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We revive Heisenberg’s approach to multiparticle production in the context of soft-pion emission in
heavy-ion collisions. Adopting appropriate boundary conditions, we find a general analytic solution
of the classical equations of motion for the nonlinear o model (for soft pions this model is an
approximation to QCD). The solution is used to discuss various features of soft pion production in

nuclear collisions.
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I. INTRODUCTION

The behavior of hadronic matter at unusually high
density is interesting for a variety of well known reasons.
Such dense systems can be created in the laboratory dur-
ing heavy-ion collisions, and new experimental facilities
will soon be put into operation or are being designed to
study such collisions. On the theory side, much remains
to be done. Ideally, one would like a space-time descrip-
tion of the collision process rooted in the microscopic
theory (QCD). The aim of this paper is to describe an
attempt in this direction.

It is widely believed that much of the low-energy
physics of QCD can be represented by an effective La-
grangian [1], describing the interactions of colorless ex-
citations of the physical QCD vacuum. This Lagrangian
has the form of an infinite series of terms involving an
increasingly large number of derivatives and has to be
truncated for all practical purposes. If one keeps only
the first term, the one with two derivatives, one gets the
so-called nonlinear o model, which describes fairly well
the low-energy pion dynamics. We propose to use the
effective Lagrangian and the classical approximation to
describe soft-pion emission in heavy-ion collisions. Notice
that the number of soft pions produced at high energy
in such a collision can be quite large, which makes plau-
sible the validity of the classical approximation. In this
exploratory work we limit ourselves to the nonlinear o
model. With this approximation the discussion will be
fully analytic and, we hope, a maximum clarity will be
achieved. Obviously, improvements are possible but will
require more computational effort.
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The idea to use the classical approximation to field
theory in a study of multiparticle production brings us
back to some old papers by Heisenberg [2]. The founding
father of quantum field theory had realized that quanti-
zation of meson fields implies the existence of multiple-
meson production, and he extensively used the classi-
cal approximation to develop his shock-wave picture of
production processes. He argued that meson spectra ex-
pected in renormalizable and in nonrenormalizable the-
ories, respectively, differ qualitatively and he apparently
hoped that the study of particle production will even-
tually yield evidence for the existence of a fundamental
length. With this motivation, Heisenberg did not engage
in a down-to-earth phenomenological study and some-
times insisted on those of his predictions which were
untenable from the empirical point of view. His ideas
were abandoned during the late 1950’s and almost com-
pletely forgotten. Although we do not share his dreams,
we found his work inspiring and we have borrowed from
him, as will be noticed by the reader.

The plan of this paper is as follows. In Sec. II we de-
rive the most general solution of the classical equations of
motion for the nonlinear ¢ model, assuming Heisenberg’s
idealized boundary conditions. In Sec. III we use these
solutions to calculate the canonical energy-momentum
tensor. Remarkably enough, this tensor is formally that
of an expanding relativistic fluid. We also calculate the
one-particle inclusive spectrum. In Sec. IV we discuss
the physical picture underlying our model, we say a few
words about the predicted long-range rapidity correla-
tions, we give an estimate of the formation time of a me-
son, we discuss the neutral/charged particle ratio which
is expected to exhibit rather remarkable fluctuations, we
make a couple of remarks on the relation of our theory to
the hydrodynamical model, and we use the data to give
an estimate of various physical quantities. We conclude
in Sec. V. The attention of the reader should be called
to related papers by Anselm and Ryskin [3] and Bjorken

(3]
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II. SOLVING THE CLASSICAL FIELD
EQUATIONS

The Lagrangian of the nonlinear ¢ model can be writ-
ten in the form

fz
L = [(80)* + (97)7), 1)
where f; = 93 MeV is the pion decay constant and the
fields satisfy the constraint
cl+wi=1. (2)

For convenience of notation the pion field n is defined
to be dimensionless. It is, of course, an isovector. The
Euler-Lagrange equations are readily found to be equiv-
alent to the following current-conservation equations:

0-V=0, (3)

0-A=0, 4)
where

V“=1rxa,,1r, (5)

A, =700 —00,7 (6)

are the Noether isovector and iso-axial-vector currents
associated with the global SU(2)xSU(2) symmetry of the
theory.

To proceed further we adopt Heisenberg’s idealized
boundary conditions. The two impinging Lorentz-
contracted nuclei overlap at some initial time t=0. At
this moment the whole energy of the collision is localized
within a thin slab. Following Heisenberg we assume that
this slab has an infinite transverse extent and is infinites-
imally thin, which means that we reduce the problem to
a (1 4 1)-dimensional one. Furthermore, the symmetry
of the problem implies that the pion field depends on the
invariant s = t2 — z2 only.

