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Quantum emission from two-dimensional black holes
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%e investigate Hawking radiation from two-dimensional dilatonic black holes using standard quanti-

zation techniques. In the background of a collapsing black-hole solution the Bogoliubov coeKcients can
be exactly determined. In the regime after the black hole has settled down to an "equilibrium" state but
before the back reaction becomes important these give the known result of a thermal distribution of
Hawking radiation at a temperature k/2m. The density matrix is computed in this regime and shown to
be purely thermal. Similar techniques can be used to derive the stress tensor. The resulting expression

agrees with the derivation based on the conformal anomaly and can be used to incorporate the back re-

action. Corrections to the thermal density matrix are also examined, and it is argued that to leading or-
der in perturbation theory the effect of the back reaction is to modify the Bogoliubov transformation, but
not in a way that restores information lost to the black hole.

PACS number(s): 04.60.+n, 11.17.+y, 97.60.Lf

I. INTRODUCTION

The discovery of Hawking radiation [1] has raised a
long-standing puzzle: What happens to black holes once
they are done evaporating? There are at least two
reasons why this problem is interesting. The first is gen-
eral: The final stages of black-hole evaporation typically
involve physics near the Planck scale, where quantum
gravity is expected to become important. Black holes
provide a theoretical laboratory where one can attempt
to develop one's understanding of this physics. The
second reason stems from the problem of black-hole in-

formation. ' One may form a black hole from a pure
quantum state; however, in Hawking's calculation the
outgoing radiation is not in a pure state —it appears that
information is lost to the black hole. Attempts to explain
how the information is restored once the black hole
disappears run into serious difficulties. It has even been
conjectured that physics is fundamentally nonunitary [5].
Perhaps this problem is giving us a deep clue about the
nature of quantum gravity.

Recently, black holes in two-dimensional gravity have
received considerable attention [6—10] following Witten's
identification of a black hole in string theory. In particu-
lar, in [ll], Callan et a/. investigated a toy model for
black-hole formation and evaporation. This model is
two-dimensional dilaton gravity coupled to free scalar
fields and is both renormalizable and classically soluble.
This toy model has the virtue of greatly simplifying the
physics without discarding many of the essential issues.
In particular, [11] found "collapsing" black-hole solu-
tions, and a simple technique for treating Hawking radia-
tion and its back reaction on the geometry was investigat-
ed. It was argued that in the limit where the number X
of matter fields is large, the back reaction removes the
classical black-hole singularity; however, in [13,14], a
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tFor other discussions of this, see [2—4].
~For more on this issue, see [12].

new type of singularity was found. Subsequent study

[15,16] has uncovered singular static solutions of the
back-reaction-corrected equations and has clarified the
nature of the final configuration of the evaporation pro-
cess.

This model has numerous issues that have not been
completely addressed. One of these is the physical inter-
pretation of the singularities of [13,14]. It appears that a
proper quantum treatment of the theory will be required
to say anything further about these. In particular, one
would like to understand the physics outside the large-X
approximation. A second is the information problem. It
may be difficult to resolve this without contending with
the singularities. However, it is conceivable that aspects
of proposed resolutions to the problem can be investigat-
ed. For example, Refs. [17,3] have advocated the possi-
bility that, at least in theories without global symmetries,
proper treatment of the back reaction might reveal that
information is extracted from infalling matter and ap-
pears in the outgoing corrected Hawking radiation. This
is partly motivated by the desire to believe that the entro-

py versus area relationship (which in the two-dimensional
context is modified to S ccM) is a true indicator of the
amount of information stored by a black hole of mass M.
Such questions are more tractable in this toy model.

The present paper takes steps toward answering some
of these questions. In particular, it is clear that a full ac-
counting of Hawking radiation and its back reaction re-
quires more than just knowledge of the expectation value
of the stress tensor, as in [11]. A finer description re-
quires computation of states and correlation functions,
etc. , by means such as the Bogoliubov transformation.
There are other motivations for investigating this model
under the precepts of quantum field theory in curved
space-time. One is to elucidate the connection between
the conventional treatment of Hawking radiation and
that in [11]. Another is that, as we will see, the present
model is a very simplified arena in which to apply the
corresponding machinery; this has pedagogical value.

