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Rotation halts cylindrical, relativistic gravitational collapse
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It is shown, in a simple analytic example, that an infinitesimal amount of rotation can halt
the general relativistic gravitational collapse of a pressure-free cylindrical body. The example is a
thin cylindrical shell (a shell with translation symmetry and rotation symmetry), made of counter-
rotating dust particles. Half of the particles rotate about the symmetry axis in one direction with
(conserved) angular momentum per unit rest mass n, and the other half rotate in the opposite
direction with the same e. It is shown, using C-energy arguments, that the shell can never collapse
to a circumference smaller than C = Smo,A, where A is the shell's nonconserved mass per unit
proper length. Equivalently, if R = ~8/8$]]8/8z~ is the product of the lengths of the rotational and
translational Killing vectors at the shell's location and A is the shell's conserved rest mass per unit
Killing length z, then the shell can never collapse smaller than R = 4+A. It is also shown that after
its centrifugally induced bounce, the shell will oscillate radially and will radiate gravitational waves
as it oscillates, the waves will carry away C energy, and this loss of C energy will force the shell to
settle down to a static, equilibrium radius.

PACS number(s): 04.20.Cv, 04.30.+x, 97.60.Sm

I. INTRODUCTION AND SUMMARY

A. Motivation

A recent numerical solution of the Einstein field equa-
tions by Shapiro and Teukolsky [1] suggests that it may
be possible for a naked singularity to form in the gravi-
tational collapse of a highly nonspherical body, in viola-
tion of Penrose's [2] cosmic censorship conjecture. The
Shapiro-Teukolsky solution describes the collapse of a
prolate spheroid of dust particles, all of which initially
are at rest. Near the end point of their collapse, the
dust particles form a thin spindle that is imploding rs
dially. If the spindle is so long that its poloidal circum-
ference exceeds 4z'M (where M is its mass and we set
Newton's gravitation constant and the speed of light to
unity), then in accord with the hoop conjecture [3, 4] no
apparent horizon forms around the spindle at least up
to the termination of the numerical solution, and in ap-
parent violation of cosmic censorship, naked singularities
appear to be forming in the vacuum just beyond the spin-
dle's two pointed ends. The growth of these singularities
forces the numerical integration to terminate.

It is not surprising that the collapse forms a singular-
ity, since the dust spindle is more or less a finite-length
version of an infinitely long dust cylinder, and it has
long been known that collapsing infinite dust cylinders
form naked singularities [3,5, 6]. What is a bit surprising
is that the Shapiro-Teukolsky singularity appears to be
forming most rapidly in the vacuum just beyond the spin-
dle's end rather than inside the spindle, where the dust
resides. We shall discuss the significance of this below.

The cosmic censorship conjecture (the impossibility of
naked singularities) is generally thought to be correct
only for realistic gravitational collaps" collapse with ro-
tation and realistic amounts of pressure. It therefore is
of interest to ask whether the Shapiro-Teukolsky collapse
would still produce a naked singularity if the collapsing

body were endowed with rotation and/or a realistically
stiff equation of state.

In this paper we investigate the effects of rotation in
the idealized limit of an infinitely long spindle, i.e. , an
infinite cylinder. We show analytically that the centrifu-
gal forces associated with an arbitrarily small amount
of rotation, by themselves, without the aid of any pres-
sure, can halt the collapse and prevent a singularity from
forming [7]. Elsewhere Piran [8] has shown, in specific
numerical examples, that realistic pressure (pressure p
such that p = ding/d inn ) 1 where n is the number
density of conserved baryons) can also halt cylindrical
collapse.

These results make it seem likely that also in the
Shapiro-Teukolsky case of a finite-length spindle, an ar-
bitrarily small amount of rotation and/or a realistic pres-
sure will halt the spindle's radial collapse. If so, however,
this by no means would guarantee an absence of naked
singularities. The reason is as follows.

The fact that the singularity appears to be forming
most rapidly in the vacuum just beyond the spindle's end
suggests that the vacuum part of the singularity might
be spacelike or timelike with respect to the singularity
in the dust interior, or might even precede it causally. If
so, then a realistic but tiny rotation or pressure in the
spindle's imploding matter would make itself felt too late
to infiuence the vacuum singularity. The imploding mat-
ter might bounce, but the vacuum singularity, causally
oblivious of the bounce, would still form in precisely the
same manner as if there were no rotation or pressure.
The singularity presumably would be created by nonlin-
ear gravity that is triggered by the sharp spacetime cur-
vature that occurs near the bouncing spindle's pointed
ends.

