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We consider a source of gravitational waves of frequency u, located near the center of a massive
galaxy of mass M and radius R, with cu )) R . The case of odd-parity gravitational waves
propagating through a perfect-fluid galaxy is particularly simple; for this case we find that, in
addition to the expected redshift of the radiation emerging from the galaxy, there is a small amount
of backscatter, of order M/u R . We show that there is no suppression of radiative power by the
factor 1+u M /4 as has been recently predicted by Kundu. The origin of Kundu's suppression lies
in the interpretation of a term in the expansion of the exterior field of the galaxy in inverse powers
of radius. It is shown why that term is not related to the source strength or to the strength of the
emerging radiation.

PACS number(s): 4.30.+x

I. INTRODUCTION

If a source of gravitational radiation is located in or
near a massive body the curvature of spacetime caused
by that body may inHuence the generation and propa-
gation of the radiation produced by the source. If, for
example, a quadrupole oscillator is located at the cen-
ter of a galaxy of mass M and radius R, we might guess
that the effect of the surrounding galaxy on the radia-
tion produced inside it is of the same order, M/R, as the
characteristic Newtonian potential, at least in the case,
M/R « 1, that the galaxy is nearly Newtonian. (Here
and throughout we use units in which G and c are unity. )
In this paper we analyze just what these effects really are
for high-frequency waves.

To do this we consider a fairly specific astrophysical
configuration. We suppose that there is a source of grav-
itational radiation emitting waves at frequency ur, and
confined to a central source region r & r8 of the galaxy.
We require that the source be small compared to the
radius of the galaxy (rs « R). We also require the
source frequency to be high enough so that there is a
region outside the source (r ) r8) which is deep inside
the galaxy (r « R) and in the wave zone of the source
(r )) ai ). In this region it is meaningful to talk about
the gravitational-wave flux well inside the galaxy. For
a typical galaxy R 10zs cm and M 10is cm, and
for a kilohertz gravitational wave u —10 cm . For
these values the region we require is the range of radii
satisfying max(rs, 10~em) && r && 10 cm.

For such a configuration the standard analysis tells
us that as the high-frequency waves propagate outward
there are two effects of spacetime curvature that affect
their passage. First the frequency of the waves is red-
shifted so that the frequency observed far outside the
galaxy is reduced from that at the source roughly by
the factor (1+ Co), where Oo, the central potential, is
of order M/R. The second effect is associated with the

meaning of the radial coordinate. If r is the usual (i.e. ,
Schwarzschild) radial coordinate, then for waves radially
propagating outward, the rate dr/dt is slightly less than
unity, and there is an attendant gradual phase shift of
the waves, of order arM, as viewed in the r coordinate.
(For a discussion of propagation of gravitational waves,
and the distinction between generation and propagation
for an "isolated" source, see Thorne [1]).

We consider what other effects influence the propaga-
tion of gravitational waves, and find that there are inter-
actions between the spacetime curvature and the waves
which are interesting as points of principle, if not of as-
trophysical importance. There is, however, a significant
additional motivation for such a calculation, and a major
motivation for this paper. Kundu [2, 3] has recently ar-
gued that gravitational-wave energy propagating out of
a gravitational potential well will be reduced in intensity
by the factor (1+M aiz/4) . Because a~M can be large
(of order 10s for the typical numbers given above), such
a reduction of kilohertz gravitational-wave signals origi-
nating in other galaxies would make detection of signals
impossible and would be of crucial importance in connec-
tion with the detection of gravitational waves by instru-
ments now being developed.

The remainder of the paper is organized as follows.
We start in Sec. II by outlining the mathematical origin
of Kundu's argument that gravitational radiation is sup-
pressed. We then describe the argument against suppres-
sion given by Kozameh, Newman, and Rovelli [4], and its
relationship to the present work. In Sec. III we derive
the necessary connections between the Newman-Penrose
(NP) formalism, used by Kundu, and the formalism of
metric perturbations. We show, in the SchwarzschiM ex-
terior, how the NP projection @o is related to the the
Zerilli function [5] in the case of even-parity perturba-
tions, and in the odd-parity case to the function solving
the Regge-Wheeler equation [6]. For outgoing solutions
of both parities, suppression factors arise in the relation-
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ship between the terms describing the strength of radia-
tion, and the terms describing the apparent quadrupole
moment. The subsequent analysis then takes advantage
of the considerable simplicity possible in the odd-parity
case. A model problem is defined with a central source
of odd-parity waves which propagate outward through
a perfect-fluid galaxy. In Sec. IV a Green-function so-
lution to the odd-parity gravitational-wave problem is
constructed which shows clearly the relationships among
the source strength of the waves, the intensity of the out-
going radiation, and the various terms that can be iden-
tified as the quadrupole moment. Section V takes up
the problem of the extent to which the galaxy is trans-
parent to (odd-parity) radiation. Numerical results are
then presented which show that even for strong gravita-
tional fields, the effect of gravitational potential wells on
the propagation of high-frequency radiation is negligible
(except, of course, for the well known redshift efFect). A
summary and discussion of conclusions is given in Sec. VI.

