1] and
has, since then, been the backbone of the GR detection
program, which has in the recent past gained momentum
with numerous encouraging results from various feasibili-
ty studies of the prototypes of future laser interferometric
detectors. In Sec. II, we describe the salient features of
the matched-filtering technique for the Newtonian wave
form. This section also lists various useful formulas in
terms of astronomical units of solar mass and 10 cm s as
units of mass and orbital radius, respectively. These for-
mulas have not appeared in print in this form earlier, and
it is hoped that formulas in this section will serve as
ready references for further work. Here, we note that the
Newtonian wave form is completely specified by a single
parameter, called the mass parameter (see Sec. II). The
frequency and the amplitude of the chirp to v/c =m/a
order, where v is the typical velocity in a binary of total
mass m whose component stars are separated by orbital
distance a, then depend only on the mass parameter.
Consequently, the coalescence time tc defined as the time
taken by the binary with an initial radius ao to complete-
ly coalesce, can be determined from the mass parameter
alone (see Sec. II). Needless to say, this feature of the
Newtonian approximation of the chirp has played an im-

portant role in the development of signal-detection algo-
rithms for the matched-filtering technique (see Schutz
and references therein [6]).

However, the existence of a mass parameter implies
that, using the Newtonian approximation and the
matched-filtering technique, it is not possible to extract
from the signal any information about the masses of the
components of the binary. However, the post-Newtonian
(PN) terms contain this information and should be incor-
porated in the matched-filtering analysis to get this vital
piece of information. However, terms containing higher
powers of v /c, the post-Newtonian terms, become appre-
ciable only during the final stage of coalescence of the
binary, at which stage of the evolution of the binary the
orbital frequency would be + 500 Hz. With higher-order
terms becoming appreciable, the equation of motion,

energy- and angular-momentum-conservation laws, and
the Kepler law for the orbital frequency all get modified.
Consequently, the Newtonian approximation to the chirp
would appreciably differ from the actual wave form, and
this would affect the signal-to-noise ratios of the detec-
tion using the matched-filtering method if a Newtonian
filter were used. This, however, happens only for the
high-frequency part of the signal, and the binary spends
very little time in this range of frequencies. So the actual
signal, which contains these PN terms, would differ from
the Newtonian filter at sufficiently high frequencies.
Since, a PN filter is a better approximation to the actual
wave form detected by the detector, it is essential to com-
pute the chirp to the required level of accuracy. Follow-
ing Epstein and Wagoner [7], Wagoner and Will [8]
(WW) computed the PN chirp of the GR emitted by
binary. Also, Krolak [9] calculated amplitudes averaged
over orientations of the source and the detector and gave
signal-to-noise ratios for the detector operated with the
standard recycling mode. He has also shown that at
coalescence the eccentricity of the orbit and the tidal
effects can be neglected.

Notation and units

We adopt the following conventions.
The distance R between the observer and the

radiation-emitting binary is measured in units of 100
Mpc=3.0856X 10 cm. The angle between the normal
to the orbital plane of the binary and the line of sight to
the observer is denoted by i. We also assume that the or-
bit of the binary is a circularized one and that the tidal
effects are unimportant. The orbital angular frequency is
denoted by co and the orbital frequency is denoted by
f„b, co=2'„b. The period of the binary is denoted by
P. The orbital radius a of the binary is measured in units
of 10 cm. All masses are measured in units of solar
mass, Mo =2 X 10 g [for example, total mass m of the
binary, reduced mass p, , mass parameter A (see below),
etc.] We limit ourselves to considering stars of mass
0.5 —10.0Mo. The dimensionless strength of GR, which
is considered here as a metric perturbation, is measured
in units of 10

II. NEWTONIAN ANALYSIS

Gm &m2

2Q
(2.1)

We consider two point masses m, and mz going
around each other in a circular orbit under their mutual
gravitational inAuence. In Newtonian theory, the masses
are confined to a plane in an elliptical orbit. Therefore, if
the plane of the orbit and the orientation of the ellipse in
the plane are specified, only the parameters which de-
scribe the ellipse remain to be given. We assume that ra-
dius of the circular orbit is a and the eccentricity is zero.
In Newtonian theory they would be constants of motion.