We must emphasize that this scenario is pure specula-
tion. The Shapiro-Teukolsky numerical solution is by no
means accurate enough nor carried to late enough times
to reveal (i) whether the vacuum singularity is spacelike
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or timelike with respect to the interior dust singularity,
or (ii) whether a horizon forms around the vacuum sin-
gularity at late times.

B. Collapsing shell of counter-rotating dust

The system whose collapse is analyzed in this paper
is a thin cylindrical shell made of pressure-free counter-
rotating dust. Half of the dust particles orbit around the
symmetry axis in a right-handed direction with angular
momentum per unit rest mass n, and the other half or-
bit in the opposite, left-handed direction with angular
momentum per unit rest mass —o;, so there is vanishing
total angular momentum. This counter-rotation guaran-
tees that there will be no dragging of inertial frames and
thereby simplifies the analysis. (It seems likely on in-
tuitive grounds that, as for our counter-rotating shell, so
also for shells with net angular momentum, an arbitrarily
small amount of rotation will cause the collapsing shell
to bounce. However, we have not attempted to analyze
shells with net angular momentum. )

In our analysis we describe the counter-rotating shell
mathematically by Israel's thin-shell junction conditions
[S] (Sec. II 8). In the vacuum interior and exterior of
the shell, the Einstein-Rosen canonical cylindrical coor-
dinates [10, ll] (t, r, z, P) are introduced and the line el-
ement takes the form

ds = e ~" ~l(—dt +dr )+e ~dz +r e ~dPz (1)

Here Q = Q(t, r) is a gravitational field whose static part
is an analogue of the Newtonian potential and whose rip-
ples represent gravitational waves; p = p(t, r) is a metric
function that will play an important role in the details of
our analysis (Secs. II—VI) but is irrelevant for our discus-
sion of the results (Sec. I); t is the coordinate time; r is
the coordinate radius; 8/Bz and 8/8$ are the Killing vec-
tor generators of translational symmetry along the cylin-
der and rotational symmetry around the symmetry axis;
z is the Killing coordinate length with —oo & z & +oo;
and P is angle around the axis with 0 & P & 27r. Here and
throughout we set Newton's gravitation constant and the
speed of light to unity. Notice that r has the geometric
meaning r = ~8/Bz~~B/BP[ = (product of lengths of the
two Killing vectors), and that the circumference around
the symmetry axis is 2m re ~.

We restrict attention to shells whose mass per unit
length is small enough that, at some initial moment of
time, they do not close space up around themselves radi-
ally (subsection D). This implies (Appendix A) that they
will never close up space radially, and correspondingly
r always increases monotonically as one travels radially
outward from the symmetry axis (r = 0) to the shell and
then onward; i.e., r varies over the range 0 & r & oo.

We shall use the following parameters to character-
ize the shell: (i) the angular momentum per unit rest
mass of its particles, ka;; (ii) its coordinate radius
R = (value of r on shell); (iii) the value g, of @ on the
shell; (iv) R = Re @' = (circumference of shell)/2x; (v)
u—:n/R = v/gl —vz where kv is the velocity of orbital
motion of the dust particles as measured by an observer

who rides on the shell and orbits neither rightward nor
leftward, and where +u is the dust particles' correspond-
ing linear momentum per unit rest mass as measured by
these observers; (vi) A—:dm/dz = (shell's total rest mass
per unit Killing length); and (vii) A—:Ae &' = (shell's
total rest mass per unit proper length).

Of these parameters, n, R, u, v, and A are unaffected
by a rescaling of the Killing coordinate length z [i.e. , by
z ~ const x z; Eq. (15a) below], and in fact they are lo-
cally measurable with no ambiguity. By contrast, R and
A are scale dependent and thus are not locally measure-
able; however, their dynamical changes (doublings, halv-

ings, . . .) are readily measureable locally. The parame-
ters o. and A are conserved as the shell evolves and emits
gravitational waves, but the other parameters change.

C. Nearly Newtonian shell

If the shell's rest mass per unit proper length A and
linear momentum per unit rest mass u are very small
compared to one, A « 1 and u « 1 (in geometrized
units where the speed of light and Newton's gravitation
constant are equal to unity), and if the gravitational
waves initially are very weak, so that (with an appro-
priate choice of z scaling) [Q~ && 1 everywhere except at
extremely large radii, then the shell and its evolution will
be very nearly Newtonian. More specifically, A A will
be conserved as will be a, and the shell's radius R R
will obey the rather obvious equation of motion

+ CMs(R) .A (dR)
2 (dt's

(2)

Here C is the shell's conserved energy per unit length and

A
CMs(R) = A z + A ln R+ const

2 2

is the energy the shell would have if it were radially mo-
mentarily static. (We use the symbol C because these
energies are the Newtonian limits of the shell's relativis-
tic "C energy". ) Note that CMs(R) plays the role of an
effective potential for the shell's radial motion (Fig. 1).