ds 0
6 d(ao), ,„Md (cro), ,„
rz

„3 ~O 2
odd 6 d (po)odd M d (pp)odd

du r du 2 du
(7)

When time dependence e' ' is assumed, the result be-
comes

dsgop 1 (l+ 2)!dep d2ao

dus 4 (E —2)! du du2

in which the overbar over a".0, in the first term on the
right, indicates complex conjugation. A useful feature of
despun quantities is that their real and imaginary parts
correspond, respectively, to even- and odd-parity modes,
so that, for E = 2, we have from the real and imaginary
parts of (5)

II. THE KUNDU SUPPRESSION
AND THE KNR MODEL

a = op(u, 8, $)r 3+ O(r ) (2)

is well accepted as carrying the information about
gravitational-wave energy density, specifically in the
Bondi news function [8] do'p/du.

Kundu considers linear perturbations about a
Schwarzschild background of mass M and shows that
there is a simple relationship between the quantity goo

that carries information about rnultipole moments, and
the quantity op that carries information about radiation.
To express this relationship it is convenient to define the
"despun" [9] equivalents @p and 0, of the spin-weight +2
quantities 40 and cr, by

io =—(1/2)88eo, 0. = (1/2)88~,

where, on spin-weight +2 quantities,

i ct&
sin 8 BP)

t' ctBB:—
~

—+ cot8—
08
(0

x
~

—+2cot8— t9

sin 8 0$
(4)

For a multipole mode, of index E, in terms of despun
quantities, we find

Kundu's arguments are framed in the Newman-
Penrose [7] (NP) formalism and are based on the Weyl
projection @0 in that formalism. For an outgoing solu-
tion 40 takes the form

eo = goo(u, 8, y) r '+ O(r--'),

where u is retarded time. Due to its r 3 falloff at large r,
the quantity 4p is not usually viewed as a direct measure
of radiation intensity for the outgoing solution, but rather
as encoding information about the multipole moments of
the source in the near zone (i.e. , at distances from the
source small compared to a wavelength). The shear

6(l + iur M/2)
(8)

with the + signs applying for even-parity perturbations,
and the —signs for odd.

Kundu interprets this equation as telling us that the
radiation amplitude, for a quadrupole source, is reduced
due to the mass of the Schwarzschild background by the
factor (1 6 iuM/2) ~, so that the radiation power flux
(proportional to ~dao/du~3) is reduced by his suppression
factor (1+uzMz/4)

Kundu's arguments depend crucially on his interpreta-
tion of goo as the quadrupole moment of the source (aside
from multiplicative factors). There are two types of jus-
tification given by Kundu for this identification. First, he
argues [2] that this identification is valid in linearized the-
ory [10], and is valid in the full nonlinear theory [11] for
stationary spacetimes. Furthermore, in the time depen-
dent case go has the required transformation behavior for
the quadrupole moment. As a second and distinct justi-
fication, Kundu considers a gravitational-wave source in
a massive galaxy and argues that the source integral for
the quadrupole moment will be affected by the galaxy
only to order M/B, and therefore the quadrupole mo-
ment will be negligibly different from that if the source
were in flat spacetime.

A model problem has recently been published which

suggests that Kundu's suppression factor is a mathemat-
ical artifact, and not of physical importance. Kozameh,
Newman, and Rovelli [4] (hereafter KNR) use a simple
model of a perturbative scalar field 4, and show that
the same apparent suppression applies to quadrupole
radiation in this model as in the case of gravitational
waves. They consider the equations for 8 = 2 scalar
perturbations in a Schwarzschild background of mass M
and define Q with O = g(r, u)Yq (8, P), where r is the
Schwarzschild radial coordinate, n is retarded time, and
Yq is a standard (spin-weight 0) E = 2 spherical har-
monic. An outgoing solution will then have the form

@ = —+ —+ —+ —+O(r ),0o Qi 4&2 &3 (9)
r r2 r3 r4
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in which the gg are functions only of u. For a sta-
tionary solution go and Qi would vanish, and gz would

be the quadrupole moment. To emphasize that the
situation may be more ambiguous for dynamical solu-

tions in curved spacetime, KNR refer to Q2 as the "field

quadrupole, " and designate it by Q~. The equations for
the scalar field in the Schwarzschild background then
show that Qo, the radiative part of @ is related to Q~

by
~2 Qf

(10)
3 1+iv&M/6'

For a given time-varying quadrupole, therefore, the radi-
ated power is reduced by the factor (1+a~M~/36) from
what it would be in flat spacetime. KNR assume that this
suppression is analogous to the suppression of gravita-
tional radiation found by Kundu, and that the scalar ex-

ample provides a simple model for understanding the sup-

pression. KNR then proceed to use the scalar model to
investigate the question of whether the field quadrupole
Q~ is really what is usually considered the "quadrupole
moment" of a gravitational-wave source, that is, whether
Q~ is the same as the "source quadrupole moment" Q.

