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Dirty black holes: Thermodynamics and horizon structure
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Considerable interest has recently been expressed in (static spherically symmetric) black holes in
interaction with various classical matter fields (such as electromagnetic fields, dilaton fields, axion
fields, Abelian Higgs fields, non —Abelian gauge fields, etc.). A common feature of these investigations
that has not previously been remarked upon is that the Hawking temperature of such systems
appears to be suppressed relative to that of a vacuum black hole of equal horizon area. That is,
kTH ( fi/(4n rH)—:fi/+4+AH. This paper will argue that this suppression is generic. Specifically, it
will be shown that kTH = (fi/4mrH) e ~ " (1 —8m'G pH rH) . Here P(rH) is an integral quantity,
depending on the distribution of matter, that is guaranteed to be positive if the weak energy condition
is satisfied. Several examples of this behavior will be discussed. Generalizations of this behavior to
nonsymmetric nonstatic black holes are conjectured.

PACS number(s): 04.20.Cv, 04.60.+n, 97.60.Lf

I. INTRODUCTION

For a variety of reasons, considerable attention has re-
cently been focused on static spherically symmetric black
holes in interaction with various static spherically sym-
metric classical fields. For example, the system (gravity
+ electromagnetism + dilaton) has been discussed by
Gibbons and Maeda [1], by Ichinose and Yarnazaki [2, 3],
and in an elegant paper by Garfinkle, Horowitz, and Stro-
minger [4], this particular system currently being deemed
to be of interest due to its tentative connection with
low-energy string theory. The resulting charged dilatonic
black holes were rapidly generalized by Shapere, Trivedi,
and Wilczek [5] to the dyonic dilatonic black holes appro-
priate to the system (gravity + electromagnetism + dila-
ton + axion). The system (gravity + electromagnetism +
axion) has been considered by Allen, Bowick, and Lahiri
[6], by Campbell, Kaloper, and Olive [7], and by Lee and
Weinberg [8]. The considerably simpler system of (grav-
ity + axion) and the associated axionic black holes had
previously been discussed by Bowick, Giddings, Harvey,
Horowitz, and Strominger [9]. The system (gravity +
electromagnetism + Abelian Higgs field) has been dis-
cussed by Dowker, Gregory, and Traschen [10] using Eu-
clidean signature formalism. Colored black holes, arising
in the system (gravity + non —Abelian gauge field), have
been discussed by Galtsov and Ershov [11], by Strau-
mann and Zhou [12], by Bizon [13), and by Bizon and
Wald [14]. A variation on these themes: the system
(gravity + axion + non —Abelian gauge field), has re-
cently been considered by Lahiri [15]. For brevity, any
black hole in interaction with nonzero classical matter
fields will be referred to as "dirty".

A common feature of these various investigations is
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that whenever the Hawking temperature of the resulting
dirty black hole can be computed, the Hawking tempera-
ture (equivalently, the surface gravity) appears to be sup-
pressed relative to that of a clean vacuum Schwarzschild
black hole of equal horizon area (equivalently, . of equal
entropy). Specifically, the inequality

kTH &
4xr~ /4z'A~

appears to be satisfied.
I claim that this inequality is not an accident, but

rather that this inequality is related to the classical na-
ture of the fields interacting with the black hole. Indeed
it shall be shown that, for a general spherically symmet-
ric distribution of matter with a black hole at the center,
the Hawking temperature is given by

(1.2)

Now rH and pH, the radius and matter density at the
horizon, clearly depend only on conditions local to the
horizon itself. In contrast, P(rH) is an integral quan-
tity that depends on the distribution of matter all the
way from r = rH to r = oo. The remarkable feature of
the analysis is that, if the matter surrounding the black
hole satisfies the weak energy condition (WEC), which is
certainly the case for classical matter, then the Einstein
field equations imply that P(rH) is non —negative. The
inequality kTH & fi/(4nrH) follows imm. ediately.