In outline, this paper first reviews the collapsing
black-hole solutions of [11]. We then recall the general
procedure of computing Hawking radiation using the Bo-
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goliubov coefficients and derive these coefficients for the
two-dimensional black hole in Sec. III. Next is a discus-
sion of the late-time thermal behavior of Hawking radia-
tion, including derivation of the late-time density matrix.
This is followed by a direct computation of the stress ten-
sor of the Hawking radiation; we then discuss the issue of
coupling it to gravity to incorporate the back reaction,
corroborating the approach of [11]. Finally, we investi-
gate the corrections to the thermal density matrix. These
arise from including both the early-time transitory behav-
ior and back reaction. It is argued that neither of these is
likely to restore information lost to the black hole.

II. REVIEW

2&= —g2x+x —— dx + dx+ TI++

For x+ )x&+ the last term reduces to

Mfdx fdx T/++ = A, x++

(2.7)

(2.8)

where M and 6 are constants. After x&+, the metric
therefore takes the form

More generally, we may take an arbitrary pulse of left-
moving matter which turns on and then off again between
times x;+ and xI+. On shell one may always choose coor-
dinates so that p=P, and the general solution of [11]then
becomes

We first review some salient aspects of two-dimensional
dilaton gravity. This theory is described by the action

dX dx

M/)i, —
A, x+(x +b )

(2.9)

S= f d x&—g e ~[R+4(VQ) +4k, ]2'
—

—,
' g (Vf;) (2.1)

This is a black hole of mass M with horizon at x
the solution (2.6) corresponds to b =M/kixo+. The Pen-
rose diagram for the general solution is shown in Fig. 1.

The metric (2.7) is asymptotically flat in the black-hole
region x+ )x+. This is explicitly seen in the coordinates
o.—,where

where P is the dilaton field, A, is a cosmological constant,
and f; are E rnatter fields. It is most easily investigated
in conformal coordinates x*=x +x', where the metric
takes the form

Ao' ~+ e = —A(x +b), (2.10)

and —00 (cr—+ & ~. In these coordinates the metric is

ds = —e ~dx+dx

The classical solutions for the matter fields are then

f;=f;+(x+)+f, (x ) .

(2.2)

(2.3)

ds

do' do'
if o &o;,

1+hZ,e

dCT dCT
1f o' &o)

1+(Mu)e"

(2.11)

For given functions f;+,f;, one may explicitly find the
corresponding solution for P and p as in [11]. Particular
cases are the vacuum solutions [6,7]

dx+dx
e 2P M kPx+x, (24)

M/A, —
A, x+x

which correspond to black holes of mass M. The M =0
solution is the linear dilaton vacuum, which is the classi-
cal ground state.

Sending a pulse off matter into the linear dilaton vac-
uum produces a black hole. In particular, one may take a
limit of smooth configurations which corresponds to a
sharp left-moving pulse:

X~+I
where A,x, &=e ' . This clearly asymptotes to the Hat

metric at both Sz (sr+ —+00) and Sit (o —+ —00). Like-
wise, it is useful to introduce Hat coordinates y* for the
dilaton vacuum region; these are defined by

(2.12)

In this region the metric is then ds = —dy+dy and the
horizon is the line y =0.

Singularity

TI++ =—(B+f) = 5(x+ —xo ) .
1 2 M

A,xp

This gives the solution

(2.5)

dx Gfx

—A, x+x —(M/Wo+ )(x+ —xo+ )e(x+ —xo+ )
(2.6)

ds 2—

M (x+ —x,+ )e(x+ —x,+ ) .
A,xp

e 2&= —X2X+x

Before the pulse, this is the linear dilaton vacuum; after,
it is a black hole of mass M. It has a singularity along the
line where the denominator vanishes and a horizon at= —M/k xp+.

—co 0

FIG. 1. Shown is the Penrose diagram for a black hole
formed from an arbitrary distribution of collapsing matter con-
centrated between times x;+ and x&+.
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III. BOGOLIUBOV TRANSFORMATION

In this section and the following, we will study the
Hawking radiation of one of the fields f, in the back-
ground solutions (2.6) and (2.7). Although one would, of
course, like to study Hawking radiation including effects
of the back reaction, that is a more complicated problem
whose details are postponed for future work. We will
focus on the two asymptotically flat regions Jl and J~,
which we also call the "in" and "out" regions. In these
two regions we imagine observers stationed, carrying out
measureinents on the quantum field f, and we calculate
the relation between their observations. The result is the
Boboliubov transformation, which encodes the detailed
structure of the Hawking radiation.