The (1 + 1)-dimensional theory is described by the La-
grangian (1), where the space-time indices are restricted
to values 0 and 1 (z° = ¢, z! = z) and the dimensionful
constant f2 is replaced by a dimensionless constant f2S.
The parameter S has the dimension of an area and will
be interpreted as the total transverse area later on, when
we shall establish a contact with the (1 + 3)-dimensional
world.

Now, the currents have the form f(s)z, and a current
conservation equation reads

sf' +f=0, (1)

where the prime denotes differentiation with respect to
s. Thus, f equals s™! up to a multiplicative integration
constant. Equations (3) and (4) yield

r_2
1rx1r_s (8)

and

wo' —on' = b
= 9)

where a and b are integration constants. Equations (8)

and (9) imply that these constants are not independent:
a-b = 0. We now decompose 7 along the axes of the
triad a, b, and ¢ = a x b. After some algebra one finds

ma=0, (10)
s

Ty = EU' , (11)

Te = %a’ . (12)

Differentiating the constraint equation (2) and using
(10)-(12) one finally gets

o'[s(s0’) + k%] =0, (13)

where k%2 = a? 4 b2. Hence, disregarding the uninter-
esting case o=const we conclude that o satisfies a linear
differential equation. The corresponding real solution is

o= Ccos (K In i) , (14)
so

where C is a constant and sg a scale parameter. The pion
field is easily found from (10)-(12). It is evident that it
satisfies the same linear equation as o, viz.

2
(sm') + -':—w =0. (15)

Notice that although the equations are linear the nor-
malization of the solution is not arbitrary, but fixed by
the constraint (2). It is here that the nonlinear charac-
ter of the problem shows up. Thus, one easily finds that
C = bk~!. Finally

me=0, (16)

ﬂ:%mei), (17)
50

Te= = cos (rc In i) . (18)
K So

This solution to the field equations depends on the ini-
tial conditions via the two orthogonal isovectors a and
b which specify the orientation in isospace of the vector
and the axial-vector currents, respectively, and the scale
parameter sg. The violent oscillations near s = 0 do not
appear in the field theories considered by Heisenberg, al-
though he has worked with the same boundary condi-
tions. They do not result from our neglect of the pion
mass: assuming PCAC (partial conservation of axial-
vector current) and treating the pion mass as a pertur-
bation we do not generate terms indicating a qualitative
modification of the solution at small values of s. In fact,
these violent oscillations are contained in a well defined
region of the space-time diagram, namely between the
light cone z = =+t and the hyperbola s = s5. At any
fixed t, such a region contains an infinite amount of en-
ergy. Since the amplitude of the pion field is bounded,
because of the constraint (2), the only way to store a large
amount of energy in the field is by producing these violent
oscillations. It is tempting to speculate that these oscil-
lations are taking place in a region where the pion field
strongly interacts with its source; in such a region, the
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higher-order derivative terms in the effective Lagrangians
should be taken into account, but presumably a better
description would be in terms of quark degrees of free-
dom. Following this reasoning, we are led to give to the
parameter /5o the significance of the length/time scale
below which the model cannot be trusted. Notice that
the soft-pion spectrum calculated in the next section is
independent of the value of sq.

III. PION RADIATION
The canonical, traceless energy-momentum tensor is
Tyw = f25{0,0 8,0 + Oum - 8,7 — 59,,[(00)° + (97)%1},
(19)
and, using Egs. (16)—(18) one finds

_ 2f2k%S

Ty = 57— (22420 — Sguv) - (20)

S

The singularity at s = 0 is nonintegrable. Again, this
results from the idealized boundary conditions, which can
only be realized if infinite energy is stored in the initial
pancake. Such a singularity would go away once a more
realistic initial state is used. However, a finite energy-
momentum tensor for the initial source would break the
symmetry of the problem, the fields would not depend on
s alone, and we would lose the analytical simplicity of our
solution. Such an extra complication is not needed at this
exploratory stage; in addition, we shall soon focus on soft
meson production which is insensitive to this singularity.