In the general theory of relativity, however, the system
will emit gravitational waves and lose energy. The back
reaction will then make a change slowly with time. The
gravitational binding energy of this system is
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As the system loses energy, that is, as E becomes more
negative, the distance between two stars must decrease.
In the system of units defined at the end of Sec. I, the rate
of decay of the orbital radius is given by the equation

and, for the phase integral,

2m-f f(t')dt'=300(L4t 'i' 1 — 1—
0 tc

' 5/8

(2.11)

2

0 125
dt d3

(2.2)
The desired wave form in the Newtonian approximation
for the plus polarization is

where

m =m1+m2 (2.3)
h + (t) =2.86

Ra (t)
1+cos i

2

is the total mass of the stars and

m1m2
(2.4)

Xcos 2nf2. f (t')dt'
0

and for the cross polarization,

(2.12)

X10 2s, (2.5)

is the reduced mass. The instantaneous frequency of GR
is easily obtained from Kepler's law:

1/2

P =1.719

r

h „(t)=2.86 cosi sin 2nf2f
.(t')dt'

Ra (t) 0

(2.13)

where P is the instantaneous period of the orbit. There-
fore

f (a) =2f.,b
= 1.1635

a'(t)

1/2

100Hz .

(2.6a)

(2.6b)

Henceforth, we shall take the lower cutoff frequency of a
GR detector to be 100 Hz, which is the conservative as-
sumption made by some groups. However, the projects
of the Italo-French group VIRGO and the Laser Inter-
ferometric Gravity Wave Observatory (LIGO) expect to
go down to even as low as 10 Hz; then our calculation
will provide lower bounds on the signal-to-noise ratio.

To deduce the wave form we need to obtain the orbital
radius a as a function of time. This needs, then, to be
substituted in the expression for h+ or hx. This pro-
cedure, however, need not be followed as Eq. (2.2) is ex-
actly integrable and

1/4

It is observed that in the Newtonian case both the ampli-
tude and phase of the wave form depend only on the par-
ticular combination of the masses given by the mass pa-
rameter At, and not on the individual masses.

III. POST-NEWTONIAN ANALYSIS

The effect of the PN term on the wave form manifests
itself in two ways: (a) the decay of the orbit of the system
follows the modified Kepler law, resulting in changing
the evolution of the frequency as a function of time; and
(b), more directly, there is an explicit addition of extra
terms containing the first four harmonics of the orbital
frequency. We discuss these effects in this section.

By taking into account the PN radiation-reaction effect
on the orbit of the binary, WW [7] show that the rate of
decay of the orbital radius is given by (in the system of
units defined in Sec. I)

2—:—0. 125
dt a3

a(t)=ao 1—
tc

(2.7) X 1 —0.007425—m
a

13
168

(3.1)

t =3m-'/3s,
C (2.8)

where tc is the coalescence time defined as the time spent
by the binary from 100 Hz till the final coalescence. The
mass parameter AL is defined by the equation

(2.9)

By substituting this in Eq. (2.6b) we obtain, for the fre-
quency of GR,

—3/8

f(t)=100 1—
tc

Hz, (2.10)

where a0 is the initial radius at t =0. However, if we
start measuring the time t when the gravitational-wave
frequency reaches 100 Hz, i.e., t =0 when f (ao)=100
Hz, then

For sufficiently large orbital radii, we recover the
Newtonian equation (2.2). On the other hand, the fre-
quency of the emitted radiation is related to the orbital
radius a through Eq. (2.6b). Thus,

' 3/2 1+v/a0

1+v/af (a)—=f (ao)
a

(3.2)

where ~=—0.007425(3m —p) and ao is the initial orbital
radius. Therefore, Eqs. (3.1) and (3.2) together determine
the instantaneous frequency as a function of time. If we
assume a lower cutoff of the laser interferometer of 100
Hz, then in our system of units f (ao )=100 Hz, which
specifies for us the a at which to begin the integration of
Eq. (3.1). The above equations describe the evolution of
the frequency as a function of a. However, we will find it
useful to obtain f as a function of time in order that we
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may use Brigham's fast Fourier transform (FFT) algo-
rithm which requires sampling of the signal at equal time
intervals. To this end we integrate Eq. (3.1) to obtain

12At =F(ao) —F(a), (3.3)

where

F(a)—:3a +4Ba +6B a +12B a+12B ln(a B)—,

(3.3a)

A =0.125pm

B=0.007425( —,",, m —5p) .