Let us first recall the general framework. For the pur-
poses of this paper, we will use the decomposition (2.3)
and ignore the left-moving modes since the right movers
transmit the Hawking radiation. The (right-moving part
of the) field f can be expanded in terms of mode functions
and annihilation/creation operators either appropriate to
the in region near J"I or to the out region near Sz. Con-
venient bases of modes are

(u, u„.) =(v„,v ~ ) =2m5(co —co'),

(u, u' =(v„,v* )=0,
( u *,u „*.) = ( v „*,v *.) = —2rr5(ro —ro'),

(3.4)

and we assume a similar normalization for the v . Fur-
thermore, the inner products between the modes v„and
v all vanish since these have support in different regions.
Equations (3.2) and (3.4), together with the canonical
commutation relation

[f (x), t)ef (x')] 0 „,0= —,'[f(x),Bof(x')]„o„,o

=rri5(x' —x'), (3.5)

imply that the operators a„satisfy the usual commuta-
tors

[a,a ~ ]=5(co—ro'), [a,a„]=0,[a t, at, ]=0,
(3.6)

and similarly for b and b . Finally, the in and out va-

cua are defined by

1
u = e '"i' (in),

+2co

v = e ' e(y ) (out);1

2ro

(3.1)

a„lo),„=o,b. lo&...=0, (3.7)

t".lo),„,=o; (3.8)

for all co &0. One can also define an internal "vacuum"
by

here co & 0 and e is the usual step function. Note that the
v„have support only outside the horizon —the out basis
must therefore be complemented by a set of modes v for
the region internal to the black hole. There is no canoni-
cal definition of particles inside the black hole since this
region is not asymptotically Hat. Therefore the choice of
such a basis is rather arbitrary. In practice, states inside
the black hole are not observed and instead are traced
over, and so this arbitrariness does not affect physical re-
sults.

The mode expansions are

f = f dro[a u +a u'] (in)
0

= f dro[b„v„+bv*+b v +b v*]
0

(out+internal) . (3.2)

v„=f dco'[a u +P u„*] .
0

(3.9)

These coefficients are called Bogoliubov coefficients, and
they may be calculated using (3.4) and (3.9):

a „= (v, u ), p = — (v, u*).1 1
(3.10)

this definition is, however, rather arbitrary.
Although the in and out regions are fiat, their natural

timelike coordinates are related in such a way that a field
mode which has positive frequency according to ob-
servers in one region inevitably becomes a mixture of pos-
itive and negative frequencies according to observers in
the other regions. This mixing is interpreted as particle
creation. To study it we define coefficients a ~ and p„~
by

The operators a are the creation operators appropriate
to the in region, and b„and b are similarly used for the
out region and for particles falling into the singularity.
Annihilation and creation operators multiply positive-
and negative-frequency modes, respectively.

The equations of motion imply the existence of the
conserved Klein-Gordon inner product:

(f,g)= i f dX"f—Vpg*, (3.3)

for an arbitrary Cauchy surface X. The modes (3.1) have
been normalized so that

The Bogoliubov coefficients a„„andp for the internal
modes are defined similarly.

Equivalence of the expansions (3.2) gives the relation
between the field operators in the in and out regions:

a„=f dro'[b a„.+b„P*+b .a „+b„P],
0

b = f "dro'[a„*„a„—P* a ~ ],
0

b =f de'[a„*„.a ~
—P,a, ] .

0

If P „%0,then the in vacuum is not considered vacuous

by the out observer; particle creation has occurred.
Indeed, it follows from (3.11) that

3For a more complete review, see [18]. ;„&olx:"'lo&;„=f d~'lp„„l', (3.12)
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where N'"' =b„b„is the number operator for out modes
of frequency N. Using matrix notation and introducing
the "square" matrices

in the combined out/internal Fock space.
We now calculate the Bogoliubov coefficients for this

model. They are found using the relation between the
coordinates

na '
p

the in vacuum can be written as

(3.13} o. = ——In[A, b, (e ~ —1)],1

so that

(3.15)

~0);„~exp' ,'(—b —b )B'&

(3.14)

u„= exp
'

in[i(, b, (e —1)] e(y ) . (3 16)
V 2Q)

The inner products (3.10) can then be computed at the
null surface Sl ..

a.„=——' f' dy-u. a u„',

1/2

277 N f dy exp In[A, E(e & —1)]+&''y
00 A,

P.„=' . f—' dy-u. a u„,
(3.17)

' 1/2
N1

2' N f dy exp In[lb (e "i' —1)] i ~'y—
00

With the substitution x =e, u„~becomes
1/2

(gg ycu/A, d ( 1 )ico/h. —1+i(cu' —cu)/1 .
21TA, N 0

(3.18)