From the shape of the effective potential, it should
be clear that the shell oscillates back and forth between
a maximum radius R ~ and a minimum radius R;„,
whose values depend on its initial conditions. At R ~,
gravity overwhelms the centrifugal force and pulls the
shell inward; at R;„, the centrifugal force overwhelms
gravity and pushes it outward.

General relativity insists that these nearly Newtonian
oscillations produce very weak gravitational waves which
carry off energy. As a result, R „decreases a bit from
one oscillation to the next and R;„increases a bit, until
finally the shell settles down into equilibrium at the min-
imum of its effective potential CMs(R). The equilibrium
radius is clearly

,q ——o./v A.

From this simple analysis it is obvious that (i) if a = 0
(no counter-rotation), then the shell collapses to a New-
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A = (rest mass per unit proper length), and R
(circumference)/27r. From these we can construct two
dimensionless parameters, e.g. , A and u = a/R = (lin-
ear momentum per unit rest mass). In Fig. 2 we plot A
upward and u rightward. There are two special lines in
this A-u plane. The upper line A (u) is given by

inlfiat A--C

FIG. 1. The energy per unit length C for a cylindrical,
Newtonian shell of counter-rotating dust, plotted as a func-
tion of the shell's radius 'R. For a dynamical shell, C is
conserved (dashed line) as the shell bounces back and forth
between the radii 'Rm;„and Rm~. The efFective potential
CMs('R) in which it moves is given by Eq. (3).

tonian singularity, R = 0, but (ii) an arbitrarily small
amount of angular momentum per unit rest mass, n,
causes any collapsing shell to bounce and thereby pre-
vents a singularity from forming.

As we shall see, in full general relativity the shell be-
haves qualitatively the same as this, though the quanti-
tative details are different.

In our relativistic analysis we shall find it convenient
to think about the equilibrium configuration from a dif-
ferent viewpoint than Eq. (4). We shall ask the following
question: "If the shell at some moment of time has a ro-
tational linear momentum per unit rest mass u = n/R,
then how large must its rest mass per unit length A be in
order for its inward gravitational force to precisely coun-
terbalance its outward centrifugal force?" The answer is
easily seen from Eq. (4) to be

2A,q ——u

4/1+ us

or equivalently

u'v'I + u'
(8)

At u ( 0.8836, A,q(u) increases with increasing u (cf.
Fig. 2) because larger u means larger centrifugal forces

0.25

mSx

gl —vs

where +v is the speed of orbital motion of the shell's par-
ticles as measured by an observer at rest on the shell (cf.
subsection B),so A/gl —v2 is their total mass (rest mass
plus kinetic energy) per unit proper length, as measured
by that observer. Any MSRF shell above this upper line,
A ) Am, „(u), i.e. , any MSRF shell with total mass per
unit proper length greater than 1/4, is so massive that
it closes space up around itself radially (see Appendix B
for a proof). (In the language of Appendix A, the space-
time has character D& & outside the shell. ) In this paper,
we are seeking insight into the collapse of bodies around
which spacetime is asymptotically flat, not closed, so we
constrain our analysis to MSRF shells below the upper
line of Fig. 2, A ( A

The lower line Aeq (u) in Fig. 2 represents MSRF shells
that are in equilibrium —i.e., shells that, when evolved to
the future of the chosen initial time t,, never change their
radii R or R and never develop any gravitational radi
ation and thus always remain static. At small u this
A~(u) has the Newtonian form (5), A,q us. The Pre-
cise formula for A,q(u) is (Sec. III)

D. Static and momentarily static, relativistic shell

Gravitational radiation causes severe complications in
the theory of a fully relativistic cylindrical shell. A useful
tool for cutting through those complications is the con-
cept of a momentarily static and radiation-free (MSRF)
shell, i.e., a configuration that, at some chosen moment
of coordinate time t, (i) has no gravitational radiation
(8@/Bt = 8 Q/Bt = 0 everywhere), and (ii) has its shell
momentarily radially at rest (dR/dt = 0 and thus also
dR/dt = 0 since R = Re +').

As we shall see in Sec. III, a MSRF shell is charac-
terized fully (at the chosen time t) by the scale-invariant
parameters a = (angular momentum per unit rest mass),

coojract ion
p i'mIKQQ

I

FIG. 2. The dimensionless parameter space for momen-
tarily static and radiation-free (MSRF) shells.
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and requires larger mass to produce enough gravity to
hold the shell together. At u & 0.8836, A,~(u) decreases
with increasing u because larger u means larger total
mass per unit rest mass and thus less rest mass is needed
to produce enough total mass to hold the shell together.