(3.3b)

(3.3c)

We solve Eq. (3.3) numerically using the bisection
method to obtain a as a function of t. The subroutine
used is RTBIS of Numerical Recipes [10]. To start the
routine the initial guess for a is taken to be the Newtoni-
an value, which can be obtained easily via an analytic ex-

h+(t)—:—h, ~+m + m
3/2 '2

+ m +
3/2 PN 2 PNa

where

pression. We can now obtain f for any value of t, and in
particular we can sample at equal intervals in time. The
numerical accuracy is set to be 10 so that the wave
form is adequately sampled towards the final stages of
coalescence. The usage of the FFT algorithms becomes
almost imperative for colored noise where the signal-to-
noise ratios are calculated in the frequency domain.

Following WW, Krolak [9] has given a concise form
for the signal from a binary up to second PN order (we
follow Will's convention for PN orders [11];in Krolak's
convention the wave form given below is up to first PN
order). Writing Krolak's form termwise and replacing
his an't with the more appropriate p(t) =2~f 'f (t')dt',

0
we have

h &+&
= —1.428 (1+cos i)cos2$, (3.4a)

h3+&2PN= —0.348~ (5+cos i)sing+ —,', sini(1+cos i)sin3$
6m sini

(3.4b)

h
+ =0.042~2PN

3p sin i(3+ 2 )+ 1 19
m 3 2 6

(1+cos i) cos2$
2m

+ 1 —
( —'sin i)(1+cos i)cos4$ . .

m
(3.4c)

h x(t)—=—h, ~+m x m

For other polarizations we obtain
3/2 2

x m x~ 3/2PN + ~ 2PNa
(3.5)

where

h,"~=2.858 cosi sin2$, (3.5a)

h 3"&2pN
= —0. 131 cosi sini(cosP+3 cos3$),u 6m (3.5b)

h 2PN
= 0.042 3p

m
—sin i +2, 19 p
3 6 2m

cosi sin2$+ 1—3p
m

—sin i cosi sin4$
3

(3.5c)

The first term h&z of either polarization is called the
Newtonian part of the PN chirp because most of the con-
tributions to the PN chirp initially come from this term,
but at higher frequencies the rest of the terms contribute
significantly.

The phase integral 2~ t' dt' is evaluated using the
0

subroutine QROMB of Numerical Recipes [10]. The nu-
merical accuracies were checked by comparing results
with the analytical Newtonian expressions. In the PN
amplitudes there are four components corresponding to
one, two, three, and four times the orbital frequency f,„b,

which is given by the Kepler's law
] /2

3m p
2a

1 m
forb=

27T a
(3.6)

which has been modified to incorporate PN effects on the
binary orbit. It is important to note that these different
frequency components begin appearing in the detector
output at different times. The first term that will be
sensed by the detector at 100 Hz will be 4P, then 3P, 2P,
and P. This means that one must start considering the
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signal when 4f,b
= 100 Hz. However, one finds that this

is not necessary and we can begin considering the signal
later when the orbital frequency reaches the value —,

' X 100
Hz, since the integrated contribution of the 4P term to
the signal-to-noise ratio is 1 part in 10 during the period
—,
' ~ f„b/100Hz~ —,'. Therefore, we begin the calcula-
tions when f„b/100Hz= —,'. As the frequency increases
at later times, the 2P and P terms are switched on at ap-
propriate epochs. At the upper end, which is taken to be
2000 Hz, the first term to go out of the detector range is
the 4P term, followed by 3P, 2P, and finally P. However,
here we stop the calculations when f„b=1000 Hz, so
that the contribution of the P term is not considered
beyond this limit. We argue that other effects such as ti-
dal forces will dominate at this stage, and the simple
model of the two point masses may not serve well. The
numerical analysis switches on and off various terms ac-
cordingly.