1 Na„.=
27TA, N l E'

lN+ lN + 1+ lN

' 1/2
1 N

27TA, N —l E

the integral is a p function. p„~is computed similarly, and altogether one has
' 1/2

(i(,b, )' / B

(3.19)

u (y )=u" ( —y ) . (3.21)

The pole prescriptions are necessary to completely define
these quantities; they are chosen so that the expansion
(3.9) and the inverse expansion of u in terms of u actu-
ally hold. [Note that the derivation of (3.10) was actually
somewhat formal. ] With the pole prescriptions as given
above, one may verify that this Bogoliubov transforma-
tion satisfies the necessary "completeness" identifies; for
example,

f d~'[a „a„'-. P„.P'- ]=5(c—o co") . (3.20)—
0

The Bogoliubov coefficients given in (3.19) are central
to the study of the Hawking radiation. Note that they
depend only on 6, not on M or on other details of the col-
lapsing black hole.

It will be convenient to have a specific basis for the in-
terior region as well; a useful choice is

Q~~ =CX~~i

Q)CO COCO

(3.22)

Finally, we note that in the presence of the dilaton
there is an ambiguity in the metric used to compute the
Hawking radiation. In the present case, one could have,
for example, taken the metric to be g =e ~g. From (2.6}
one sees that this is the flat metric. Therefore, if this is
used as the background reference metric, the Bogoliubov
transformation is trivial and there is no Hawking radia-
tion. In particular, if the Faddeev-Popov ghosts from
gauge fixing of general coordinate invariance are defined
with respect to the metric g, then one concludes that the
black hole is unstable with respect to thermal absorption

The Bogoliubov coefficients of these modes are found to
be
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of ghosts. As has been suggested in [10,19], this problem
is solved if the ghosts are instead coupled to g.

IV. HAWKING RADIATION AT LATE TIMES

0f dy exp
'

ln( A. b,y —)
00

a
2K co

As a first application of the Bogoliubov transformation
(3.19), we investigate the late-time Hawking radiation
along the lines of [1) and verify that it is indeed thermal.

We begin by computing the expected occupation num-
bers of the out modes, using (3.12). Following [1], the
late-time Bogoliubov transformation is found by replac-
ing the integrand in (3.17) by its approximate value near
the horizon, y =0. This gives

1/2
1 co

(4.2) and (3.12) gives

,„&ol&;,"'I»;„=f d~'Ip..I'

—2n.ro/P.

2 7TcO / A.
1 —e

(4.4)

Thus the modes are thermally populated at a temperature
TH =A, /2m.

We now proceed further to show that the late-time
density matrix is purely thermal (if one neglects the back
reaction); i.e., it has no hidden correlations that would
correspond to information escape from the black hole.
For performing such physical calculations in the out re-

gion, it is useful to have a set of normalizable modes that
are also localized. Following Hawking [1], we introduce
the complete orthonormal set of wave-packet modes:

+i co'y ' . (4.1)

Note that p diff'ers from this only by the sign of co' in
the integrand. Deforming the contour in (4.1) to the pos-
itive y axis and changing variables y ~—y flips this
sign and gives the crucial relation

e natl /imp
COCO NN

Finally, setting co =co" in relation (3.20) implies

f,"d~'[I~..I' Ip..—I']=i .

(4.2)

(4.3)

Here we have replaced the infinite quantity 5(0) by a
large time cutoff t; this identification arises from consid-
ering the Fourier transform of 5. Combining this with

I

2~i con /e (4.5)Vjn
—E Q7 7

jE

with integers j,n and j ~0. These wave packets have fre-

quency co=co, with co =je, and they are peaked about
o =2mn/e with width e '; an example is pictured in

Fig. 2. The Bogoliubov coefficients in this basis are easily
found to be

—1/2 j
d 27Ti con /e

(j+1)e (4.6)
1/2 d m e 2TTi con /

I jnco' I tOQ7

jE

For the wave-packet modes (4.5), "late time" ineans

large 2~n /e. We mill also take e small so that the modes
are narrowly peaked in frequency; this, of course,
broadens them in position. Combining expressions (3.17)
and (4.6) gives

' 1/2
(j+1)eaj„—dm

2~&a CO

0
e ' "~'f dy exp in[A, b(e ~ —1)]+ice'y

00
(4.7)

For large values of 2mn /e, the double integral receives contributions mainly from the vicinity of the horizon, y =0, so
that the integrand may be approximated as in (4.1). Deforming the contour and changing variables now gives the result