( Warning: Since semiclassical quantum effects are ca-
pable of violating the WEC, it follows that quantum
physics may allow a violation of this inequality. On the
other hand, violations of the %'EC in the vicinity of the
event horizon are quite likely to destabilize the horizon,
disrupt the black hole, and lead to a traversable worm-
hole, thereby rendering moot the question of the Hawking
temperature [16].)

A side effect of the investigation is the discovery of
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a particularly pleasant functional parametrization of the
static spherically symmetric metric that permits a simple
(formal) integration of the Einstein field equations in a
form suitable for the direct application of the WEC.

Also of note is the fact that the matter fields at
the horizon (as measured by a fiducial observer a
FIDO) are constrained to satisfy the boundary condi-
tion pH = ~H if the horizon is to be "canonical" in a
sense to be described below. This boundary condition
is in fact equivalent to demanding that the energy den-
sity measured by a freely falling observer (FFO) remain
integrable as the observer crosses the horizon.

Several examples are discussed in detail: The Reissner-
Nordstrom geometry and a "thin shell" example are par-
ticularly instructive elementary examples. The dyonic
dilatonic black holes and their ilk are decidedly nontriv-
ial examples.

Finally a conjecture is formulated as to a possible gen-
eralization of these results to spherically asymmetric non-
static dirty black holes.

Units: Adopt units where c = 1, but all other quanti-
ties retain their usual dimensionalities, so that in partic-
ular G:—Ep/rnI = ti/rnzi, —= Pz/h.

II. METRIC

tial slices. On the other hand, P(r) might best be inter-
preted as a sort of "anomalous redshift" that describes
how far the total gravitational redshift deviates from that
implied by the shape function. As will subsequently be
seen the Einstein field equations have a particularly nice
form when written in terms of these functions.

B. Putative horizons

For now, explore the meaning of the metric in the form
(2.3) without yet applying the field equations. First, ap-
plying boundary conditions at spatial infinity permits one
to set P(oo) = 0 without loss of generality. Once this nor-
malization of the asymptotic time coordinate is adopted
one may interpret b(oo) in terms of the asymptotic mass
b(oo) = 2GM. (Naturally one is assuming an asymptot-
ically fiat geometry. )

The metric (2.3) has putative horizons at values of r
satisfying b(rH) = rH On.ly the outermost horizon is
of immediate interest and comments will be restricted to
that case. Now for the outermost horizon one has Vr )
rH that b(r) & r, consequently b'(rH) & 1. The case
b'(rH) = 1 is anomalous and will be discussed separately.
Assuming then that b'(rH ) & 1 the behavior of the metric
near the putative horizon is

A. Functional form

The spacetime metric generated by any static spheri-
cally symmetric distribution of matter may (without loss
of generality) be cast into the form

ds — e&('H) —
] ~

[I —bl(rH)]dt
rH )

1 TH 2+ ( dr
1 —b'(rH) (r —rH)

+rH2(d8 + sin 8 dp ). (2.4)
ds = —

gag dt +g„„dr +r (d8 +sin 8dy ). (2.1)

z~(„) ( b(r))g„=e " 1— b(r) )

r )
(2.2)

That is,

dr2
ds = —e ~ " [1 —b(r)/r]dt

1 —b(r)/r

+r (d8 + sin 8 dp ). (2.3)

Following Morris and Thorne, the function b(r) will be
referred to as the "shape function. " The shape function
may be thought of as specifying the shape of the spa-

This form corresponds to the adoption of Schwarzschild
coordinates. While one can relatively easily adopt the
brute force approach of inserting this metric into the cur-
vature computation formalism and "turning the crank, "
the resulting expression for the Einstein tensor is not as
illuminating as it might otherwise be.