IV. THE SIGNAL-TO-NOISE RATIOS
FOR THE POST-NEWTONIAN WAVE FORM

A. Comparison with the Newtonian S/N ratios

As mentioned earlier, the matched-filtering technique
happens to be the appropriate technique when the wave
form is known. This technique involves correlating the
data with a known copy of the expected wave form called
the filter. In linear filtering, matched-filtering maximizes
the signal-to-noise ratio, which is the maximum of the
correlation. The matched filter is proportional to the
predicted wave form if the noise spectrum is white, other-
wise it is different. If h (f) is the Fourier transform of the
expected wave form h (t), which has support over the
time interval [0, T], and S&(f) is the one-sided spectral
density of noise, then the Fourier transform q(f) of the
filter is given by

an chirp wave form depends only on the mass parameter
and not on the component masses of the binary. Thus,
for the same mass parameter, different values of m, and

mz are permitted by the Newtonian approximation. On
the other hand, the post-Newtonian approximation does
depend on m, and m z explicitly through the terms of the
order (m/a) ~ and (m/a) . Since the sign of the PN-
cos2$ term is opposite to that of the Newtonian term, it
has the effect of reducing the signal-to-noise ratios con-
siderably in the PN case, in spite of the fact that the PN
term has (m /a) dependence. The second reason for the
decrease of the signal-to-noise ratio for the PN case is
that the coalescence time is less in this approximation.
So neglecting the PN term leads to an overestimation of
the signal-to-noise ratio.

Various factors affecting the value of the norm of the
chirp wave form can be estimated as follows. First, we
note that the mass difference 5m affects the value of the
overall amplitude in two ways —by adding a term pro-
portional to 5m and by, for a large mass difference, im-

plying a shorter coalescence time and, hence, a smaller
initial orbital radius (corresponding to a 100-Hz frequen-
cy). Although the contribution of this term is suppressed
by the factor 0.384, a smaller orbital radius increases the
contribution of this term considerably. At smaller orbital
radii, however, the term proportional to (m/a) contrib-
utes more. Basically, it is the coalescence time that is re-
duced as a result of the large mass difference, and hence,
the signal-to-noise ratio with a PN correction can be con-
siderably less than the corresponding Newtonian value.

This prompts the following comparison of the two
norms —one Newtonian and the other post-Newtonian.

60
J+,=3.0

h(f)q(f)=

The signal-to-noise ratio is then

(4.1)
E

40—0

JA=2 0

(4.2)

The S/N ratio can be regarded as a norm on the space of
wave forms.

In this section we compute the signal-to-noise ratios
when a PN signal is filtered out by the matched filter.
We will assume two forms for the spectral density of the
noise: (a) white, constant spectrum So; (b) noise present
when the detector is operated in the standard recycling
mode. Krolak has already addressed this problem by
computing the S/N ratios averaged over all possible
orientations of the source and detector and over the
period of the orbit of the binary. Our calculation, on the
other hand, extends to the evaluation of S/N ratios for a
range of masses of the stars, orientations of the orbital
plane of the binary, and orientations of the detector.

As we remarked earlier, the amplitude of the Newtoni-

20-
O

0
Z'.

0 a s s l i & & I ~ s i I «s I

2 4 6 8

M) / Mo

10

FIG. 1. Norm of the post-Newtonian chirp wave form plot-
ted for fixed values of the mass parameter A, as a function of
mass m&. %,=1.0, 2.0, and 3.0MO. The corresponding norms
for the Newtonian case are 19.6, 62.20, 122.23, respectively.
The angle of orbital inclination is i =0.
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To get an idea of the numbers involved, we consider the
case for white noise with Sk (f) =So= 10 Hz ' and fix
the distance of the binary at 100 Mpc. We vary the indi-
vidual masses of the stars in such a way that the mass pa-
rameter is kept constant. This implies that the Newtoni-
an wave form remains fixed, while the PN norm will
vary. The behavior of post-Newtonian norms for fixed
mass parameters is shown in Fig. 1. The figure shows
three curves for mass parameter values JR=1.0, 2.0, and
3.0 for the orbital inclination angle i =O'. Since the norm
is a symmetric function of the masses m, and m2, the
curves are drawn for m2 ~m~ only. It is seen that the
norm for the PN wave form, on the whole, is less than
the corresponding Newtonian value and decreases as the
mass difference increases. This behavior may be attribut-
ed to the reduction in the coalescence time. The corre-
sponding Newtonian values of the norm for three
different values of the mass parameter are 19.6, 62.20,
and 122.23, respectively.