1/2 T

(j +1]
+jnco' ~ f27T E j ~

lQ)
e ' " 'e ~

dy exp ln( —X by ) —ice'y
C0

7TCO . /jL.
e j (j+1)&

2n.&e

1/2
0

e "' " 'f dy exp ~

'
ln( —A. by ) ice'y—

00
(4.8)

where the assumption of small e was used in the second
line. In the latter expression we recognize the approxi-
mation of p„,and so

to form a new orthonormal mode basis, which is simply
related to the old one and which is purely positive fre-

quency in the in region, as follows (cf. [20,21]):

7TCO - /A.J
pjnco +jnco (4.9)

We can similarly approximate the modes v, which were
defined in the previous section. Their Bogoliubov
coefficients are also found to satisfy

u&„=(1—y, )
'

[u,„+yu*„],
7TCO . /A,

where y =e ' . One can easily see that

(4. 1 1)

'iTCt7 - /A, ~Jjnil jnco ' (4.10) 1 2
Pj n r j

=
Pj n co

=0 &
(4. 12)

These two relations are crucial because they allow one verifying positivity in the in region.



qUANTUM EMISSION FROM TWO-DIMENSIONAL BLAC& IIOLES 2491

0.2
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FIG. 2. Plotted is the wave-packet mode
vj.„(o.) with @=1,n =0, and j=10.
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Since these modes are positive frequency at Sl, the in-

coming state may be completely characterized using their
associated annihilation operators by

(4.15) implies

c ( [ n „j) = exp [
—

m a)1 /A, j c ( [ n „—5 '5„„.j ), (4.18)

o =a,'„lo &,„=a,'„Io &,„. (4 13) which gives altogether

However, from the transformation between UJ„,Uj„and
u'„,U „,we can derive c([n,„j)=c([oj ) exp, —

& g n „co
nj

(4.19)

so that lo&;„is characterized in terms of the out opera-
tors by

(b,„—),b,'„)Io&,„=o,
(bj„—y bt )lo&;„=o.

(4.15)

A particularly useful combination of Eqs. (4.13) and
(4.14) is

[This can equivalently be found from (3.14).] Here
c([0j ) is an overall normalization, which is infinite un-
less we restrict to finite time as in (4.3). In actuality, the
black hole cannot evaporate for infinite time; the above
result is invalid once the back reaction becomes relevant.

To predict what is seen by observers at Sit, we must
trace over the internal (hatted) states to produce a density
matrix dependent only on the external particle states. In
other words,

p
[ ~ ( )

P & [ n „jI & [ n „jI
0 &;„,„&0 I [ n „j& I [ n '„j

lo&;.= g c([n,.j)II&,.j &IIn,„j&,
I n.

„
I

(4.17)

=[bj„bj„b„b)„]lo&;„—
=[+,„—P,„]lo&,„, (4.16)

where N „,A ~„arethe pa. rticle number operators corre-
sponding to Uj„,v „,respectively. Although the notion of
"particle" is somewhat ambiguous inside the black hole,
we see that with the present definition hatted and unhat-
ted particles occur in pairs in the outgoing state. This
corresponds to the common statement that Hawking ra-
diation proceeds by creation of particle pairs, with one
particle inside the horizon and one outside.

Now we will use Eq. (4.15) to express IO&;„in terms of
out particle states. Using N „=8'J„,we can already write
[22]

=Ic([n „j)l5

=Ic({oj)l5, exp. —2r g n&„co&
jn

(4.20)

0& —y
A,

(4.21)

This is a completely thermal density matrix. Note that it
is totally independent of the details of the collapsing
matter.

We emphasize that the formula (4.20) for the density
matrix is an approximate expression valid only at late
times and then only to the extent that the back reaction
can be neglected. The former condition is

where the n-„are sets of occupation numbers for the
modes jn and the coefficients c([n „j)are to be deter-
mined. Focusing on a single mode j'n', we see that Eq.

or, equivalently, from (3.1S),

(4.22)
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To understand the latter condition, one must understand
what effect the outgoing Hawking radiation has on the
geometry; this is the subject of the next section.

V. STRESS TENSOR FOR HAWKING RADIATION

A long-standing issue in black-hole physics is that of
incorporating the back reaction of Hawking radiation on
the black-hole geometry. In [11] this problem was inves-
tigated for the semiclassical limit of dilaton gravity. In
this case one can calculate the quantum stress tensor
& T/, , & in the background of the classical solution by
starting with the known conformal anomaly and integrat-
ing the conservation equation [23]. The stress tensor is
then determined up to boundary conditions reflecting the
choice of incoming quantum state. The expectation value
of this stress tensor is appended to Einstein's equations to
incorporate the effect of the back reaction.