There is an art to further specifying the functional form
of gqq and g« in such a manner as to keep computations
(and their interpretations) simple. For instance, to dis-
cuss traversable wormholes Morris and Thorne found the
choices gqq ——exp[2$(r)], g,„=[1 —b(r)/r] i to be par-
ticularly advantageous [16]. For the discussion currently
at hand I propose

Thus the putative horizon is seen to possess all the
usual properties of a Schwarzschild horizon provided that
e &t"~ is positive and of finite slope at r = rH, corre-
sponding to ]p(rH)] and ]p'(rH)] being finite.

The putative horizon at rH = b(rH) will be said to be
of canonical type if

b'(rH) & 1, ](b(rH)] & oo, ~p'(rH)] & oo. (2.5)

Noncanonical horizons are of interest in their own

right. On the one hand, if b'(rH) = 1 one may Taylor
expand:

b(r) = b(rH) + b'(rH)(r —rH) + (r —rH) +
b"(rH)

2

(r —rH) +'y2 2

2TH
(2.6)

This allows the simple expansion (1 —b/r) = 2pq(r—
rH) /rH +, thus indicating that in this case g,„does
not change sign at the horizon (provided that p2 g 0).
This behavior is an indication of the merging of an inner
and an outer horizon. In fact, the horizon of an extreme

Q = M Reissner —Nordstrom black hole is precisely of
this type [with P(r) = 0]. If p2 = 0 then one must go
to higher order in the Taylor series expansion. If the
first nonzero term is of order n, that is if b(r) —r =
—tp„(r —rH)" /rH +, then one may easily convince
oneself that one is dealing with a n-fold merging of n
degenerate horizons.
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On the other hand, even if b'(r~) ( 1, one may still
obtain noncanonical horizon structure due to the behav-
ior of P(r) near the putative horizon. For instance, take
P(r) = +2 in("„™)+ f(r), where f(r) is smooth and
finite at the putative horizon. In this case the behavior
of the metric near the putative horizon is

b'(r~) and P(r~) are related to the distribution of matter
by imposing the Einstein field equations. Note that the
derivation of the formula for the surface gravity continues
to make perfectly good sense for degenerate horizons [i.e. ,

b'(r~) = 1], merely asserting in this case that z = O.

ds ——e '" [1 —b'(r~)]dt
1

~(
r~

1 —b'(r~) (r —r~)
+r~(d8 +sin 8 d&p ). (2.7)

Thus g«remains nonzero on the putative horizon, so that
the putative horizon is not in fact a horizon at all, but
rather is the throat of a traversable wormhole [16].

Finally, one should consider the possibility that the
"anomalous redshift" might diverge in a region where the
"shape function" is still well behaved. Specifically, con-
sider the possibility that P(r) ~ +oo as r ~ r~, while
b(r) ~ ro = 2Gmo ( r&. Such a horizon is certainly
noncanonical. Analysis of the Einstein field equations
(see below) indicates that this case corresponds to a di-
vergence in the stress —energy density as the horizon is

approached.
Further discussion of noncanonical horizons will be

postponed, and henceforth all horizons are taken to be
of canonical type.

B. Euclidean signature techniques

Another way of calculating the Hawking temperature
is via the periodicity of the Euclidean signature analytic
continuation of the manifold [17]. Proceed by making the
formal substitution t -+ it to—yield

III. HAWKING TEMPERATURE

A. Surface gravity

The Hawking temperature of a black hole is given in
terms of its surface gravity by kT~ = (5/2n)K. Now in
general for a spherically symmetric system the surface
gravity can be computed via

&~g«
]c = lim (3.1)

b(r)+ (3.2)

Now for a canonical horizon ~p(r~)
~

and ~p'(r~)
~

are both
finite so that

e ~~" &[1 —b'(r~)].
1

2rH

At this stage of course, this formula is largely definition.
This formula receives its physical significance only after

(This result holds independently of whether or not one
chooses to normalize the gss and g«components of the
metric by adopting Schwarzschild coordinates. ) For the
choice of functional form described in (2.3) this implies

lim —e~ —e ~~ 1—1 0 z ( b(r) l
rara 2 Br

'(r) b(r) l
&~7'H 2

dr2
dsz ——+e ~" [1 —b(r)/r]dt +

1 —b(r)/r
+r (d8 +sin 8d pt) (3.4)