It turns out (Sec. III) that any MSRF shell with
A ( A,q(u) begins to expand when released from its
initial state, because its gravity is too weak to counter-
balance its centrifugal forces; similarly, any MSRF shell
with A & A,q(u) [but A ( A ~„(u)] begins to contract
when released.

E. Dynamical relativistic shell

Rabs min = 4'& (10)

from above.
These properties of CMsRF(R), together with rela-

tion (9) and the conservation of Cp, imply the following

dynamics for the shell. (i) Once released from its initial
MSRF radius, the shell must oscillate back and forth in

In Secs. III—VII, we use the concept of C energy to
prove that a fully relativistic, cylindrical shell evolves
dynamically in the same qualitative manner as a nearly
Newtonian one. More specifically, we place the shell in
an initial MSRF configuration that is arbitrary (arbi-
trary values of 'R, u, A) except that A ( A ~„(u) so
it does not close up space radially around itself. We then
select a radius rp that is arbitrarily large and evaluate
the total amount of C energy Cp inside rp. As the shell
evolves dynamically, emitting gravitational waves, this
total | energy Cp will be conserved until the waves reach
rp (which means for an arbitrarily long time), and then
as the waves carry C energy outwards through rp (Sec.
VI), Cp will begin to decrease.

During the shell's arbitrarily long evolution with
fixed Cp, it conserves its values of n, A, and gp
(value of g at rp), while @(r,t) and R(t) evolve dynami-
cally.

In Sec. V we prove that Cp, at any moment of time
t, consists of a poaitive contribution associated with
the shell's radial velocity dR/dt and with the gravita-
tional waves (GW's) it has emitted, plus the contribution
CMsRF(R) that the configuration would have if it were
MSRF and had the same shell radius R as it actually has

Cp = CMsRF(R) + (positive kinetic and GW energy) .

(9)

In Secs. III and IV we derive the somewhat complicated
functional form of CMsRF(R) and show that it has the fol-

lowing properties. (i) CMsRF(R) has the same qualitative
form as the Newtonian CMs('R) (Fig. 1): It has a single
minimum at a radius R,q, and it increases monotonically
as one moves away from that minimum toward either
decreasing or increasing shell radii R. (ii) In the New-

tonian limit CMsRF(R) becomes CMs(R) [Eq. (3)]. (iii)
CMsiiF(R) reaches the largest value s, that any shell's C
energy can have without closing the universe up radially,
as R approaches ro from below and as it approaches

R, emitting gravitational waves, and finally settle down
into an equilibrium state. (ii) If the shell's initial radius
R, is larger than the minimum point R,~ of CMsRF(R),
then the shell can never oscillate out to a radius R larger
than R, ; furthermore, if R, ( Req then it can never os-
cillate to a smaller R than R, . (iii) No matter what the
initial state may be, so long as the shell initially does not
close space up radially, the centrifugal force always keeps
its radius R larger than Rab, m;„= 4aA, and correspond-
ingly keeps 'R = circumference/2~ larger than

+abs min = 4&~ ~

(Recall that A and n are conserved during the evolu-
tion; A = Ae @*, however, will generally vary. ) From
Eqs. (10) and (ll), it is clear that an arbitrarily small
angular momentum n prevents the shell from collapsing
to a singularity [7].

F. Organization of this paper

In the body of this paper, we derive the results de-
scribed above.

We lay foundations for our derivation in Sec. II. In
Sec. II A and Appendix A, we discuss the requirement
that spacetime not be closed up radially, and then re-
lying on that requirement, we introduce our spacetime
coordinates t, r, z, P, and corresponding metric coeffi-
cients g and p, we write down the vacuum Einstein field
equations for the shell's interior and exterior, and we
introduce the concept of 0 energy. In Sec. IIB we in-
troduce the parameters that describe the shell and write
down, in the form of thin-shell junction conditions, the
Einstein field equations that govern the shell's coupling
to the spacetime metric and its dynamical evolution.

In Sec. III, we analyze the structures of momentar-
ily static and radiation-free (MSRF) configurations, and
prove that among all MSRF configurations, the ones in
equilibrium are those that minimize the C energy with
respect to variations of the shell's radius R.

In Sec. IV, we show that the C energy of MSRF con-
figurations, as a function of shell radius R, has the same
qualitative form as in Newtonian theory (Fig. 2).