To address this question they consider a very simple
model: a source inside a massive spherical shell of radius
R. Since the spacetime inside the shell is flat, Q has a
simple closed-form outgoing solution for r ( R. In the
interior of the shell Q~ can easily be shown to be identi-
cal to the source quadrupole Q. The interior and exterior
solutions are then matched at r = R with the condition
that the scalar field is continuous across the shell. A
consequence of this is to require that Q~ be discontinu-
ous across the shell; it increases across the shell by the
factor 1 +iv&M/6. This enhancement factor cancels the
suppression factor and one concludes that the relation-
ship between the scalar radiation, and the scalar source
quadrupole (aside from negligible factors of order M/R)
is the same as in flat spacetime.

The KNR model is very suggestive of the root of the
problem, that the (exterior) "field quadrupole" differs
from the source quadrupole. But one might ask what de-
tails of the model could be changed to make the argument
more convincing. Two details would seem to deserve the
most attention. First, the model involves scalar fields and
it is difflcult to be certain that the lesson of scalar fields
applies to gravitational perturbations. A second detail of
the KNR model is more important. In the KNR model
the assumption that g is continuous is tantamount to as-
suming that the shell is transparent to scalar radiation.
But for a shell which cannot absorb or reflect radiation,
in a time-invariant background, we know a priori that
the radiation outside must be related to the source in
the same way as the radiation inside. The matching con-
dition, then, eliminates at the outset any possibility of
a Kundu eEect. A more convincing calculation would
model the interaction of the waves and galaxy to allow
for interactions, in particular for backscatter.

In the following sections we attempt to fill in some
of these details. We study gravitational waves produced
by a central source and propagating outward through a
"galaxy. " We include all effects of interaction and show

that a nearly Newtonian galaxy is indeed transparent to
the propagation of waves. We also show explicitly why
the r term in the outgoing solution does correspond to
the quadrupole moment near the source at the center of
the galaxy, but not outside the galaxy.

III. RADIATION SUPPRESSION IN
THE ZERILLI AND REGGE-WHEELER

EQUATIONS

dr/dr =—e("-")~' —= e~(")

and the retarded time u by

(12)

(13)

In the Schwarzschild geometry, even-parity perturba-
tions for a particular multipole moment (with /. & 2) are
conveniently described by the Zerilli [5] function Z(+)
which satisfies a simple potential type equation.

2 2

i

z(+) y+z(+)
(Br2 Bt2)

where, for t'= 2,

(+) (1 —2M/r) 6M 9M2 9Ms
+ + +r (1+3M/2r) r rz 2rs

(14)

(We use here the notation of Eq. (62), Sec. 24, of Chan-
drasekhar [12].) From this Zerilli equation one infers that
for outgoing radiation Z(+) has the form

Z(+) = z +)(u) + z + (u)r + z +)(u)r

+s(+) (u)„-i +
and that, for 8 = 2,

ds"'/du = 3s"'
ds +

/du = s(+ —3Ms+,
dz+ /du = —Mzi+ + (21/4)M z +

(16)

(17)

These equations show that z0+ and z&~+ vanish for sta-
tionary 8 = 2 perturbations. For stationary solutions the
zz+ term is the first nonvanishing term, and is consid-
ered to carry information about the source quadrupole
moment. For nonstationary solutions it is the function
z0+ that carries information about gravitational radia-
tion, since the gravitational wave-power is proportional

Although Kundu's analysis of gravitational radiation is
carried out in the NP formalism, it turns out to be con-
venient, as well as instructive, to look at the problem in
terms of metric perturbations. We start by showing the
relation of the suppression factor in the two formalisms.
Both inside and outside the galaxy we take the form of
the background metric to be

ds = —e"dt +e"dr +r (d8 +sin 8' ), (11)

with v and A functions of r only. We define the radial
variable r, by
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to [dzp+ /du[ . From Eqs. (17) we can then deduce a re-

lationship, d2zz+ /du = 3(zp+ —Mdzp+ /du), between

the radiation quantity zo+, and the "quadrupole mo-

ment" z2+ . This relationship implies a suppression fac-
tor [1 —i~M~, which is difFerent from the factor found
by Kundu. The difference arises from the difference in

the choice of the "quadrupole moment" one infers from
40 and from Z(+), and demonstrates the importance of
that choice in the inference of suppression of radiation.

For even-parity perturbations, the relationship be-
tween Re(@p) and Z(+) is given in Sec. 31, Eq. (352)
of Chandrasekhar [12] as

Re(@p) sin 8 f' 2M)
C-s~'

8+2

3+ 3M/r + 9M2/2r2 + 9Ms/4rs (+) 1 c) 1 —3M/r —3M /2r c) (+)
r (1+3M/2r) r Bu r (1+3M/2r) c)r

Re(@p) sin 8 q(u)
s/2 rs +Or

8+2

Here the quadrupole moment q(u) is given by

q(u) = z(+)(u) + (3M/2)z, + (u).

