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Lorentzian wormholes in Einstein-Gauss-Bonnet theory

Biplab Bhawal and Sayan Kar
Department ofPhysics, Indian Institute of Technology, Kanpur 208016, India

(Received 7 February 1992)

Lorentzian wormhole solutions are investigated in the context of the D-dimensional Einstein-Gauss-
Bonnet theory of gravitation. These wormholes are found to have features depending on the dimen-

sionality of the spacetime and the coupling coefficient a of the Gauss-Bonnet combination. In a large
number of cases, the wormhole throat radius is constrained to have a value greater than a certain num-

ber depending on D and a. The possibility of obtaining solutions with normal and exotic matter limited
to the vicinity of the throat is explored. Similar to the situation in general relativity, the violation of the
weak energy condition persists for a & 0. For a & 0, this condition may or may not be violated depending
on the nature of an inequality involving

~
a ~, D, the radius r, and the wormhole shape function b (r).

PACS number(s): 04.20.Jb, 04.50.+h

I. INTRODUCTION

In the last few years, wormholes have rapidly grown
into an active area of research. Initially, the stress was
primarily on Euclidean wormholes which modeled topol-
ogy changing processes in quantum gravity by means of
quantum tunneling [1]. However, with the pioneering
work of Morris and Thorne [2] and Morris, Thorne, and
Yurtsever [3], it became clear that there exist certain
solutions of the Einstein field equations of general rela-
tivity which possess wormholelike features. Unfortunate-
ly, it was found that the matter that threaded the
wormhole violated the weak energy condition (WEC)
near the throat. Morris and Thorne [2) argued that such
a violation of the WEC was permissible in the context of
quantum field theory in curved spacetime and its theoret-
ical procedure for discarding infinities of the zero-point
energy from the stress tensor. Based on their suggestion
[2], Hochberg and Kephart [4] have recently obtained
Lorentzian wormholes using matter constructed out of
squeezed vacuum states of light having stress tensors
which, when coupled to gravity, can violate the WEC.
On the other hand, Visser [5], while discussing the con-
struction of such Lorentzian wormholes using
"Schwarzschild surgery" and the junction-condition for-
malism, argued that the WEC cannot be accepted as a
worthwhile principle because experiments have ruled out
its validity.

There also have been quite a few papers discussing
Lorentzian wormholes in alternative theories of gravity.
Hochberg [6] has discussed such solutions in the context
of %+% theories in four dimensions. Moffat [7] has re-
cently shown that the violation of the WEC persists in his
nonsymmetric theory of gravitation.

In this paper we discuss Lorentzian wormholes in the
Einstein-Gauss-Bonnet (EGB) theory of gravity. The ac-
tion for this theory consists of the usual Einstein-Hilbert
term plus the Gauss-Bonnet (GB) combination. In four
dimensions the EGB theory reduces to general relativity.
This is due to the fact that the GB combination reduces
to a pure divergence in four dimensions by virtue of the
Bach identity. Spherically symmetric black-hole and

II. THE FIELD EQUATIONS

The action integral for the EGB is given as

I= J d x& g[tr%+a(A„„—~""I'

4'„+4'+'fl )]+I „—„, ,

where D is the dimensionality of spacetime and ~&0.
Henceforth, we choose to work in units where c =~=1.
The field equations that follow from such an action are
given as

0= [%„——,'g„,A]

~pg„„(X.~„n»' 4~.@ t'+W')— —

—2Xa„,, +4m„~:+W.@„t,'

2X„.~@;t'&] T„„—. — (2)

cosmological solutions of the field equations of the EGB
theory have been discussed in detail by various authors
[8,9]. Higher-dimensional Euclidean wormholes in this
theory have been studied by Gonsalez-Diaz [10], and
Jianjun and Sicong [11]. Our focus here is on Lorentzian
wormholes. We shall use dimensionally extended ver-
sions of the metric ansatz and the stress-energy tensor
used by Morris and Thorne [2]. The presence of extra di-
mensions as well as the GB combination leads to the ex-
istence of a wide class of solutions. The WEC is violated
here also but for the case in which the coupling
coefficient for the GB combination is negative and
satisfies a certain inequality involving the wormhole
shape function. In the end we shall suggest a construc-
tion of a solution with matter satisfying the WEC every-
where.