In Sec. V, we show that the C energy of a dynamical
configuration is always greater than that of a MSRF con-
figuration that has the same shell radius R, i.e. , that the
C energy can be written in the form (9) used above in
our discussion of dynamical evolution.

In Sec. VI, we show that gravitational waves always
carry C energy away from the shell, toward r = oo.

In Sec. VII, we recapitulate: The properties of the
C energy, as derived in Secs. III—VI, are precisely the
underpinnings needed to validate the discussion of shell

dynamics given in Sec. IE. Therefore, it must be that
the shell can neither collapse to a line singularity nor
explode to infinity, but instead must undergo damped
oscillations and end up in an equilibrium configuration
of finite radius.
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II. FOUNDATIONS FOR THE ANALYSIS p=0 and /finite at r =0. (17)

A. Radial nonclosure, coordinates, metric,
and vacuum Beld equations

It is well known [10,11] that, in any cylindrically sym-
metric spacetime with vanishing net momentum density
along the Killing directions 8/Bz and 8/8$, one can in-
troduce coordinates (t, r, z, P) in which the line element
takes the form

ds =e ~ +l( dt —+dr )+e~dz +p e ~dgP

(12)

Here p, g, and P are functions of t and r. In vac-
uum, but not generally inside matter, the quantity P =
~8/Bz[~8/8$~ obeys the Einstein field equation

We shall sometimes refer to Q as the gravitational iva-ve

field since it satisfies the wave equation (16a) and it
governs distortions of the geometry along the polariza-
tion axes (z and P directions) in the usual "transverse-
traceless" manner [13] (a weak ripple 6$ in @ pro-
duces fractional metric perturbations bg„/g„= b@,
bgd, y/gy~ = —b@ that are confined to the transverse plane
and are equal and opposite along the two transverse di-
rections) .

The quantity p and the C energy C are monotonic func-
tions of each other [11,12]:

C=-(1 —e ~).1

8

P, ~~
—P,r (13)

where commas denote partial derivatives. (This equa-
tion is the content of R, + B&~ ——0, where R„" is the
Ricci tensor. ) In Appendix A it is shown that, if (as we
shall assume) space initially is not closed up radially by
the shell's mass, then everyivhere in the spacetime VP is
spacelike and is directed away from the symmetry axis.
This together with Eq. (13) permits us, throughout the
spacetime, to perform a conformal transformation in the
(t, r) plane to new (t, r) coordinates such that P = r:

ds = e ~~ ~ (—dt +dr )+e ~dz +r e @dP

(14)

These are the coordinates discussed in Sec. I B.
Because the Einstein equation takes the form (13) only

in vacuum and not on the shell itself, the conformal
transformation turns out to be discontinuous across the
shell. More specifically, although z, P, r = ~8/Bz~~8/BP~,
and Q =

z ln ~8/Bz~ (being Killing-defined quantities) are
continuous across the shell, the time coordinate t and the
metric function p are discontinuous.

The Killing coordinate length z is defined only up to
an arbitrary multiplicative factor. It should be obvious
that a rescaling of z produces the following changes in
other quantities:

z~e"z, g~Q —p, r~e "r, t~e "t, (15a)

B. Description of the shell

e = —= u = four-velocity of the shell
7

=Xy +V—,
Bt~ Br ' (19a)

=d=e„—= :—n = outward unit vector normal to shell
dn

8=Xy—+ V
Br Bt~ ' (19b)

e;—:

e&=

Here

1
e& Bz'

1 8
re &* 8$ '-

(19c)

(19d)

The evolution of the shell will be characterized by
R(7), where R is the value of the radial coordinate r
at the shell's location and r is the proper time of an ob-
server riding with the shell, but not rotating with the
shell's particles. We sometimes will use R = Be &' =
circumference/2z to describe the shell's location, instead
of R; here g, is the value of Q at the shell.

As an aid in analyzing the shell's properties and mo-
tion, it will be helpful to introduce the proper reference
frame of an observer riding on the shell. This frame's
orthonormal tetrad is

where p is an arbitrary constant; correspondingly,

A~e "A, R~e "R.
dR

(15b)
and

(20a)

In the vacuum inside and outside the shell, the metric
coefficients Q(t, r) and p(t, r) satisfy the Einstein field
equations [10, 11]

= Qe z(w+ @.) + ~z . — —
7

(20b)

(16a)

(16b)
(16c)

Smoothness of the spacetime geometry on the symmetry
axis r = 0 requires that

The subscripts + and —are used to denote quantities
evaluated on the outer and inner faces of the shell. (Re-
call that t and p are discontinuous across the shell. )

As was discussed in Sec. IB, the shell is made of
counter-rotating particles with conserved angular mo-
menta per unit rest mass +n, and with linear velocities
+v as measured in the shell's rest frame (19) and linear
momenta per unit rest mass:
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+v n a
(21)

are continuous and t, p, Q „,X are discontinuous
across the shell.