This section will investigate some details of this pro-
cedure and confirm its validity. In particular, we will
show asymptotic equivalence of the stress tensor calculat-
ed from the conformal approach with the stress tensor of
Hawking radiation described above. We will also com-
ment on the issue of why coupling this stress tensor to
gravity gives an accurate representation of the effects of
the back reaction.

The preceding sections have shown that the quantum
state representing vacuum in the in region, which we

refer to as 0&;„,is not the same as the state ~0&,„„which
represents vacuum in the out region. In the out region
the state ~0&;„ includes the outgoing particles of the
Hawking radiation. We have shown by one method that

this radiation has a thermal spectrum, and we will now
check this, as well as the treatment of [11],by directly
computing;„&0~ T/„~0&;„asymptotically in the out re-

gion.
The latter expression is given by

(5.2)

Since T~ is a product of operators at the same point, it
must be carefully defined. It is required that

,„,&0~T/ ~0&,„,=0 (at 2„+}so that one should expand
and normal order T with respect to b„,b„and then
evaluate its expectation value in ~0&,„.This procedure
can be streamlined by using point splitting.

We start with the coordinate transformation inverse to
(3.15), namely,

y = ——ln e +11 1 (5.3)

The f field is given by

(5.1)

To begin with, note that & T++ &
=

& T+ & =0, the first
because the Bogoliubov transformation is trivial for left-
moving modes (since cr+=y ) and the second because
the trace anomaly is zero in the asymptotic region from
vanishing of the curvature. Our focus is therefore on

f = [a e '" +ate'~ ]
+2co

a exp ln e +1dN ico 1

2co
+H. c. (5.4)

Now, in T, we shift the coordinate of one of the d f factors from o. to o +5, where 5 is a small number, and

compute the point-split value

exp[(ice/A) in[(1/kh)e +1]] exp[(iso/A) in[(1/Ab )e ' + '+1] j

0 1+A,he A(0 +5)

[ in[(1/A, b, )e +1]—in[(1/Xb, )e ' + '+1]]
4 (1+A,Ae )(1+A,b, e ' + ')

(5.5)

where the integration was performed with a large-cu con-
vergence factor. From this we will subtract the out vacu-
um value (1+A,b,e )

(5.7)

„„,&Ol» io&.„,=—
45

(5.6}
which is identical to that of [11] in the out region. Note
that here the thermal value is achieved at

before taking the limit 6~0. This subtraction produces
an expression normal ordered with respect to the out vac-
UU111.

The remainder of the computation consists of expand-
ing (5.5) in powers of 6, with the renormalized result

e (5.8)

which agrees with (4.22).
Next, we comment on the issue of coupling the stress

tensor & T„„&to gravity to represent the back reaction.
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Within the relativity hterature there has been much de-
bate on the issues of whether ( T„„)is the appropriate
quantity to place on the right-hand side of Einstein's
equations and how to compute the correct value for
(T„„).The second of these issues is generally resolved

by appealing to a result of Wald: all computation tech-

niques which satisfy four physically reasonable conditions
known as Wald conditions will produce the same answer,
up to well-defined ambiguities. The only such ambiguity
in two dimensions is the cosmological constant.

Within the present context both issues are addressed
by considering quantization via the functional integral:

W

Z =f2)g $$ e f2) f; exp — fde & g—g (Vf; )2
4m

(5.9)

where SG is the purely gravitational/dilatonic part of the action (2.1) and where the g dependence of the f; measure is
explicitly indicated. The functional integral over f; is one that has been studied extensively in the string literature and
elsewhere. If regulated in a generally covariant manner, it yields

N

e "=f2) f;exp — fdx& —g g(Vf)
4m

= exp — fV —g (x)d x fV —g (x')d x' R (x)G(x x')g (x')
96m.

(5.10)

where G(x,x') is the Green's function for the
d'Alembertian,

O„G(x,x') = 52(x —x')
—g(x}

(5.1 1)

Equation (5.10) is unique up to local counterterms and up
to the boundary conditions needed to define the Green's
function. If one assumes that P does not couple to f;,
then the only counterterm is the cosmological constant
which may be fine-tuned to zero. The boundary condi-
tions are fixed as in [11]by the demand that ( Tf„)have
the correct form in the in region.