(19)

(20)

Aside from numerical multiplicative factors, q(u) is equal
to QpP, and is what Kundu interprets as the source
quadrupole moment. We note that Eqs. (17) and (20)

The following should be noted about our use of that re-
sult here. (i) The Zerilli functions defined by different
authors differ by multiplicative factors, but overall mul-
tiplicative factors will not affect the frequency-dependent
suppression factor. (ii) The Weyl projection 4'p is in-
variant with respect to infinitesimal tetrad rotations and
infinitesimal coordinate changes. We therefore need not
be concerned, for example, that Chandrasekhar employs
a nonstandard coordinate gauge. (iii) Chandrasekhar as-
sumes azimuthal symmetry for 4'p and angular depen-

dence C&+z~ (8) csc 8, which is proportional to the spin-
weight 2 spherical harmonic 2', for m = 0. For this
case the angular functions are pure real, and the real and
imaginary parts of @p describe, respectively, even- and
odd-parity perturbations.

When the outgoing form for Z(+) in Eq. (16) is substi-
tuted on the right-hand side of Eq. (18), and Eqs. (17)
are used, we find

) V(-»(c) c)

(Br2 Bt2)

where

(21)

V( ) = [E(E + 1) —6M/r] . (22)

For a solution of the form

Z — z(-) + (-)/„ + z(-)/„ + z(-)/„ (23)

the Regge-Wheeler equation tells us, for E = 2 multipoles,
that

dz,' '/du=3z, ' ',

dz()/duz()(3M/2)z()
dz,' '/du =O.

(24)

The relationship of 40 and Z( ), for odd-parity pertur-
bations, is given in Sec. 31, Eq. (345) of Chandrasekhar
[12] as

give us d q/du = 3[zp+ + (M/2)dzp+)/du], and hence
the even-parity Kundu suppression factor (1+iv&M/2)

The function Z( ) (in the notation of Chandrasekhar),
which describes odd-parity metric perturbations in
the Schwarzschild geometry, satisfies the potential-type
"Regge-Wheeler" [6] equation

Im(B@p/Bu) sin 8 2M) 1 6M
( )

1 3M c) 0
~-3/2 r ) 2r r r r Bu Or

8+2

(25)

When the expansion in (24), for an outgoing E = 2 mode,
is put into (25) we find

Im(d@p/du) sin 8 2M ) z2
~-3/2 r5

(26)

so that, aside from multiplicative constants, z2 is equal
to d@p/du and is the derivative of what Kundu identifies
as the quadrupole moment. From Eqs. (24) we have that
d z2 /du = 3[zp —(M/2)dzp /du] and hence the
odd-parity Kundu suppression factor (1 —iurM/2)

The mathematics of the odd-parity modes can be much
simpler than that for even-parity modes since there is no
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odd-parity degree of freedom for the motions of a per-
fect fiuid. The issue of suppression is the same for both
parities, so we choose to take advantage of the opportu-
nity for simplicity and we consider below only odd-parity
perturb ations.

In the standard formalism for metric perturbations,
odd-parity motions are described as deviations of the
metric in (ll). We follow here the notation of Thorne
and Campolattaro [13], in which the Regge-Wheeler [6]
gauge is used and azimuthal symmetry is assumed. For
odd-parity perturbations of multipole index t', the only
nonvanishing metric perturbations are, in this notation,

feet fluid, so that there can be a clean separation between
the generation and the propagation of the gravitational
waves, a separation that is not possible for even-parity
waves.

It is worth noting here that the resulting mathematical
formulation differs very little from that for a scalar field
of the type considered by KNR. Let scalar field 4 have a
source density Z so that

O'" = Z.iP

In the spacetime of (11), for a multipole of index E, this
equation reads

Sgsy = hp(r, t) sin 8 tcPg(c os 8)/88,

bg„y = hi(r, t) sin88Pg(cos8)/88,

(27)

(28)

where Pq indicates the Legendre polynomial of index I,.
In terms of the notation of Thorne and Campolattaro,
the Chandrasekhar function Z& & is

Zi-&=e h/r. (29)

The Schwarzschild perturbation function Z& & is, of
course, only defined in the exterior vacuum of the galaxy,
where eo = e" = e " = 1 —2M/r, but (29) allows
us to extend the definition of Z& ~ to the interior. We
consider the stress-energy tensor to be decomposable as
T = TPerf + Tsource Here TPerf is the stress-energyPV PV PV ' PV
tensor of the perfect fiuid; its odd-parity perturbations
can be expressed in terms of Z~ l (See Appendix B of
Ref. [13]). The second term, T„'ource, is the perturbative
stress-energy tensor due to the source of the gravitational
perturbations. From the odd-parity field equations in
Ref. [13], the interior generalization of (21) is found to

e

( 8' 8' & ( )
g8rz Btz)

e"l(8+1) —r e +2(e —e") Zi l =8,
r2 dr

where the source term 8 is defined by

g f evTsource ) ev sin2 8 g (Tsource )-
sinz8 Or ( rz p rz 88 ( sin 8p

(3o)

8 1 0= —8— . —Pg(cos 8) . (31)88 sin 8 88

We apply (30) to the following model. At the center
of a massive galaxy, of mass M and radius R there is
a source of odd-parity gravitational waves at frequency

The source is confined to the region for r less than
some source radius rg. The source, e.g. , an oscillat-
ing neutron star, must of course not consist of a per-
fect fluid, since perfect-fluid motions cannot generate the
odd-parity waves. [The sourceterm in (30) vanishes. ] For
this reason we take the matter of the galaxy to be a per-

e"E(E+ 1) + e r (rO) = re'Z . (33)
1 2o do!

r dr.