The paper is organized as follows. In Sec. II we discuss
the field equations of the EGB theory. Section III deals
with the various kinds of solutions together with the con-
struction mentioned at the end of the previous para-
graph. Section IV is a summary of the results.

46 2464 1992 The American Physical Society



46 LORENTZIAN %'ORMHOLES IN EINSTEIN-GAUSS-BONNET THEORY 2465

The a which appears above as the coupling coefficient of
the GB combination is positive as long as we consider the
EGB theory as the low-frequency limit of superstring
theory [12,13]. It is important to note that if the EGB
theory is assumed as a theory on its own right (it is in fact
the first-order correction to general relativity suggested
by Lovelock [13,14]) there is no restriction on the sign of
a. %e shall take a with values in various ranges and
derive the consequences. A similar stand regarding a has
been taken by Wiltshire [8] and Wheeler [8] while dis-
cussing the spherically symmetric black hole and cosmo-
logical solutions of the EGB theory.

Our metric ansatz is the same as Morris and Thorne,
except that the two-sphere is replaced by a (D —2)-
sphere. It is given as

P = (b'r b—),1

2I'
(7c)

(7d)

T =p(r), Tii = r(r)—, T~ =p(r)5;

where i,j=2, 3, . . . ,D —1.
The field equations turn out to be the following:

(8)

where the prime denotes differentiation with respect to r.
From these curvature two-forms all components of the
full Riemann-Christoffel curvature tensor and hence the
Ricci tensor and the Ricci scalar can be derived.

The stress-energy tensor in the static observer's frame
is given as

d$2 e 2$(rdt 2+ b(r) dr +r dQD 2.

(3)

p(r) =(D —2) Q+P
2

Here P(r) and b(r) are the redshift function and the
shape function, respectively. dOD 2 is the metric on the
surface of a (D —2)-sphere.

We can write Eq. (3) in the proper orthonortnal basis
as

+ag(D —2)

r(r) =(D —2)

Q+2P
2

Q+N
2

(9)

D —1

ds = —e Se +e'ge'+ g e'se', (4)
+aQ(D —2) Q+2N

2
(10)

where the basis one-forms are

l=2
p(r) = —M —(D —3)N —(D —3)P —,'(D —3)(—D —4)g

e =e~dt,

e'=[1 blr] '~ d—r,
e =r d82,

e'=r sin82. . . Sin8; &d8;,

e '=r sin82. . . sin8D 2d8D

(5)

——'(D —5 )(D —6)ag

4(D —5)aN—P —2(D —5)aPQ
—2(D —5)aNQ —2aMQ,

where a=(D —3)(D —4)a. One can check that for
D =4, Eqs. (9)—(11) reduce to the Einstein field equations
as derived in the paper by Morris and Thorne [2]. For
a=0 and D) 4 the field equations are those for higher-
dimensional general relativity. Also, the vacuum solu-
tions of the field equations (9)—(11) give the standard
Boulware-Deser black-hole spacetime [9].

III. THE SOLUTIONS

For any fixed i, j can have values i (j (D —1).
M, N, P, Q are

M= 1 —— —Q"—P' +b „,2 p'(b'r b)—
I" 2r (r b)—(7a)

In our notation, there is no 8,. The angular coordinates
are denoted by 8;, where i =2, 3, .. . ,D —1.

Using the Cartan equations of structure we can derive
the curvature two-forms:

%|=Me he', A,'=Pe'he',

R; =Ne h e', %'.=Qe' h e J .

A. General constraints on Lorentzian wormholes

l(r)=+
bp [1 bIr]— (12)

Morris and Thorne [2] have discussed in detail the gen-
eral constraints that need to be obeyed if the spacetime is
to have wormhole-like features. We mention them here
for the sake of completeness.