As is usual, discard the entire r ( r~ region, retaining
only the (analytic continuation of) that region that was
outside the outermost horizon (i.e., r & r~). Taylor
series expand the metric in the region r = r~ Provid. ed
that the horizon is canonical one may write (1 —b/r)—:
(r —b)/r (r —r~)r& [1 —b'(r~)] to give

dsk = +e "'""'[1—b'(r~)]
~ re )

r~
1 —b'(r~) i,r —r~p

+r~(d8 + sin 8 dy~).

Construct a new radial variable g by taking

(3.5)

P = 27r 2r~ e ""l [1 —b'(r~)] (3.8)

Invoking the usual incantations [17], this periodicity in
imaginary (Euclidean) time is interpreted as evidence of
a thermal bath of temperature kT = h/P, so that the
Hawking temperature is identified as

kTa = e '""' [1 —b'( ~)l.
4vrrH

(3.9)

This is the same result as was obtained by direct calcu-
lation of the surface gravity, though this formulation has
the advantage of (1) shedding further illumination on the
subtleties associated with noncanonical horizons, and (2)

dg= dr
1 rH

Ql —b'(r~) r —r~
2

rH r rH (3 6)
1 —b'(r~)

Then r~(r —r~) = 4[1 —b'(r~)]g, and the Euclidean
signature metric may be written as

dsz = +e ~~""l[1—b'(r~)] z (g dtz) + dgz2 1

4rH2

+r~(d8 +sin 8 dy ). (3.7)

Now the (g, t) plane is a smooth two-dimensional mani-
fold if and only if t is interpreted as an angular variable
with period
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verifying the relationship between Hawking temperature
and surface gravity.

IV. EINSTEIN FIELD EQUATIONS

A. Formal solution

8vrG (p —r)r „2, (1 —b/r)
r (p —r) b —8irG r r3

"("'=
2 2(1 —b/, )

(4.10)

(4.11)

gl
G AAtt r

2 ( bi, b'G" = —-11——14' ——
r ( r) r2

(4.1)

(4.2)

Whereas the forms of G;; and G„-„- are quite pleasing, the
form of Ge& = G&~ is quite horrible. Fortunately one will
not need to use Gee or G~~ explicitly. For completeness
note

eg =G~~ = b „,t', 1l—4'"+ 0" 14"——
Ir rp

, (b b'l lb"
2 (r2 r) 2r (4 3)

All other components of the Einstein tensor are zero.
To minimize computation use the results of Morris
and Thorne [16] with the substitution PM„„, ~h„„, =
—pg„, + 2 ln(1 —b/r).

The Einstein field equations are

g2
G~p = 8vrG T~p = 8' —T~p.P

h
(4.4)

In the FIDO orthonormal basis used above, the nonzero
components of the stress-energy tensor are

The Einstein tensor corresponding to (2.3) can be ob-
tained by the standard simple but tedious computation.
Choose an orthonormal basis attached to the (t, r, 8, y)
coordinate system (i.e. , choose a fiducial observer basis—a FIDO basis):

Inserting these results into the formula for the Hawking
temperature now yields the promised result

kTH = ( 8irG (p —r)r
exp1 — dr

I4~rH q 2 „„(1—b/r)

x (1 —8nG pH rH) . (4.12)

h
kTH &

47IrH v''4jrA~
(4.13)

B. Convergence issues

Several points regarding these formulas are worth men-
tioning. First, the condition b (rH) & 1 which is au-
tomatically satisfied by the outermost putative horizon
(regardless of whether or not it be canonical) implies,
via the Einstein field equations, a constraint on pH, viz. ,

pH & 1/(8m GrH2)—:5/(8n Epr2H). This constraint has the
nice feature of guaranteeing that the Hawking tempera-
ture is non-negative. Turning to questions of convergence
of the various integrals encountered, note that

The Hawking temperature is seen to depend both on data
local to the event horizon (rH, pH) and on a "redshift"
factor whose computation requires knowledge of p(r) and
r(r) all the way from the horizon to spatial infinity.