The difFerence between the form of this equation for rC
and (30) for Z~ & is only in the details of terms of or-
der M/R. We will show, in the next section, that these
terms affect detailed numerical results but, for a nearly
Newtonian galaxy, cannot cause significant suppression
of radiation. Other features of the scalar and the odd-
parity problems are parallel. In particular, for both cases
we can consider a compact central source (no radiation
originating from the bulk of the galaxy) and the match-
ing conditions at the surface of the galaxy are that the
fields and their radial derivatives are continuous.

IV. ANALYSIS OF OUTGOING WAVES

To investigate the nature of outgoing solutions we take
the time dependence of the source, and of Z& l to be e'~',
and we write

Z~ l = g(r)e' " 8 = e' 'S(r) .

The equation for odd-parity waves then takes the form

Q" + (n' —2i~e )g'

——[e E(E+ 1) —ra'+ 2(1 —e")]Qr2
= e e™'S(r), (34)

where a prime denotes differentiation with respect to r.
It is straightforward, in principle, to construct a Green-

function solution to Eq. (34) from two homogeneous so-
lutions. We define a "central" solution, Q„as the homo-
geneous solution which is well behaved at r ~ 0, with
the limit

The second solution is taken to be the "wave" solution
defined by the condition that it represents outgoing

waves at large radii. The mathematical condition on this
asymptotically outgoing solution is

(r) ":1 + 0(1/~r).
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We define W = W(@„g ) = @' @, —g,'g to be the
Wronskian of these two solutions, and we note that W
must have the form

bt a —vo/2 «,«+ &~

2i~r, e a—(r) /K (37) (41)

4'(") = K'(b (") Q, (r)S(r)e e ' "' dr

in which K is a constant.
If the source is confined to the region inside some radius

rg, then for r & rg the Green-function solution takes the
form

TS

The functions a, b, c, d, . . . are determined only after
the metric functions v, A are specified, but we can state
some general conclusions. For r (( R the metric coeK-
cients can be expanded in powers of r and, for a geometry
nonsingular at r = 0, we have v' = 0 and A' = 0 at r = 0.
As a result, the solutions for a, b, . . . take the form

= KQ~(r)I~.

For rs « R, and in the long wavelength (mrs « 1) limit,
the source integral I has the approximate value

1 (/+1)! M r r~

2r (E —1)! R2 R R2 (42)

I„=e "'~ r + S(r)dr.
b = — z, ', + bpln — +by +—, (43)

g.„,(r) =1+i +, +i, +a(") b(") c(")
4)0 4)0 Mo

Here

(39)

is the blueshifted frequency in the central region of the
galaxy. This frequency governs the wavelength (A =
2mc/u)p for r « R) in the central region and is therefore
the appropriate parameter to simplify (39). By solving
the homogeneous wave equation (34) to various orders in

up we find, for example, that a(r) and b(r) must satisfy

~&(&+ 1)
r

——+ —(1 —e ), (40)
0! 2

r r2

Note that the absence of a conical singularity requires
A ~ 0 at r —l 0, but v(r = 0) = vp will in general be
of order M/R. It should also be noted that, aside from
multiplicative numerical constants, the integral above is
the usual integral for the «th multipole moment of the
source.

The function g (r) corresponds to the solution that
is asymptotically outgoing, but, due to backscatter, at
small radius (r « R), it does not in general have the
appearance of a locally outgoing solution. We define a
locally outgoing solution by the high-frequency expansion

1 (E+ 3)! M R r R
48rs (E —3)! R4 r R

0-() =&0-()+&0-(), (46)

where the constants T and 'R can be considered transmis-
sion and reHection coefficients. The value of ~7

~

—
~7Z~

is computed by considering the Wronskian of Zll,
e'™lg~and its complex conjugate, and is found to be
equal to unity aside from small corrections. (The value
of ~2

~

—~'R~ can be made precisely unity by a small
correction in the normalization of g .)

For r « R the solution Q~(r) in (46) can be expanded
in powers of r. For « = 2 this gives

and so forth. Here the coeKcients ag, bg, . . . are numeri-
cal constants aside from corrections of order M/R. More
precisely they are functions of the parameters of the in-
terior geometry which have finite limits as M/R l 0.