B. The basic formalism of S/N ratios

It is useful and instructive to single out the case in
which we consider only the 2P term of the full wave
form. The ratios then can be stated semianalytically, and
this case is applicable to a wide range of parameters. In
this section we first give a brief review of the spectral
density of the noise when the detector is operating in the
standard recycling mode and then derive the formulas
which express S/N ratios as a function of detector orien-
tation.

1. Spectral density of the noise for standard recycling

Drever [12] has devised a method for improving the
sensitivity of either a Michelson delay line or a Fabry-
Perot arrangement when the mirror refiectivities permit
storing light for much longer than a half-period. The
basic idea is to extract the light after a half-period, when
further storage is self-defeating, and reinsert it back. The
method is known as standard recycling. The spectral
density of the noise for this mode of operator can be ex-
pressed by the formula

2

turns out to be 6.5X10 Hz ' (see Thorne [2] for a de-
tailed discussion).

2. S!N ratio as a function of detector orientation

We consider here two cases: (i) the spectral density of
noise is a constant (white noise), and (ii) the spectral den-
sity is that of standard recycling. To this end, we adopt
the following definition for a scalar product. Let V(t)
and P(t } be square-integrable functions over the time axis
and 7(f) and 0(f) the corresponding Fourier transforms.
We define the scalar product between 7 and 9 to be

(4 4)

where ~~9~~ is called the norm of X The response of the
detector is

61R=—,
l

(4.7}

where 51 is the change in arm length of the interferome-
ter. R is in general a linear combination of the two polar-
ization amplitudes h+ ( t ) and h x ( t) and a function of an-

gles describing the orientations of the detector. More
specifically, following Schutz and Tinto [13]we introduce
two sets of orthogonal Cartesian coordinate systems: (i)
detector axes (x,y, z), with the axis of the detector lying
in the (x,y) plane and the x axis bisecting the two arms;
(ii) wave axes (X, Y,Z), with the Z axis aligned to the
direction of propagation of the wave and the (X, Y) plane
containing the polarization ellipse. The Euler angles
(8,P, tf ) give the orientation of the wave axes with respect
to the detector axes. The response of the detector R (t) is
given by

R (t) =F+ (8,$, $)h+ (t)+F)& (8,$, $)h „(t), (4.8)

where the * denotes complex conjugation. For white
noise, the scalar product reduces to

( 9, 0) =S, '2 I 2(t)Q(t)dt (4.5)

in the time domain. For a matched filter V=9 and we
may write

(4.6)

Sk(f)=
So 1+

k (4.3a)

(4.3b)

where

F+ (8,P, g) =cos2$ cos8 sin2$

+ —,
' sin2$(1+cos 8)cos2$, (4.9a)

where f, is called the "seismic cutoff. " The noise below

f, rises rapidly with decreasing f and can be virtually
taken to be infinite.

We again assume that the lower cutoff frequency f, is
100 Hz. The quantity fk is known as the "knee frequen-
cy." We choose its value to be 1.44f„which maximizes
the S/N ratio for coalescing binaries for the Newtonian
wave form. For a detector with an arm length of 3 km,
effective laser power of 100 W, end mirror reAectivity of
-5X10, and operating at the green-light frequency
(reduced wavelength A, -0.0818 pm), the value of So

F„(8,P, g) =cos2$ cos8 cos2$

—
—,
' sin2$(1+cos 8}sin2$ . (4.9b)

whatever the noise spectrum. The signal-to-noise ratio is
now

Now, assuming that we use a matched filter, the S/N ra-
tio is given in our notation by

2

(4.10)
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S
N

=F+ lib+ II
+Fx llh „II +2F+F„(h+,h x ) .