Once the problem has been cast in this form the role of
the weak energy condition is manifest. WEC implies that
p —r & 0 and that p & 0. Consequently Vr, P(r) & 0.
Also b'(rH) & 0. Thus adopting the WEC allows one to
assert the promised inequality

Tee Tp(p pe (4.5) 2GM =rH+2G 47rpr dr, (4.14)
The first two Einstein equations are then simply rear-
ranged to give

S' = 8~G pr~,
87rG (p —r)r

2 1 —b/r

(4.6)

(4 7)

Taking p and ~ to be primary, one may formally integrate
the Einstein equations, and then substitute this into the
conservation of stress-energy to determine p. Specifi-
cally,

b(r) = rH+8nG.pr dr) (4.9)

Instead of imposing the third Einstein equation Ges ——

Gpp = 87r G p, observe that (as is usual) this equation
is redundant with the imposition of the conservation of
stress energy. Thus one may take the third equation to
be

r' = (p —r)[ p'+ 2(ln(1 —b/r—))'] —2(p+ r)/r. (4.8)

8vrGrH

2(1 —b'( H)] ~

(~+~)~H
dr.

rH

(4.15)

This integral converges provided that (p —r) & k(r rH)—
as r —+ rH for some arbitrary constant k and some con-
stant a & 0. In particular this implies that pH = ~H is a
necessary condition for the existence of a canonical hori-
zon. It should come as no great surprise then to observe
that all "reasonable" classical field solutions satisfy this

so that this integral is guaranteed to converge by the as-
sumed asymptotic flatness of the spacetime. The only
questionable integral is that for P(rH). Specifically,
its convergence properties near the putative horizon are
somewhat subtle. Assuming b'(rH) & 1 one may write
this integral as

8~G (p —r)r
2 „„1—b/r
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—1,0, 0 i.
(gu g«gtt )

(4.16)

boundary condition. Indeed, this boundary condition is
equivalent to requiring the energy density measured by a
freely falling observer (FFO) to remain integrable as one
crosses the horizon.

To see this, consider a freely falling observer who
starts falling from spatial infinity with initial velocity
zero. Let V" denote the four —velocity of the FFO,
and let K" denote the timelike Killing vector. That
is, K" = (1,0, 0, 0); K„= (—gqq, 0, 0, 0). Then the in-

ner product K"V„ is conserved along geodesics, so that
Vq

——1, V' = —g~~ = —1/gqq. Since the four —velocity
must be normalized ([[V[~ = —1), one may solve for the
radial component to find (outside the outermost horizon)

B. Thin shell geometry

Consider a thin spherical shell of matter of density ps,
radius rs, and thickness (br)s, which surrounds a vac-
uum black hole of Schwarzschild radius rH. The mass of
this thin shell is ms = 4mpsrs(br)s, and the asymp-
totic total mass satisfies 2GM = rH + 2Gms. The
shape function exhibits a step function discontinuity:
b(r) = rH+e(r rs)2—Gms. Direct integration of P'(r) is
not an appropriate way of calculating P(r~) due to the
discontinuity in b(r). Rather it is more appropriate to
solve for P(r~) by using the continuity of gqq to develop
matching conditions. Everywhere except at the shell it-
self both p and r are zero, so P(r) is piecewise constant.
Applying boundary conditions at the horizon and at spa-
tial infinity gives P(r) = P(rH) e(rs —r). The matching
conditions are thus

In the FIDO basis

—1, 0, 0 i. (4.17)

gqq(r&+) = 1 —2GM/rs,

gu(rs) = e ' '""' (1 —rH/rs)