In the original homogeneous equation, Eq. (21) with
the source set to zero, there is symmetry with respect to
t ~ —t and complex conjugation. Prom this symmetry
we get a second, ingoing, solution

A„=e" "*4.„, , (45)

in which the overbar denotes complex conjugation.
The asymptotically outgoing solution Q (r) must be

some combination of Q,„& and @;„,which we write as

= 1
(

1 + ———+ O(Mr/& ) + ———
r + 0

&
ln — + —&0

~l

ln —
~

+. . .

I
i 3 1 3 ~M r ! i t M rl

Cdo r (dp 7 ( R' R ) cdp kEPT R)

3 1 3 (M r
+~e2' " ]. ————+O(Mr/R ) + —

q
——q+0 s ln

(dO ~2 r2 (Rs R )
(M——Oi ln —

~

+
t Rst' R)

(47)
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For r « R then, the term in Q that goes as r ~ is

(48)

Thus, aside from corrections which are small for high-
frequency (uR )) 1) sources, the r 2 term in @ is

(T + R)(—3/u)pz)KI . (49)

If, as expected, backscatter is insignificant, then ~'T~ = 1
and ~'R~ && 1 so that the r z term is approximately

(—3/~pz)KI . (50)

The r z term therefore gives a direct measure of the
quadrupole source integral. From Eqs. (36) and (38) it
follows that g ~ KI as r ~ oo, and that the r z term
in the deep interior also gives a measure of the intensity
of the outgoing radiation.

For the exterior solution, very different conclusions fol-

low. Here it is possible to expand Q in inverse powers
ofr as

i 3 M Mz
Q~ = 1+— ——+ Ai —yAz

4) r r3

1 3 M
+———+By—+r~ r3

1 M+—&i—+ +r4 (51)

in which the numerical constants, Ai = 3/2, A z

0, Bq —— 0, etc. , are easily evaluated from the
Schwarzschild metric functions. In the exterior solution
then the r z term in g is

(—3/~ + 3i M/2u))KI (52)

and is larger than the interior r z term by the (possibly
large) factor (1 —iuM/2). But now the r 2 coefficien
no longer gives the intensity of the outgoing radiation,
or a measure of the source integral. If the coeScient
is used to denote (in the notation of KNR) the "field

quadrupole, " then it must be understood that this Beld
quadrupole is larger, by the factor (1 —iuM/2), than the
quadrupole moment which measures the source integral,
which governs the intensity of outgoing radiation at inBn-

ity, or which governs the locally outgoing radiation deep
inside the galaxy.

It is clear mathematically why the Beld quadrupole and
the physical quadrupole are so different: the ia(r)/ldp
term in (47) lacks a term that goes as r From (40).
we see that the presence of such a term would require a
galaxy spacetime that tends to a singularity as r ~ 0.
The absence of such a term is why, for a high-frequency
source, the r 2 term for r &( R can be given the same
meaning —that of the quadrupole moment —as in a Bat
spacetime background. In (51) the ia(r)/u term does
have a r term. This is possible because the expansion
in (51) cannot be extended to small r. But the interpreta-
tion of the r 2 term as the quadrupole moment, in some
expansion for Q, is justifiable only if that expansion can

be extended to small radii. The field quadrupole is, then,
a formal construct and its use as a physical quadrupole
moment is the reason that gravitational radiation ap-
pears to be suppressed.

This insight gives the answer to an interesting ques-
tion. I et us denote the coefficie of the r 2 term as Qy,
both in the deep interior and in the exterior. When Qy
is computed in the exterior we Bnd a different value than
in the interior, and than we would Bnd in the absence of
the galaxy. How can the "source integral" for Qy, when
it is computed in the exterior, have large non-Newtonian
contributions from the galaxy, especially in the case that
the galaxy is nearly Newtonian? The answer is that the
"source integral, " both in the exterior and in the deep
interior, is the same. It is I~ of (38). But the way in
which this source integral enters into the expression for
the coefficient of the r z term, and hence into the value
inferred for Qy, is different in the exterior and the inte-
rior.

In the next section we consider just what the magni-
tude is of the influence of the galaxy spacetime on the
outgoing radiation.

V. REFLECTION AND TRANSMISSION
OF OUTGOING WAVES

We take up here the question of what the actual influ-

ence is of the curved spacetime of the galaxy on the prop-
agation of gravitational waves (specifically, of odd-parity
gravitational waves). One obvious influenc, of course,
is the redshift which is built into the expressions for the
radiation. The net power in terms of coordinate time
t must be independent of the distance from the source.
The locally measured proper time difFers from coordinate
time by e"~z and hence the locally measured power (pro-
portional to the square of the time derivative of @) will

differ from that far outside the source by the redshift
factor e .