The ratio u, = z,//s can be regarded as the “two-
velocity” of a covolume element with coordinate z,.
Hence
_ 2f2k%S

Tu = (2upuy, — guv)- (21)

s
This is the form of the energy-momentum tensor of a
(1 + 1)-dimensional fluid with energy density €S, where

(= 2f2x2
s
The pressure is equal to the energy density, a fact
which in 1 + 1 dimensions just reflects the tracelessness
of the energy-momentum tensor. Notice also, that the
energy density of a (1 + 1)-dimensional fluid must fall
like s™! in a conformally invariant theory such as the
one we are considering. This is a simple consequence of
T =0 together with 6#7,, = 0. However, the fluid
analogy which emerges so naturally does not imply that
the pion fluid is in local equilibrium once one goes to 1+3
dimensions, and indeed it is not (see Sec. IV E).
Next, we calculate the spectrum of pion radiation. To
this end we Fourier transform the fields entering Eq. (19),
at fixed ¢, using the formula [4]

+t
/ dr eikx(t2 _ Z,2):i:z'fc

-t

, (22)

= VA2t /W] ET(1 £ ik)J g (wl)  (23)
where w =| k | is the energy of the mode k. The energy

radiated at time ¢, viz. [ dz Too(z,t) can be represented
as a sum over k (which diverges) of the energy dE radi-
ated in mode k. Using the asymptotic expansion for the
Bessel function in (23), one finds the following simple
expression for dE:

dE = Shdk, (24)
where
fik
h= —2L 2
tanh(rk) (25)
The one-particle inclusive spectrum is therefore
dN = Sh-d—]c . (26)
w

The right-hand side of (26) becomes independent of
k for k € 1. It is so because for any finite k there
exists an invariant interval where the pion field oscillates
dramatically. However, for physical reasons, the size of
this interval cannot be arbitrarily small (see the end of
Sec. IT and the next section).

IV. DISCUSSION

A. Physical picture

The global picture of the collision process that we have
in mind is close to that reviewed in the well known pa-
per by Bjorken [5], but stripped from the hydrodynamical
considerations. As already mentioned, the model is unre-
liable for invariant distances s < so. Thus, in the center-
of-mass frame, there are two Lorentz-contracted regions,
where most of the collision energy is concentrated, which
recede fast from each other and where our theory does
not apply. For physical reasons we expect sg to be of
the order of 1 fm?, but strictly speaking this is merely
a guess. Our model describes, if at all, what happens
in the region between the two receding pancakes. We as-
sume that in this region, say 1 fm/c after the beginning of
the collision, the isovector and iso-axial-vector currents
are, in a sense, frozen in some classical configurations
and specified by the two vectors a and b. The detailed
mechanisms operating at the initial stage of the collision
are outside the scope of the model and can at best be
parametrized by a probability density p(a,b). Given a
and b, the further evolution is entirely determined by the
classical equations of motion. The behavior of physical
observables reflects the coherence in the propagation of
the pion field and also the disorder effects described by
the initial probability density p(a,b).

Equation (26) indicates that not-too-energetic pions
will populate a rapidity plateau (for massive pions we
replace dk/w — dy, y denoting the rapidity). The in-
finite extent of this plateau is clearly an artifact of the
assumption that at ¢ = 0 the system is infinitesimally
thin. However, a plateau of finite extent also presents
an apparent problem: strictly speaking, the nonlinear o
model is an approximation to QCD provided one con-
siders soft pions only, and in this context “soft” means
“with momentum of the order of fr,” the only scale in
the effective theory. One can wonder whether the validity
of (26) is not limited to these soft quanta. The following
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symmetry argument should make things clear.

The center-of-mass frame has nothing special in it.
The physical picture of the collision is exactly the same in
a variety of collinear frames and our result (26) holds in
each of these frames. The energetic quanta which seem
to appear in the spectrum are to be considered as soft
quanta boosted to a different frame. Said differently, pi-
ons populating a small rapidity interval are soft in an
appropriate frame and everything one needs in order to
find the height of the rapidity plateau is a theory of soft-
pion emission.

An extra complication arises as one goes to 143 dimen-
sions. It is likely that the heretofore neglected terms in
the Lagrangian produce a broadening of the transverse-
momentum spectrum. Indeed, the observed value of
(k1) ~ 300 MeV/c can be considered rather large com-
pared to fr. Consequently, phenomenological applica-
tions of Eq. (26) require some care, as will be discussed
in Sec. IVF.

In three dimensions the invariant energy density is
given by Eq. (22). The relation between x and the en-
ergy density €p of the dense system appearing at the early
stage of the collision between the two receding pancakes
(cf. Ref. [6]) is therefore

_ 2f,%x2

So

27)

€0

B. Correlations

A classical solution of field equations corresponds to
a coherent state. Thus, as long as one does not average
over the initial conditions, particles are produced inde-
pendently, and follow Poisson distributions. The aver-
aging over k generates correlations. For example, the
normalized two-body rapidity correlation is proportional
to the variance of k:

Ly, y2) _ _ Var(x)
I (y1)11(y2) (k)?