A 1

2~R g]. —vz

Apl + u'
2vrR

(22a)

By their orbital motion, the particles create a surface
stress S&& = T whose ratio to their surface energy density
S' =a is

o

u2

1+u (22b)

(where p~ = +u is a particle's linear momentum per unit
rest mass and p = 1/v'1 —v = v'1+u is its total
mass per unit rest mass as measured in the shell's rest
frame). By combining Eqs. (22a) and (22b) we see that

The shell's conserved rest mass per unit Killing length z
is A, and correspondingly its total mass per unit proper
area as measured in its own rest frame (19) is

III. MOMENTARILY STATIC
AND RADIATION-FREE CONFIGURATIONS

If the configuration, at some moment of time t, is mo-
mentarily static (U = dR/dr = 0) and radiation-free
(Q q

——g qq
——0), i.e. , MSRF, then it will have the follow-

ing properties. (i) In the vacuum outside the shell the
vacuum field equations (16) imply

Q = g, —Kln(r/R) at r ) R,
p =p++ r ln(r/R) at r ) R,

(25a)
(25b)

where r and Q, are constants. This is the levi-Civita
line-mass solution to the Einstein equations [14]. (ii) In
the vacuum interior, the field equations imply a similar
logarithmic form for g and p, and the boundary condi-
tions (17) at r = 0 imply a vanishing value of r and,
correspondingly,

Au2

2n R+1+u2

The shell's full surface stress-energy tensor is

S = ou (3 u+ Te& e& .

(22c)

(22d)

p=0 tar ( R, (25c)

which means that spacetime is flat and Minkowskian in-
side the shell. (iii) The jump condition (24a) on the
normal derivative of g, together with Eqs. (19b), (24a),
(24b), and (25c), implies that the value of the parameter
K 1s

Israel [9] has shown that the Einstein field equations
for a thin shell reduce to

K+p —K p
——87r(S p

—AS„"p~p), (23)

where K p is the extrinsic curvature of the shell's outer
(inner) face and p p is the metric of its world sheet. For
our thin shell, the zz component of these junction condi-
tions reduces to a jump condition on the normal deriva-
tive of the gravitational wave field:

2A
0+, —0-, Rgl + u2

(24a)

the PP component, after use of Eq. (24a), reduces to
a jump condition for X = dt/dr and therefore [cf.
Eq. (20b)] for the time coordinate t and the metric func-
tion p:

Xi —X = —4A/1+ u2 (24b)

X A XX+u2
R(1+u )si R(1+ u2)

(24c)

[In deriving Eq. (24c), the vacuum field equations (16)
and the junction conditions (24a), (24b), have been used. ]

In summary, Eq. (24c) governs the motion of the shell,
Eqs. (16) and (17) govern the evolution of the met-
ric functions p(r, t), Q(r, t), and the junction conditions
(24a) and (24b) match the metric functions across the
shell. Among the various functions that we use, r, z, P,

the 77. component reduces to an equation of motion for
the shell:

2

A =— „,= VQ„—R[(@, )'+ (g „)']+ X

2A

(1 —4A v'1 + u') v'1 + u' (25d)

(where A = Ae @' is the rest mass per unit proper length;
cf. Sec. I B). (iv) The jump condition (24b) on X~, to-
gether with expressions (20b) and (25c), implies that

p+ ———ln(l —4A/1+ u2) . (25e)

In order that space not be closed radially by the shell's
mass, it must be that Av'1+ u2 ( 1/4 (see Appendix B
for a proof and Sec. I D for discussion); correspondingly,

p+ is real and positive, and r is positive. (v) The equa-
tion of motion (24c) for the shell, when combined with
V = 0, Q „=0, A = Ae @' and Eqs. (20b) and (25e),
takes the form

d R (' positive
b~

dr (quantity )
(25f)

where A,~(u) = uzi'1+ u2/(1+ 2uz)2; cf. Eq. (8).
Therefore, if the rest mass per unit proper length A is

greater than A,q, then the MSRF shell starts contracting,
and if A is lower than A,~, it starts expanding.