The resulting classical equations

2~ &~G

fig Pv P" (5.12)

N
(5.13)

In this region the evaluation becomes singular and the

accurately describe evolution in regions where the cou-
pling e ~ is small. s As was argued in [11],the evaporation
of the black hole can be arranged to take place purely
within the weak-coupling region by taking the number N
of matter fields to be large. A discussion of the resulting
solutions of these equations was given in [3,13—16],
where it was argued that the black hole settles down to a
final state of the linear dilaton vacuum terminated in the
region where

classical equations are invalid. Alternatively, one could
go beyond to investigate the quantum dynamics of the
theory; this is described by including the term SpL in the
remaining functional integral over g and P. The latter
term incorporates the full quantum effect of the back re-
action from Hawking emission of matter.

VI. BEYOND THE THERMAL LIMIT

The density matrix (4.20) describes a mixed state of
thermal radiation. In the four-dimensional context, this
has been taken as strong evidence that an initially pure
state can evolve into a mixed state in the course of black-
hole formation and evaporation. One should be cautious
in drawing this conclusion, however, since, as we have
stated, (4.20) is only approximately correct; it is (barely)
conceivable that once corrections are taken into account
the missing information will be restored.

To investigate the importance of modifications to
(4.20), let us first determine its domain of validity. First,
as was indicated at the end of Sec. IV, (4.20) is only valid
at late times as given by (4.21) or (4.22). Next, the deriva-
tion neglected the effect of the back reaction. A very
crude estimate of when this becomes important is found
by asking when the integrated energy in the Hawking ra-
diation equals the initial mass of the black hole. This can
be determined by integrating the asymptotic value of the
stress tensor (5.7) along Sl as in [11]. The amount of
mass radiated up to the time given by

e -Ah (6.1}

~See, e.g., [18],pp. 214-224.
5Actually, this is not precisely true, as has been argued in

[3,13—16]; the weak-coupling expansion breaks down because of
the vanishing of an eigenvalue of the kinetic term at the singu-
larities described in these papers.

is easily estimated to be

Note, however, that one should not make the assumption of
small mass.
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1VA,

48
(6.2)

Equation (4.20) will be valid over a nonvanishing domain
only if by the time the thermal approximation (4.22)
holds the radiated mass is negligible compared with the
initial mass:

M»
48

(6.3)

Note that from (4.4) the typical energy of an emitted par-
ticle is A. ; thus, the condition (6.3) is the statement that
the black hole be capable of emitting a large number of
particles of each type. Once the radiation becomes
thermal, T =M, /48, and so the black hole evapo-
rates over a time of order

48M
XA.

(6.4)

The density matrix (4.20) is therefore approximately
correct in the range

1——1n(k, b, )+»o» ——1n(A.b, ) .
48M 1

NA,
(6.5)

To investigate the question of whether corrections to
(4.20) solve the information problem, the early-time tran-
sitory behavior and the back reaction must be incorporat-
ed. There are two possible approaches to determining to
what extent the outgoing state is still mixed. One is to
calculate the density matrix directly as in Sec. IV, now
including these effects. However, finding the density ma-
trix, even taking into account the transitory behavior, is
rather complicated, and an alternative approach is to in-
vestigate the behavior of correlation functions of the
form

( b, „

(6.6)

with an arbitrary number of creation and annihilation
operators. All details of the outgoing state are encoded
in such correlators.

Using the exact form of the Bogoliubov transforma-
tion, these correlation functions are in fact exactly calcul-
able in the "early-time" limit where one includes the
transitory behavior, but neglects the back reaction.
Indeed, given the Bogoliubov coefficients (4.6) and the re-
lations

b „=fdro[a*„a —P „„a],
b „=f dco[a „„a„—P „„a],

one may calculate the expectation value of any operator
built from the b-„and b~„. For example, it is easy to see
that the two-point correlator is given by

(b,~ b,'„.);„=f den p,„Q,*'„. (6.8)
0

which is in principle exactly calculable using (4.6) and
(3.19).

Although potentially instructive, such calculations are
not expected to address directly the information problem.
The reason for this is that the information, if it escapes

the black hole at all, is expected to emerge in the eva-
poration of the black hole, not in the initial transitory be-
havior. Note also that (3.19) implies that the correlators
depend on the infalling matter distribution only through
the single quantity 6; the transitory behavior is not even
dependent on the details of the collapse.

To actually answer the question of whether or not
enough information escapes in black-hole evaporation to
solve the information problem, one must include the
effects of the back reaction. A complete treatment of this
seems to require describing the initial configuration as a
quantum state and studying the quantum evolution of the
system. Although we will not work this out in detail in

the present paper, one can see the resulting modifications
on a qualitative level using the semiclassical approxima-
tion.