In this formula, the n-particle inclusive rapidity spectrum
is denoted by I,(y1,...,yn). We have assumed that « is
large enough to replace tanh(wk) by unity. Notice, that
this correlation is rapidity independent (on the plateau).
In view of (27), its value measures the variance of the
initial energy density, since

R(y1,v2) = (28)

So
Var(k) =~ 8f,",’(eo)var(€0) .
This result is similar to that obtained in the framework
of the conventional hadron theory, viz. in the Reggeon
calculus [6], where the long-range rapidity correlation is
a measure of the variance of the number of radiating
“strings.”

In the present approximation the short-range rapidity
correlations do not appear. At least part of these short-
range correlations is due to resonance production. How-
ever, terms involving pion resonances are of higher order
in the expansion of the effective Lagrangian and have
been neglected. Also, the discussion of the Bose-Einstein

(29)

correlations is beyond the scope of this paper; that would
require a more detailed description of the initial state.

C. Formation time

As the proper time of a volume element increases, the
energy density € given by (22) decreases to zero. For
some value of s this energy density becomes comparable
to the mass of a pion divided by the cube of its Compton
wavelength. In this manner one obtains an estimate of
the proper formation time 7:

ﬁfwn
> -

m

(30)

TR

T

A numerically similar estimate is obtained comparing
Eq. (15) to the Klein-Gordon equation written assuming
that the solution depends on s only. One then finds m2 /4
in the place of k?/s. Clearly, it does not make much
sense to talk about free-pion propagation until the latter
quantity becomes smaller than the former one. Hence

2k (31)

TR — .
Mx
In 1+ 1 dimensions the picture is self-consistent. It is not
quite obvious how to carry these estimates to the (1+ 3)-
dimensional world. It seems reasonable to take Eq. (31)
and to replace the pion mass which appears there by the
pion’s transverse mass.

Note that in both estimates 7 « x, that is the forma-
tion time grows with multiplicity and can indeed become
quite large (see Sec. IVF). On the other hand, 7 can-
not be too small, so that « is bounded from below. For
example, taking 1/m, as the minimum value for 7, one
gets from (31) k > 1.

D. Neutral-to-charged ratio

Assume that there is no privileged direction in
isospace. Although our classical solution of the field
equations corresponds to a specific choice of the isovec-
tors a, b, all the orientations of these vectors compatible
with the constraint a-b = 0 are a priori equally prob-
able. We have argued that these isovectors characterize
the state of the initial dense system. Therefore, we ex-
pect that the neutral/charged particle ratio fluctuates
strongly from event to event. Since all isospace orienta-
tions of the pion field are equally likely, the probability
that neutral pions constitute a fraction r of all soft pions
produced in the collision equals the probability that a
random vector in isospace has its third component equal

to \/r:

1
dP(r) = 5 \/Fdr .
Such large fluctuations of the neutral/charged ratio have
also been predicted in Ref. [3].

Unfortunately, the nice prediction (32) can be put in
Jjeopardy by the following argument: the full translational
symmetry in transverse coordinates is a far-reaching ide-
alization. It is likely that regions of the initial dense sys-

(32)
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tem that are sufficiently well separated in the transverse
direction do not act coherently. An excess of 7°’s emit-
ted in one place could then be compensated by a deficit
of 7°°s emitted elsewhere. With such a scenario, extra
model assumptions are needed, in particular concerning
the dependence of p(a,b) on transverse coordinates, to
get a quantitative prediction. This problem deserves fur-
ther study.