(4.11)

+
——

II
A «s2

A x =
II

A sin2$II

A =2.858

(4.14b)

(4.14c)

(4.14d)

Numerical calculations show that the cross term
(h+, h„) is negligible compared to Ilh+II or llhxll .
We do the integration in the frequency domain with the
upper cutoff at 2000 Hz. We find that the term
(h+, h „)—10 ' —10 ', while llh+ II2 and llh x II' are
—10 or 10 . Typically, if we take each of the individual
masses of the stars to be 1M~, then ( h+, h x ) —10 for
white noise and 4.3 X 10 for noise pertaining to stan-
dard recycling. Even for higher values of masses the re-
sult generally remains true. We have checked this result
numerically up to 10Mo. The underlying reason for this
is that the set of functions sin(nP) and cos (nP), n a posi-
tive integer, form an orthogonal set over [0,2n], or in
general over [0,2m n. ] where m is a positive integer, under
the L2 scalar product. Although the functions appearing
in h+ (t) or h „(t) are not strictly sinusoidal, since f is
not constant in time, they are more or less so over a sin-
gle oscillation, except possibly at higher frequencies
where, anyway, the integration time is small. Similarly,
Si, (f), which mathematically plays the role of the weight
function and which is not constant for the recycling
mode, does not appreciably affect the result. Therefore,
to a good approximation we can express the full S/N ra-
tio in terms of S/N ratios corresponding to individual po-
larizations. Thus,

' 2

=F — +FS 2 S 2 S
N X N

(4.12)
+ X

where
' 2
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However, it is easy to see that A + = A x and that each
is equal to (S/N)+ =(S/N)„when the orbital plane of

S
1V

= lib+ II
and

S
X

=llhx II' (4.13)
50-

3. The computation ofS/N ratios

0
X

PV
X

a. S/N ratios for the h,+n. and h,"~ terms We treat.
the case for these terms separately for the following two
reasons: (a) they make a dominant contribution to the full
S/N ratio; (b) the S/N ratio can be obtained in a semiana-
lytic manner, i.e., the angles of orientation of the binary
orbit and the detector appear analytically in the formula
while the rest of the parameters are treated numerically.
The semianalytic nature of the formula helps in widening
its applicability to a continuous range of the parameters
that appear analytically in the formula.

Since each of the polarization amplitudes is restricted
to a single term, the following simplification occurs:

2 2

=F+ A+ +F„cos (i)Azx, (4.14a)
2

where

25-
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FIG. 2. Contour plots show the signal-to-noise ratio
(S/N); =p for the post-Newtonian chirp wave form as a function
of m& and m2. (a) corresponds to white noise, while (b) corre-
sponds to colored noise of standard recycling with f„=144 Hz.
The white-noise level is taken constant at Sp =9.6X 10 Hz
which is also the level of the colored noise at 100 Hz. The
(S/N) ratio for arbitrary orientations of detector and source can
be calculated from (S/N); =p from Eq. (4.15).
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the binary coincides with the plane of the sky, i.e., when
i =O'. If we denote this common quantity by (S/E);
then, taking the square root of Eq. (4.14a), we get

2 1/2
S z 1+cos i z z.+Fxcos i (4.15)

We now need to specify (S/N), o so that the S/N ratios
can be computed from Eq. (4.15). In Figs. 2(a) and 2(b)
we give contour plots of (S/X); o as a function of m,
and m2 for the detector orientation 8=/=0. In Fig. 2(a)
the contour plot corresponds to a white-noise level fixed
at SQ=9.6X10 Hz '. We have chosen the value of

SQ to be the same as that of colored noise at 100 Hz and
obtained it by setting f=100 Hz in Eq. (4.3a). In Fig.
2(b) the contour plot pertains to colored noise for the
standard recycling case. From the contour plots it can be
seen that the S/N ratio for the white noise is in general
higher than in the standard recycling case. This is due to
the arbitrary normalization of assuming the white-noise
level SQ to be the minimum of the noise level in the stan-
dard recycling case. For standard recycling, the higher
frequencies, f ~ fk in the wave form, are suppressed in
their contribution to the S/N ratio.

b. The S/X ratios for the full toaue form. The
analysis for the full wave form on lines of the previous
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FIG. 3. Contour plots for S/N for the full post-Newtonian wave form for the standard recycling case we with, ~ =144 Hz. The con-
tour plots are given for various polarizations and orbital angles of inclination of the sou: ( ) prce: (a) + olarization and i =0', (b) + polar-
ization and i =45', (c) X polarization and i =45', (d) + polarization and i =90 .
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S
N