Consider the situation where a black hole is formed
from a pure quantum state with left-moving energy
momentum concentrated between times x;+ and xf+, as in

Sec. II. In the weak-coupling region, we may work to
leading order in e~, and this state again produces a
geometry such as that of Fig. 1 if the back reaction is
neglected. The geometry that arises when the back reac-
tion is included was discussed in [3,13—16] and is shown
in Figs. 3 and 4. The infalling matter gives rise to a new
"quantum singularity" that is hidden behind an apparent
horizon. As the black hole loses mass, both the singulari-

ty and apparent horizon asymptote to the global horizon.
The final sate is the linear dilaton vacuum to the right of
the region where

2P 12
N

(6.9)

7Investigation of the information problem in the semiclassical

limit has also been advocated by Russo, Susskind, and Thorla-
cious [13,3,24].

beyond this, the semiclassical equations are not be trust-
ed.

The outgoing state will again be described in the natu-
ral asymptotically flat coordinates y at 2~. Now we

are not able to write down explicitly the coordinate trans-
formation from o. to y because of insufficient

knowledge of the back-reaction-corrected geometry;
therefore, the precise form of the Bogoliubov transforma-
tion has not been determined. However, for large M, we

know that it agrees with (4.6) and (3.19) throughout the

range (6.5). As the back reaction becomes important, the
Hawking radiation turns off; correspondingly, the Bogo-
liubov coefficients P ~ and P,„should die off. To lead-

ing order in e~, the only effect of the left-moving matter
is to produce this nontrivial Bogoliubov transformation
for the right movers. The in vacuum can be rewritten in
the out/internal Fock space as in (3.14); equivalently, we

may write

(6.10)
I
n.„j,a

where now we have adopted an arbitrary basis ~a) for
the states to the left of the global horizon that fall into
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arent horizon

x+
1

FIG. 3. Kruskal geometry for the back-reaction-corrected
gravitational collapse of a matter distribution. An apparent
horizon forms; behind it is the "quantum singularity" where the
semiclassical equations break down. Both of these asymptote to
a global horizon.

the singularity. The asymptotic density matrix is derived
from this by tracing over these internal states. This densi-

ty matrix would be pure if one could rewrite it in the
form

(6.11)

for some states
~
4 );„,and

~
4 ),„,in the internal and out

Hilbert spaces. However, leading-order agreement with
(4.17) and the general fact that the Bogoliubov transfor-
mation sets up correlations between internal and external
states makes it appear very unlikely that this could be the
case. Together with the fact that modes can fall into the
singularity without escaping, this indicates that informa-
tion can indeed be lost to the quantum singularity and
that the entropy of the outgoing density matrix should
consequently be nonzero.

These statements may, of course, be invalidated once
higher-order quantum corrections are taken into account.
However, these corrections are expected to be unimpor-
tant until the weak-coupling approximation breaks down.
This only happens in the final stages of the black-hole
evaporation. The above arguments therefore strongly
suggest that within the present model information does
not escape until the black hole is very small. Making
these rigorous will therefore rule out one suggested reso-
lution of the black-hole information problem, namely,
that the information escapes over the course of black-
hole evaporation if the effects of the back reaction are in-
cluded. Other possibilities are described in [4].

FIG. 4. Possible Penrose diagram corresponding to the

Kruskal geometry of Fig. 3.

VII. CONCLUSIONS

The two-dimensional process of black-hole formation
and evaporation studied in [11] is a simplified arena for
investigation of physical issues relevant to higher dimen-
sions. We have shown that, in particular, the Bogoliubov
transformation is exactly calculable if the back reaction is
neglected. This, in principle, allows exact determination
of all correlation functions and of the density matrix
describing the outgoing Hawking radiation. After a tran-
sitory period the Hawking radiation has the expected
thermal behavior with temperature A, /2m. . (In contrast
with the four-dimensional case, even the transitory period
is exactly describable. )

For large black holes, M »A, N/48, the thermal densi-

ty matrix is an accurate descriptor of the outgoing state
for the time after the falloff of the transitory behavior,
but before the black hole has lost a substantial fraction of
its mass to Hawking evaporation. As in the four-
dimensional case, this suggests that a pure initial state
evolves into a mixed final state. However, a conclusive
statement to this effect cannot be made while neglecting
the back reaction. We have argued that to leading order
in the weak-coupling expansion the effect of the back re-
action is to modify the Bogoliubov transformation, but
not in such a way as to restore the information lost to the
black hole. However, a definitive proof that information
is lost even in the presence of the back reaction is beyond
the scope of this paper.
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