Constraint 1: At the throat of the wormhole,
r =b ( r ) =b p b p being the minimum value of r.

Constraint 2: b (r) Ir ( 1 throughout the spacetime
This is required to ensure the finiteness of the proper ra-
dial distance defined by

(1 b Ir), —
r (7b) The + signs refer to the two asymptotically Bat regions

which are connected by the wormhole. The equality sign
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in b (r)/r & 1 holds only at the throat.
Constraint 3: As 1 ~+~ (or, r ~ ~ ), b (r)/r ~0 .This

is the asymptotic flatness condition on the wormhole
spacetime.

Constraint 4: P(r) is finite throughout the spacetime to
ensure the absence of horizons and singularities.

In this paper we are not interested in discussing the
traversibility constraints mentioned by Morris and
Thorne [2].

B. Exoticity of matter near the throat

In four-dimensional general relativity it was shown in
Ref. [2] that the flaring-out condition near the throat of
the wormhole led to the fact that ~p & pp, where 7 p and pp
are the values of ~ and p near the throat. The WEC
(T„„u"u "&0, where u" is the timelike four-velocity of
the observer), which requires r &p, is therefore violated
near the throat. Such matter was termed as "exotic."
From the field equations for the EGB theory we get the
following expression for (r p):—

r p=(D ——2)[1+2aQ][N P] . — (13)

The g function defined by Morris and Thorne [2] is
(r —p)/~p~. The essential difference between the expres-
sion for r —

p in four-dimensional general relativity (GR)
and the one for the EGB theory is the presence of two ex-
tra factors, (D —2) and [I+2ag]. The former factor
originates from the dimensionality of the spacetime; the
latter one is present only in the EGB theory. The factor
[N P] is e—xactly identical to the expression for r—

p in
GR. We examine ~—

p near the throat. This leads to

2'
r() p()

= (D —2)—1+ [N P]„—
bp

(14)

Now [N P]„=b b
—&0 as shown by Morris and Thorne

0

[2]. Thus, for an EGB-theory wormhole, matter near the
throat is exotic or normal if the quantity (I+2a/bo) is

positive or negative, respectively. The above-stated con-
ditions can be thought of as constraints on bp or a. We
prefer to choose a and let this choice determine bp. If
a & 0, the quantity ( 1+ 2a /ho ) is always positive and the
WEC is violated near the throat. Also, the mere fact that
(I +2a/b() ) )0 does not imply any lower bound on bo.
For a negative, the quantity (1—2~a~ /bo ) can be positive
or negative. If it is positive, then bo & (2~a~ )' . Other-
wise, bo & (2~a~ )' . Thus, matter can be normal near the
throat but, as will be shown below, other constraints for-
bid the existence of a solution with normal matter every-
where.

The next obvious question to ask is whether it is possi-
ble to obtain solutions in the EGB theory for which
matter is exotic or normal everywhere. One can also in-

vestigate the possibility of having solutions with exotic or
normal matter confined to the region in the vicinity of the
throat. In the following subsections these situations are
discussed.

p(r) =(D —2) +(D —2)ab(r)X Y

2r 2r

where

X=(D 4)b—+b'r,
1'=(D 7)b—+2b'r .

(15)

Thus p(r) can be greater than zero if any of the following
hold:

(a) X=O, Y)0,
(b) X&0, Y&0; ~X~ &abY/r',

(c) X)0, Y=O,

(d) X&0, Y&0,

(e) X)0, Y&0; X)ablYl/r

Thus, an acceptable zero-tidal-force wormhole solution
in this case has to obey the condition b'&b/r, the gen-
eral constraints described in Sec. III A and any one of the
above conditions which lead to p)0. For the cases (a)
and (b) a little amount of analysis will show that we re-
quire D & 1 for p & 0, which is impossible. We shall study
the remaining three cases below. Our strategy is to begin
with the validity of the p & 0 condition. Then we examine
the proposed solutions for the other constraints.