The question of other inQuences on the radiation is
much less obvious, and there are several ways in which
it can be asked. One approach is to look at the relation
of the outgoing radiation and the source as embodied in

(31) and (38). This approach is most transparent if the
source is taken to be compact, i.e. , rg « 1/~ as well as
rq « R. In this case, the radial derivative of v will be
smaller (by rs/R) than the radial derivative of the Rieei
components, so we can approximate

/' Tsource g

16 & I2 d T
dr s& r d8 ( sin8)

0 1 0= —8 sin 8— . Ps(eos 8) . (53—)08 sin 0 88

Here the terms T-'-"'" and T.'-""' are the perturbations

of the source stress-energy projected on an orthonormal
tetrad, and are the quantities that would be computed
(e.g. , for a neutron star) by a nearby observer. We there-
fore write



2504 RICHARD H. PRICE AND JORGE PULLIN 46

~local
3vp/2 (54) and the Wronskians on the right-hand side can be eval-

uated to give, for E = 2,

to indicate the relation of the source term referred to the
coordinates of (ll) and the source term measured by a
local observer.

For the compact source, with corrections of order
rgM/R and 1/rgw ignored, (38) can be written

@(r) = +e Iiocailw&

in which

(55)

Ilocal =
rs

~local d~8+1 (56)

is the source term that would be computed by a local
observer. In the case of flat spacetime K defined by (37)
is easily shown to be —(i) u~[(28+1)!!] i so that, finally,
the relation of source and field can be written as

Q(r) = —(i) u [(28+ 1)!!] Ii„ ig e 'e„„
with

r„„—:—(28+ 1)!!(—i)~~ ~K. (58)

In this equation the influence of the galaxy is contained
in the factor e"'e, „.

There is another, rather difFerent, way in which the in-
fiuence of the galaxy can be viewed. One can ask what
the relationship is between the outgoing radiation far out-
side the galaxy, and the radiation in the deep interior of
the galaxy. In (46) this relationship is contained in the
constants 2 and R, in which R describes, approximately,
the fraction of the radiation reflected back towards the
source, due to the galaxy's spacetime curvature. Roughly
speaking, the magnitude of ~R~, or of ~'T~ —1, is a measure
of the extent to which the galaxy is not perfectly trans-
parent to gravitational radiation. It is only an approxi-
mate measure because there is, at the outset, a limit to
the precision to which an observer can measure radiation
as if in fiat spacetirne. The metric for a "fiat" coordi-
nate system over a region of size I will deviate from the
Minkowski metric by corrections of order (I/R, )2, where

R, is the spacetime radius of curvature. For the galaxy
spacetime R, ~ (R /M) i~z, so that over one wavelength
there will be metric corrections of order M/u2Rs. One
manifestation of this is that we have, from the Wronskian
of Q~ and e2'~"*Q, and the expressions in (47) and (51),
that

i'Ti —iRi = 1+O(M/~ R ). (59)

The O(M/u Rs) correction factor is simple to compute,
once v and A are specified, from the forms for a, b, . . ..
The correction factor M/u2Rs will, in any case, be neg-
ligible (of order 10 ss for kilohertz waves and ordinary
galaxies) .

There is a close relationship between the two view-
points above for looking at the influence of the galaxy.
The Wronskian in (37) can be written

W(g„g ) = 7 W(g„g,„,,) + RW(y„y;„), (60)

r„„=e s"'~~(T+'R) '[1+ O(M/~2Rs)] . (62)

The effect of the galaxy is then contained in two types
of terms. There are terms of order M/u R [e.g. , in (62]
and (59)) that are "local" in the sense that they can
be computed from the small-radius solutions for Q. The
second influence of the galaxy is through the coefficient
R, and is not local. If there is any way in which a nearly
Newtonian galaxy can have a significant influence on the
propagation of high-frequency waves, it is through the
possibility that ~R~ is not small.

That possibility can, in fact, be ruled out with a WKB
argument, but such an argument cannot easily tell us how
small ~R~ really is. To find this out we have numerically
integrated the equation for Q starting in the exterior, at
large r, with the expansion in (47). The integration to
small radius was done with the method of GEAR [14],
suitable to the stiff differential equation for Q. At the
surface r = R, the field equations require that g and
g' be continuous. The 'R coefficient was extracted from
the numerically computed solution Q~, by using the flat
spacetime solutions gfl„—:1 —3i/raa —3/r2~02, and
yfla —e2iur, yflat and the computed quantity

W(qfl t
@ )/W(nf yfl ) (63)

This can be evaluated at small r with the expansion in

(39) to give

—2iur,
Rindex = R+ 2Rs& *&

2u)0B3

x 1+0~ )+Cl(—
) (64)

where ai is the coefficient defined in (42). Note that (64)
does not assume M &( B; it can be used for galaxies with
relativistically strong gravity.

For a constant-density interior (Schwarzschild interior)
the value of aq is easily shown to be

3 f 2M''~ 1
ai = 2+ e-"~' = 2+ —

~

1—2( Ry 2

and we apply (64) to the results for 'R;„d,„ found with
(63) from the numerically computed values of @ . In
Fig. 1 we show the real part of R;„d,„as a function
of r, for the parameters M/R = 0.1 and wR = 2000,
and we compare it to the predicted expression in (64)

W(@„@ ) = (2 + 'R)e '"" e 15 (uo e '~

x [1+0(M/~ R )

As in (59), the O(M/cu2Rs) correction term is eas-
ily evaluated from (39) and the small-radius forms of
a(r), b(r), . . ., once the the metric functions v and A are
specified.