S
& x

(4.16)

and only one of the quantities needs to be specified to
determine the full S/N ratio. Case (b) is a general case
where (S/N)+ and (S/N}„are unequal, and thus both
have to be specified in order to get the full S/N ratio. In
case (c) we find that (S/N) x =0. This is due to the par-
ticular choice of the coordinate system, and only (S /N)+
determines the full S/N ratio. For the general case of
0'(i (90' both (S/N)+ and (S/N)„are needed to
determine the S/N ratio. In Figs. 3(a)—3(d} we display
the contour plots for the relevant S/N ratio, as described
above, for standard recycling and for the detector orien-
tation given by 8=/=0'. The general trend is for the
S/N ratio to decrease as i increases from 0' to 90', i.e., as
the orbital plane inclines more and more to the plane of
the sky. Although this is not shown here we have
checked that similar results hold when the noise is white.
The basic reason for this behavior is that when i =0'
both polarizations contribute maximally to the S/N ratio.
As the plane of the orbit turns away both polarization
amplitudes decrease, reducing the S/N ratio. For i =90',
the contribution of the cross polarization is zero and one
gets a low value for S/N

The question is how these full results compare with the
h,+z and h &z results obtained in (i) from Eq. (4.15). We
find that Eq. (4.15) gives better results when the masses of
the stars are low. For example, if the masses are 2Mo
each, then Eq. (4.15) overestimates by about 10% the
S/N ratio obtained for the full wave form. This is mainly
due to the linear contribution in the amplitude of the h &+N

and h &z terms when one includes the 2P terms from h zpN
and h 2pN ~ Although other P, 3P, and 4P terms contribute
positively to total the S/N ratio, this contribution is
quadratic and hence small compared to the linear addi-
tion. For each of the individual masses =5Mo, Eq.
(4.15) overestimates the S/N ratio by as much as 20%.

case is not very convenient because the full wave form
has a complicated dependence on the orbital inclination
angle i W. e consider here three values of i: (a) i =0', (b)
i =45', (c) i =90'. In case (a), since the orbital plane of
the binary coincides with that of the sky, the wave is cir-
cularly polarized and the amplitudes of the two polariza-
tions are equal. This results in

V. CONCLUDING REMARKS

We observe that the full post-Newtonian S/N ratio
reduces from its Newtonian counterpart by about 15%
for stars with masses of —1Mo. This is valid only when

we consider a wide range of frequencies for detection,
from 100 to 2000 Hz. If we, however, reduce the upper
limit from 2000 to 400 Hz, the S/N ratios for the
Newtonian and the post-Newtonian cases differ very lit-
tle. In the PN case there is very little contribution to the
S/N ratio over 400 Hz. The reduction in the S/N ratio
here is mainly due to the reduction in the integration
time. This has the following implication: for a broadband
width from 100 to 2000 Hz, the reduction in the S/N ra-
tio will lead to a reduction in the distance to which we
can detect a binary, and hence to a reduction in the event
rate as predicted from the Newtonian analysis.

Comparing our analysis with Krolak's, we find that we
arrive at similar numbers. However, in our analysis de-
tailed computations have been carried out in the PN ap-
proximation to get the decay of the orbit. Further, the
S/N ratios are computed for various values of the masses

m& and mz, the orbital plane inclination i, and various
detector orientations 8 and P.

All this analysis is a precursor to the more detailed
analysis to follow, where one can gauge how efficiently a
"bank of Newtonian filters" [14] can filter out a PN sig-
nal. This will involve computing scalar products defined
in this paper: the scalar product between a PN signal
and a Newtonian filter. However, the analysis is expected
to be more complex since the signal now involves the in-
dividual masses of the stars. It is possible that the max-
imum of the cross correlation may occur when the mass
parameters of the signal and filter are mismatched. A
similar situation was encountered when the mass parame-
ters of the filter and signal did not match [14]. Then the
cross correlation peaked only when there was a time shift
and phase shift between the signal and the filter. This
effect was due to the nonzero covariance between the pa-
rameters of the signal.
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