In our analysis of dynamical shells (Sec. IE above) a
central role is played by C energy. For a MSRF configu-
ration with shell radius R and with the Killing coordinate
z so normalized that

0o = 0(ro) = o (26a)

~MSRF(R) = (1 e )8
(26b)

[cf. Eq. (15a)], the total t energy inside some fixed radius
Tp & R is given by
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[Eq. (18)], where

2

ue~' =
I 4gyegl + (~/rp)2y —2—2+ (26c)

y=R/rp&1, (26d)

2Ay"

[1 —4Ay"Ql+ (o,/rp) y
——"]pl+ (o./rp) y- —"

(26e)

A = Ae @' = Ay" « 1, (27a)

cf. Eqs. (25) and (21).
A MSRF configuration will be nearly Newtonian if its

mass per unit proper length A is small and its dust par-
ticles orbit around the axis with a small velocity:

dip = dp+. + 2eln(rp/R)dz —v dR/R, (28a)

volves C energy: Choose an arbitrary radius rp and for
concreteness adjust the scale of z [Eq. (15a)] so that
proper length and Killing length coincide at rp, i.e. , so
Eq. (26a) is satisfied. Then among at/ MSRF configura
tions mth fixed o. and A and mth R & rp, the ones that
are in equilibrium are those that extremize CMSRF with
respect to variations of R. Moreover, every one of these
extrema is a minimum of CMsRF. (In Sec. IV we shall
prove that for the situations of interest in this paper,
there is precisely one minimum. )

These properties of equilibria can be proved as follows.
Since CMsgF = s(1 —e ~') is a monotonically increas-

ing function of pp, it suffices to prove these properties for
pp instead of CMsnF. Consider the first-order change dip
of pp caused by a change dR of R. Equation (25b) implies
that

u= = —y
A A

Be-& rp
(27b)

where, by (25a) and (26a),

ln(rp/R)dtc = r dR/R+ dg, , (28b)

If, in addition, the Newtonian potential difFerence be-
tween r = rp and r = R is small,

and, by (25d) and (25e), with A = Ae @' and u
n/Re-+,

Aln(rp/r) « 1, (27c)

then throughout the region r & rp the configuration's
gravity can be approximated by Newtonian theory, and
the relativistic equations (26) reduce to

dp+ ———2zdg, —2)m dR/R.

By combining Eqs. (28a)—(28c) we obtain

dip ——~(~ —2u )dR/R,

(28c)

(28d)

~=2A, (27d)

(Rl
CMsRF = &+2& + z+&2Rz (rp j (27e)

Since, in this Newtonian situation, A A and R 'R, ex-
pression (27e) for the C energy CMsnF(R) is the same as
Eq. (3) for the Newtonian energy per unit length CMs(R).

A relativistic MSRF configuration will be in perma-
nent, static equilibrium if and only if A = d2R/drz = 0,
i.e., if and only if A = A,q(u); cf. Eqs. (25f) and (8),
Fig. 2, and the discussion in Sec. ID.

An alternative, equivalent criterion for equilibrium in-

d pp = ~ (d~ —4udu) . (29a)

By combining with Eqs. (28b), (25d), (8), A = Ae @,
and u = rz/Re @' and performing a series of manipula-
tions, we bring this into the form

so pp is extremized if and only if e = 2uz. By virtue of
Eq. (25d) for e, this is equivalent to A = A,~(u). Thus,
the equilibria are the MSRF configurations that extrem-
ize pp, as claimed.

To show that these equilibria actually minimize pp, we
compute the second order change d pp produced by dR
when A = A,q(u), i.e. , when r = 2u2. Equation (28d)
implies that

2 (dR'll 1+2u z 1+2u ln(rp/R)(1+2u )
( R J ln(rp/R) 1+2u ln(rp/R)[1+4u +u /(1+u )]

(29b)

The last fraction is obviously less than unity, and this
implies that d pp is positive and thus pp and hence CMSRF
is minimized by the equilibrium configurations. Q.E.D.

IV. QUALITATIVE FORM OF C ENERGY
FOR MSRF CONFIGURATIONS

CMsRF(R), when the outer radius rp is chosen arbitrarily
large and the shell's initial configuration is MSRF with
some specific initial values R, of 'R and A, of A. In this
case the initial configuration has a mass per unit Killing
length A and a value r, of r given by [cf. Eqs. (26a),
(25a), (25d), (21), and A = Ae @, 'R = Re @']

Of special interest for analyzing the dynamical evolu-
tion of a shell (Sec. I E) is the form of pp(R) and thence ~=A, (rp/Z. )"«'+" & (30a)
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2A,

(1 —4A, /1 + a2/'R, ) gl + a /'R,
(30b)

Since rp/7Z, is arbitrarily large and r, is positive, A is
also arbitrarily large. With A being arbitrarily large and
oc ro' +"', it becomes fairly straightforward to deduce
the qualitative form of pp(R) and thence CMsHF(R):