One immediately obtains

(5 3)

(5.4)

So the energy density measured by a FFO is pppo =—

TIJvV~V = p/gag + (—r)(g,g' —1) = r + (p —7-)/gag.
Finally, inserting the functional form for gqq one sees

1 —2GM/rs 2Gms/rs
e

1 —rH/rs 1 —rH/rs
(5.5)

,+ (p - r) e'"(p r)r~-
e—&(1 —b/r) (1 —b')(r —rH)

' (4.18)

So that the boundary condition (p —r) & k(r —r~)
o; ) 0, required to keep P(rH) finite, implies the inte-
grability of pppo ~ Conversely, the integrability of pppo
implies either (1) the finiteness of P(r~) (canonical hori-

zon), or (2) P(r) -+ —oo (corresponding to a traversable
wormhole).

Finally, noting that p = 0 on the horizon, one sees that
the Hawking temperature is suppressed by

2Gms/rs
4mr~ (1 —rH/rs)

(5.6)

Physically, this suppression of the Hawking temperature
may be attributed to the fact that the shell introduces an
extra gravitational redshift that decreases the energy of
the Hawking photons on their way out to spatial infinity.

V. EXAMPLES C. Charged dilatonic black hole

A. Reissner-Nordstrom

p = r = p = E /8n'. (5.1)

This automatically gives P(r) = 0, Vr The elec.tromag-
netic field equations imply E = Q/rz, so that

For the Reissner —Nordstrom geometry the symmetries
of the situation together with the form of the electromag-
netic stress —energy tensor implies

As a decidedly nontrivial example consider geometry
and fields surrounding a charged dilatonic black hole [1,
4]. The calculation about to be exhibited is a rather
obtuse way of calculating the Hawking temperature, de-
pending as it does on delicate cancellations among rH,
p~, and PH. The only virtue of this computation is that
it illustrates general features of the formalism. (Units:
For this section only set G—:1.)

Consider then a solution to the combined (gravity +
electromagnetism + dilaton) equations of motion. The
Lagrangian is

gTRN
47rr~ ( rH j (5 2) 8= g—g( —R/8 +2(VC)'+E'/4 j. (5 7)

This is an unusual, though correct formula for the Hawk-
ing temperature of a Reissner —Nordstrom black hole.
To see this note that explicit solution of the Einstein—
Maxwell field equations gives gzq —— (g«) = 1—
(2GM/r) + (GQ2/r ), whence z =

z lim„„~8„gqq ——

z((2GM/rH) (2GQ /rH)) = (1—/2rH)((2GM/rH)—
(2GQz/r~~)) = (1/2rH)(1 —(GQz/rHz)), which is the
above result.

ds = —
i

1 —
i
dt

a+ V'r'+ a')

+ ~C
2M

)~
r drz

a+ v'r~+az& r2+a2
+r (d8 +sin ed(p ), (5.8)

(Warning: 4 g P) In Schwarzschild coordinates the so-
lution corresponding to an electric monopole is
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F;;=Q/r,
2,2e

M(a+ Qr2 + a2)

(5 9)

(5.10)

writing

b(r) =r +8~a PT dT, (6.1)

Here one has used the freedom to make an overall shift
in 4 to set O(oo) = 0. The parameter a is defined by
a = Q2/2M. In terms of the formalism developed in this
paper,

b a2& (
1 ——= 1+—

2 I I

1—

""' = ll+ —,
I

( a )
r

2M

a +y'r 2+a 2)
'

r2

+a

(5.11)

(5.12)

The horizon occurs at 2M = a+ gr&~ + a2, that is, rH+
a2 = (2M —a)2, so that the surface gravity is

1 TH 2K= (1 —S~ pH r~)2rH Qr2
1

2(2M )
('-"P" "') (5.1S)

To calculate pH one evaluates the nonzero components
of the stress-energy tensor:

p=
8

e "&'+II&C'll'—24' 2

-2C 2

8x
1 —2C 2

8'