When we combine (61) with (37) and (58), for I = 2,
we have
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7.5XIO 8 VI. SUMMARY AND CONCLUSIONS
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FIG. l. 7Z; q,„ is plotted for the numerical runs (circles)
and the value given by the analytical estimate Eq. (68)
(curve). The parameters of the run are R = 100, M = 10,
~ = 20. The error bars on the numerical points are of the
order of the size of the circles.

for the best-fit values 'R = (0.29 + 1.40i)10 s and T =
e o 4~'. Numerical runs with different parameters show
that ['R] is proportional to M/ur2Rs (aside from higher-
order corrections in uR), so that the 'R and 2 terms on
the right-hand side of (64) are of the same order.

Figure 2 gives ~R~ as a function of M/R, for different
values of AIR. The plots clearly indicate that ~R[ = s,&,
as long as M/R &( 1 and uR )& 1. When M/R is no
longer small, it remains true that ~'R~ oc u 2R z, but
the dependence on M/R must be read from the figure.
When u is not large compared to R, the assumptions
used in deriving (64) fail as does much of the meaning of
"reHection. "
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FIG. 2. The absolute value of R;„d,„plotted as a function
of M/R for two values of uR. The circles are for uR = 1000
and the stars for uR = 2000. The continuous curves represent
the approximation for small M/R given by [R~

—2M/3uPR .

We have studied a configuration in which waves prop-
agate on a spherical static curved spacetime background.
In the geometric-optics limit, the limit of infinite fre-
quency, the only physical inQuence of the background is
the familiar redshiR of the waves. We have found effects
for high but finite frequency u, for propagation in a back-
ground of mass M and radius R. Most notably, we have
found that the radiation reaching arbitrary distances is
different from that emitted, by a fractional correction
of order M/u2Rs. The computed reflection coefficients
in Sec. V may be considered the first corrections to the
geometric-optics limit.

Some details of Secs. IV and V are specific to odd-
parity gravitational waves, but with very minor modifi-
cations apply also to massless, minimally coupled, scalar
fields. The generalization to even-parity gravitational
waves is not immediate. For even-parity waves propagat-
ing through a perfect-fluid galaxy, or for waves of either
parity propagating through a region with more complex
material properties, the matter will, in general, oscillate
in response to the passage of the wave, and will retard
and absorb radiation much as a dielectric material inter-
acts with an electromagnetic wave. (The computation for
even-parity waves through a perfect-fluid galaxy would
be relatively straightforward to carry out with formalisms
in which Huid perturbations do not explicitly appear [15],
but the problem is made difficult by its four degrees of
freedom. ) These interactions, however, can be estimated
reliably [16] and except for contrived circumstances will

be very small.
What do these results imply for the possibility of

suppression of gravitational radiation, as predicted by
Kundu [2, 3]? The use of a model calculation specific
to odd-parity waves is irrelevant. The suppression is in-
ferred by Kundu from the external Schwarzschild geome-
try, in which the mathematics of even- and odd-parity
waves is essentially the same. Our analysis is rather
specific to a particular configuration: a compact cen-
tral wave source embedded in a massive spherical back-
ground. One might ask whether the suppression might
apply to very different configurations, such as a source
near a massive black hole. It would be strange, of course,
if the suppression —inferred only from the Schwarzschild
background —applied for one wave source and not an-
other within that background. Barring that possibil-
ity, the general lessons of our spherical configurations
should apply insofar as well defined questions can be
asked about suppression. In particular, for a compact
source, in the geometrical-optics limit (wavelength(( all
other length scales), the effect of background curvature
should be only the standard redshift and the bending of
the null geodesics (absent in the spherically symmetric
case). For finite frequency we would expect the first cor-
rections from the geometric-optics limit to be of order
(uR,),where R, is the characteristic spacetime radius
of curvature.

The conclusions based on the configuration considered
in this paper should then give the generally correct pic-
ture of the relationship of radiation and quadrupole mo-
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ment. In that picture we are able to distinguish a num-
ber of different "quadrupole moments": (i) a quadrupole
moment given by an integral over the source, (ii) the
interior "field quadrupole" inferred &om the coefficient
of the r 5 term in the NP %eyl projection 40 near the
source, and (iii) the "field quadrupole" from the r s term
far from the source of background curvature. We have
shown that the quadrupole moments of types (i) and (ii)
are the same (aside from corrections of order M/~zR )
and that they govern the outgoing radiation produced
by the source, both deep within the galaxy and outside
the galaxy. The exterior "field quadrupole, " however,
differs significantly from the other quadrupole moments.
Its interpretation as a quadrupole moment is based on
an expansion in inverse powers of r, and an identification

of the expansion coefficients with those of similar expres-
sions for r (( R. But the expansion in the exterior cannot
be extended inward, so that the expansion coefFicients do
not have their usual physical meaning. In particular the
"field quadrupole" is not the quadrupole moment of the
source, and does not govern the radiation produced by
the source.
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