Case (c): In this case Y=O leads to the differential
equation

(D —7) bb'=—
2 7

The unique wormhole solution is

b (r) b(D —5)/2 —(D —7)/2
0 (17)

The solution in D =5 is ruled out since it violates the
general constraint (2).

Case (d): The conditions on X and Y give the following
inequality:

(D —7) b

2 7

In five dimensions this becomes b'&b/r, whereas ~&p
led to b &b/r. Thus, in five dimensions this kind of
solution is ruled out. For D ~6 a large variety of solu-
tions are possible. Some examples are the following:

Power-law solution

b( )=b ' 0 D(D —5)
0 2

Logarithmic solution

b(r)= lnb '
bo &e

lnr

C. Solutions with a & 0 and r & p & 0, / =0

From expression (13) we noticed that if a&0, /=0,
then ~&0 everywhere. This implies that b' &b/r every-
where. Equation (9), after some rearrangements, reduces
to
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Hyperbolic solution

bob(r)= tanhr .
tanhb0

(20)

However, this solution is valid only for D & 7. For D =6
it is valid only if sinh2r &4r. This implies limiting the
range of r up to a certain value ro. Consequently, no
solution is possible with exotic matter everywhere.

Case (e): The conditions X & 0 and Y &0 imply

D —7 b'r
(D ——4) .

2 b

An example of a solution obeying all conditions is

b (r)=b mlDr 1 ~/D
0

where m is always positive and takes values such that

D(D —5)
2

&m &D(D —3) .

However, the inequality between X and Y leads to
1/2

bo & 12a
2D —m

(21)

(22)

(23)

which requires m (2D. This new constraint on m along
with Eq. (22) restricts D such that 4 & D & 9. The throat
radius bo is constrained to have a minimum value depen-
dent on a, m, and D. The presence of the GB combina-
tion as well as extra dimensions is visible quite clearly
here.

bo & (21a I

)'" (24)

For general values of r, b(r) should be such that
b(r) &r /(21a1).

Just as in the previous section, the solutions in the
present case should also satisfy the condition b' & b/r
and all the four general constraints. Also, to ensure the
positivity of p, any one of the following five sets of condi-
tions on X and Y should be satisfied:

(a) X=O, Y&0,

(b) X&0, Y&0; IXI &bla11YI/r',

(c) X)0, Y=O,

(d) X)0, Y)0; X)b1a1Y/r

(e) X&0, Y&0.
Case (a): In this case, it can be shown that the unique

wormhole solution has the form

b(r)=bD r (25)

Moreover, as stated above, the throat radius bo has a

D. Solutions with r&p&0, /=0, and a&0, (1+2Qa) &0

Here we look for wormhole solutions with exotic
matter everywhere but with a&0. The condition ~&p
near the throat implies

lower limit given by Eq. (24).
Case (b): The extra inequality relation between X and

Y along with the conditions b'r/b & 1 and b/r & 1 leads
to the fact that the domain of r is not [bo, 00) but [bo, ro)
Thus, there exists in all cases an upper bound for r. This
implies the nonexistence of solutions with exotic matter
everywhere.

Case (c): Except for the existence of a lower bound for
bo [Eq. (24}], this case is similar to case (c}of Sec. III C.
The solution is given by Eq. (17) and is valid for D 6.

Case (d): This case has a similarity with case (d) of Sec.
IIIC. No solution is possible for D =5. All solutions
mentioned there for D & 6 are applicable here. However,
there will always be a lower bound on bo. For every solu-
tion we have to choose the appropriate lower bound by
comparing Eq. (24) and the extra inequality relation be-
tween X and Y. For example, in the power-law solution
[Eq. (18)],we have to choose between Eq. (24) and the in-

equality:
1/2

bo&
D —5 —2m /D
D —3 —m/D

(26)

Since the right-hand side of Eq. (24} is greater than that
of Eq. (26), the former one will give the lower limit for bo

Case (e): The only difference between this case and (e)
of Sec. III is that the lower limit on bo here is determined
by Eq. (24). Due to this, the power-law solution does not
have the extra restriction m &2D. It is therefore valid
for all D & 4.

rb(r))
2 a

(27)

This, together with the fact that b/r & 1, implies that any
solution obtained in this case will be valid only up to a
certain value of r, i.e., r &(21a1)' . A way out of this
may be the following. Consider a solution with normal
matter extended from the throat radius up to a certain ra-
dius r, so that bo & r, & (21a )'~ . At r =r, join the solu-
tion to the vacuum Boulware-Deser spacetime across a
surface layer. However, this requires an extension of the
junction-condition formalism of the GR to EGB theory.