E. Relation to the hydrodynamical model

As already mentioned, Eq. (21) describes a (1 + 1)-
dimensional fluid. As a direct consequence of the ideal-
ization made at the very beginning, where we assumed
following Heisenberg that the problem is one dimen-
sional, there is no transverse pressure whatsoever and
the energy density is equal to a pressure involving longi-
tudinal motion only. There is a basic difference between
the approach advocated here (and earlier by Heisenberg)
and the hydrodynamical model: although we introduce a
probability density to describe the initial dense system,
for given a and b the propagation is coherent and con-
trolled by the equations of motion. In Landau’s hydro-
dynamical model [7] the system is assumed to be in local
equilibrium during the whole expansion process. That
means that, in a local rest frame, the distribution of par-
ticle momenta is isotropic, so that, for massless parti-
cles, the pressure and the energy density are related by
p = €/3. It results then from the equations of motion,
0,T#* = 0, that the energy density goes as 57213 to be
contrasted with the s™! dependence in Eq. (22). These
time dependences (s = t> when = = 0) are easy to under-
stand. In either case, the system is undergoing a uniform
expansion, so that a covolume element centered at ¢ = 0
grows as t. In hydrodynamics, the total energy contained
in the covolume decreases because of the work the covol-
ume has to do against its neighbors in order to expand.
In the case of the classical pion field, one may understand
the decrease of the energy as a result of the decrease of
the effective energy of each of the normal modes in the
expanding covolume [see Eq. (15)]. One can also under-
stand in this way the origin of the various powers of «
in the expression of the energy density, Eq. (22), and the
particle multiplicity, Eq. (26). The number of quanta in
a given covolume is constant and proportional to «, as
expressed by Eq. (26). The energy in the covolume is
proportional to the number of quanta, and to the energy
(x k) of each quantum, hence the factor «? in Eq. (22).

F. Some numerical estimates

The spectrum given by (26), and derived in a (1 + 1)-
dimensional model for soft pions, should be interpreted
as the rapidity spectrum after integration over trans-
verse momentum. But the latter should also be soft,
in the sense of this paper: k; < A, with A of order fr.
Thus, comparing (26) to actual data one should multi-
ply the observed plateau height by a correction factor ¢
which, assuming a Gaussian shape of the k; distribution,
is given by

¢ =1—exp[-(A/(k1)] = (M (k1) . (33)

This is a phenomenological artifice, which will become
unnecessary once the proper extension of this theory to
1 + 3 dimensions is worked out. Unfortunately, for the
time being, our predictive power is poor since ¢ is quite
sensitive to the exact value of the cutoff A.

Setting S = 7R? and R = 1.2A'/3 fm we obtain, from
(26),

¢ dN
A% dy
Strictly speaking, the quantity given above is (), but we
write just x for the sake of simplicity. Thus, « varies like
A%, with a presumably in the range % to % So does the
formation time 7. The initial energy density varies like
A?e,

Consider now some data. Central interactions of 10
with %7 Au at 200 GeV /nucleon have been studied by the
WAB80 Collaboration [8]. They observe about 100 charged
secondaries per unit rapidity in the central rapidity re-
gion. In a different publication [9] the same collaboration
finds that the transverse-energy pseudorapidity distribu-
tion is larger by a factor 1.5 when a 32S projectile is
used instead of 160. Hence, the rapidity density of all
pions produced in collisions of 328 with °“Au at 200
GeV /nucleon should be roughly 225 .

The cutoff A should be somewhere between fr and (k)
(cf. the discussion in Sec. IV A). Assuming tentatively
that A = 150 MeV, halfway between the above limits, we
get ( = ‘17 and k = 5.6. This yields the estimate g =~
2.8 GeV/fm3. This estimate is close to that obtained
with Bjorken’s formula. One should remember, however,
that the qualitative trend is different, since we expect
a quadratic dependence of ¢y on A~5 dN/dy, while in
Bjorken’s formula this relation is linear. Finally, taking
a value of 300 MeV for the transverse mass, and using
this in Eq. (31), one gets 7 &~ 8 fm/c. This large value
reflects the coherence of the source. It also points to a
limitation of the model in its present form: since this
time is larger than the tranverse size of the system under
consideration, i.e. 325, clearly a better description of the
transverse degrees of freedom is called for.

(34)

=~

V. CONCLUSION

Our results are summarized in the subsections of the
preceding section and need not be repeated here. Hence,
let us end with a few general remarks.

Inspired by Heisenberg’s approach to multiparticle pro-
duction we have attempted to apply it in the context of
soft-pion emission in heavy-ion collisions. In this case the
effective theory for the pion field can be regarded as an
approximation to QCD (because the pions are soft) and
the classical approximation may not be unreasonable (in
view of the large number of emitted quanta). We work
with Heisenberg’s idealized boundary conditions, reduc-
ing in this way the problem to 1+ 1 dimensions. Sim-
ilar conditions have been used in the context of nuclear
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collisions many times, in particular in hydrodynamical
calculations. This enables us to proceed analytically.
Among the problems for the future, let us mention
corrections coming from the next terms in the effective
Lagrangian (those with up to four derivatives) and the
transverse flow. The difficulties are non-negligible, but
mostly technical. On the other hand, the theory of Bose-
Einstein correlations seems to present a conceptual chal-
lenge. It appears that the description of incoherent phe-

nomena demands a better understanding of the physics
governing the behavior of the initial dense system.
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