(5.14)

(5.15)

(5.16)

( Q2 Q2
sar pH rH ——

I

1—

M —a Q2

M 2M(2M —2a)
a

2M
(5.17)

Combirung this considerable morass yields the simple re-
sult

j
4M

(5.18)

As previously mentioned, this calculation is a particularly
obtuse manner in which to compute the surface gravity.
This computation is of interest only insofar as it illus-
trates general principles and serves as a check on the for-
malism. The inequality r & 1/(2rH), which previously
appeared to be just a random accident of the calcula-
tion, is now seen to be intrinsically related to the fact
that classical fields satisfy the WEC.

VI. DISCUSSION

For an arbitrary static spherically symmetric black
hole this note has established a general formula for the
Hawking temperature in terms of the energy density and
radial tension. Adopting Schwarzschild coordinates, and

As one approaches the event horizon it is easy to verify
that IIV'@

II
~ 0, while E —+ Q/r&~, so that p —+ s (1—

(Q2/2M2))(Q2/r4H). Thus

one finds that

li ( 8mG (p —r)r
)4mrH ( 2 „„(1—b/r)

x (1 —Sn.a pH rH) . (6.2)

Generalizations of this result to axisymmetric spacetimes
(for instance, to Kerr —Newman black holes embedded in
an axisymmetric cloud of matter) would clearly be of
interest. Generalizations to arbitrary event horizons are
probably unmanageable. On the one hand, the dominant
energy condition (DEC) guarantees the constancy of the
surface gravity (and hence the constancy of the Hawking
temperature) over the surface of an arbitrary stationary
event horizon. Furthermore, one might conceivably hope
to generalize the factor 4nrH to v'4n. AH. On the other
hand, there is no particular reason to believe that pH is
constant over the event horizon, nor is it clear how to
generalize the notion of P(rH). (Presumably in terms of
some line integral from the horizon to spatial infinity?)

If the central result of this paper is supplemented by
the weak energy condition one may further assert (for
static spherically symmetric dirty black holes) the general
inequality

h
kTH &

4vrrH
(6.3)

This inequality may be somewhat strengthened if one ex-
plicitly separates out the electromagnetic contribution to
the stress energy. Note that pH & (p, )H = E /sm —=

Q2/(shirr&). Thus for electrically charged static spheri-
cally symmetric dirty black holes,

n ( aQ'l
4nrH ( r2H )

(6.4)

kTH &
h

v'4vrAH
(6.5)

¹tes:(1) It should be noted that this inequality is satis-
fied by the Kerr —Newman geometry. (2) The restrictions
"stationary" and "dominant energy condition" cannot be
dispensed with as they are required merely in order to
guarantee the existence of a constant Hawking temper-
ature. (3) With regard to this conjectured inequality, it
should be pointed out that a weaker inequality that re-
quires stronger hypotheses can be derived from the "four
laws of black hole mechanics" [18]. Restricting the results
of that paper to the case of zero rotation, one observes
the equality (SH = entropy = 4kA~/EI, )

(Generalization to magnetic charge and the dyonic case
is trivial. ) The possibility of further generalizing these
inequalities is more promising. I will restrain myself to a
single one.
Conjecture:

For a stationary dirty black hole in interaction with
matter fields satisfying the dominant energy condition,
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M = (2T"„—T6"„)K"dZ„+ 2TH SH.
7'H

(6.6)

M 2M/~~

2SH/k AH
(6.7)

When restricted to spherical symmetry this reduces to

By invoking the strong energy condition, the integral can
be made positive, in which case one obtains the inequality

Which is clearly weaker than the inequalities considered
above.

In summary, this paper has exhibited a general for-
malism for calculating the surface gravity and Hawking
temperature of spherically symmetric static dirty black
holes. The formalism serves to tie together a number of
otherwise seemingly accidental results scattered through-
out the literature. Clear directions for future research are
indicated.
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