F. Solutions with exotic matter limited to the throat

We can also have solutions with ~)p, a)0 such that
the exotic matter is limited to the throat region. Follow-
ing Ref. [2], we assume r, =ho+dr, where hr is the re-
gion of extension of exotic matter near the throat. To get
a significant Haring-out from the throat, we need to have
dz/dr at r=r, very near to 1, where z(r) describes the
t = constant, 0=m/2 section of the wormhole spacetime
embedded in R . These lead to b' (0 once hr &(bo. It is
not possible to have p) 0, b'(0, and Ar ((bo simultane-
ously in four-dimensional GR. Let us consider the corre-

E. Solutions with p & ~ and p & 0

It is not possible to have wormhole solutions of the
EGB field equations with normal matter everywhere. To
have p & v, we need
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(1+~b'~ ) =1,
bp

(29)

we get

br& bp .2

D —5
(30)

Thus, for D&7, Ar/bp&1 is not a contradiction. For
higher dimensions, we see that hr becomes increasingly
smaller than bp. The fact mentioned above is possible
not only in the EGB theory but also in D-dimensional
GR, where we have

1hr& bp .

IV. CONCLUSION

In conclusion, it is important to figure out the distin-
guishing features of wormholes in the EGB theory as
compared to the ones in GR.

(i) For r & p & 0 and a &0, an EGB wortnhole exists in
five dimensions only in the case in which the throat ra-
dius is constrained to have a minimum value dependent
on a. Also there are solutions which have a minimum
throat radius depending on D only (the logarithmic solu-
tion). Solutions with bc independent of D or a are also
there; bp here can be arbitrary but finite. On the other
hand, for r&p&0 and a&0 with I+2ag&0, the solu-
tions are forced to have a throat radius which is bounded
below by a quantity dependent on D and a. Finally, if
r&p, p&0, a&0, and I+2ag &0, all solutions are

sponding situation in the EGB theory for the case L & 0,
Y&0, and u&0. We require

Ib lr (D——7)
b 2

to have p & 0, with b & 0. Combining this with

defined only up to a certain value of r=r, . Beyond
r =r„normal matter cannot exist and the only way out,
as suggested in this paper, is the type of solutions with
normal matter for bp & r & r, —e and vacuum for
7 &r E'.

(ii) It has been shown in the EGB theory as well as in
D-dimensional GR (D &5) that one can limit exotic
matter with p & 0 to an arbitrarily small region. This was
not possible in four-dimensional GR.

(iii) The status of the WEC in the EGB theory, howev-
er, remains almost the same as it was in GR. For a & 0, it
is violated; for a & 0 it may or may not be violated de-
pending on whether (1+2tTQ) is greater or less than zero.
Even if the WEC is not violated, one cannot construct
EGB wormholes with normal matter everywhere.

It would be interesting to explore the possibility of con-
structing an EGB wormhole with the WEC satisfied
everywhere. This implies investigating the solution with
normal matter confined to the throat and vacuum else-
where. We do not know whether the matching of the two
different types of solutions would be possible at all.

Furthermore, one can investigate the existence and
features of Lorentzian wormholes in other theories of
gravitation. Einstein-Cartan-Sciama-Kibble theory and
Brans-Dicke models are probable candidates for such
analyses. String theory leads to other actions in lower di-
mensions with dilatons and rank-three antisymmetric
tensor fields coupled to the usual Einstein-Hilbert term.
Are there Lorentzian wormholes in such effective
theories? Attempts at answering such questions and oth-
er related issues will be communicated in the future.
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