These two functions of B are given explicitly by
Eqs. (26). By examining these equations one ean show
[15] that the only places where pp —+ oo (for rp arbi-
trarily large) are at R -+ rp and R ~ 4Aa. Since pp
is always positive and the only extrema of pp(R) are
minima (cf. Sec. III), this implies that as R varies from
R b; = 4Aa to rp, 7p(R) decreases from oo to a single,
unique minimum at some R = R,q, and then increases
to oo at R = rp. Correspondingly, CMsnF(R) [Eq. (26b)]
decreases monotonically from its maximum allowed value
of 1/8 at R~b, ~;„=4Aa to a minimum at R,q and then
increases monotonically back to 1/8 at R = rp This.
is the qualitative behavior that we stated and used in
discussing the dynamics of a shell in Sec. I E.

than for the corresponding MSRF one. In our proof we
shall denote g:—Q, i and @':—Q,„.

Proof. We proceed in two steps. First, we hold the
dynamical configuration's Q(r) and Q(r) fixed and vary
only its shell velocity V. Prom the junction condition
(24b), Eq. (20b), and A = Ae ~', it follows that

e ~+ & e ~- —4A/1+ u2, (31a)

e ~'~v=p = I—:J(K —4A/1+u2)

where

(31b)

K —= e ~- =exp r(Q +g' ) dr, (3lc)

with the equality holding if and only if V = 0. Combining
this with the field equation (16b) and boundary condi-
tion (17), we learn that, when V is varied, e ~' takes on
an absolute maximum value at V = 0. The value of that
maximum is

V. C ENERGY OF DYNAMICAL
CONFIGURATIONS

J =exp
7p

r(g'+ g")dr (31d)

We are now ready to prove that the C energy of a
dynamical configuration is ahuays greater than that of a
MSRF configuration that has the same a, A, R, and gp =
g(rp) = 0, but difj'erent V, Q(r), and Q &(r) [Eq. (9)].
Since Co is a monotonically increasing function of po, it
sufBces to prove that po has this property, or equally well
that e ~' is always smaller for a dynamical configuration

I

In our second step, we hold V = 0 and ask how e ~' =
I changes as we vary Q(r) and Q(r) It is st. raightforward
to compute the first order change 6I of I around any
configuration [any g(r) and @(r)], with a, A, R, V = 0,
rp, 'leap

= 'tP(rp) = 0, and Qp
—= Q(rp) = 0 held fixed, and

with A = Ae &', u = ae@'/R, and the junction condition
(24a) imposed. The result is

bI = -2I
7'p 7 p

rg6$ dr —2JK rg6i/i dr + 2I (rQ')'6Q dr + 2JK (rQ')'6Q dr,

which implies that I is extremal (6I = 0) if and only if g = 0 and (rQ ) = 0, i.e. , if and only if the configuration is
MSRF. In fact, the extremum of I is a maximum, as one can show by computing its second variation [using in the
computation the fact that the junction conditions (24a) and (24b) must be satisfied by the perturbed configuration
as well as the MSRF one]:

62I = —2I r(6@ + 6Q' ) dr —2JK r(6@ + 6g' ) dr

—4J(6$,)', ,i, 1+2u'+, & 0.A 2 4Av'1+ uz

1+ uz s/2 1 —4A 1+u2
(31f)

To recapitulate, in our 6rst step we found that, when V
is varied with @(r) and @(r) held fixed at any values one
wishes, then e ~' reaches an absolute maximum, e ~' =
I, at V = 0. Then in the second step we found that when
V is held equal to zero and g(r) and @(r) are varied,
e ~' = I reaches an absolute maximum when g(r) and

Q(r) assume their MSRF values. Therefore, among all
configurations with fixed a, A, R, and Qp = 0, the MSRF
has the absolute maximum value of e ~' and the absolute
minimum C energy Cp. Q.E.D.

This extremal property of the C energy, together with
the properties of CMsnF(R) derived in Secs. III and IV,
are all that we needed in Sec. I E to infer the qualitative,
dynamical evolution of the shell —with one exception: We
also needed the fact that the gravitational waves emitted
by the shell's oscillations carry away C energy. This we

prove in the next section.

VI. C ENERGY OUTFLOW
The rate of change of the C energy C = s (1 —e ~)

inside a radius r is given by
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1 -~ 1 -~
(32)

cf. Eq. (16c). We shall now show that at any radius
r » R, g q@ „ is negative and thus C t & 0, which means
that the waves carry away C energy.

The general outgoing-wave solution of the wave equa-
tion (16a) is

y= R A(~)e ' 'H&'&(~~)d,
0

(33a)

Q„= Re (JA(ur)—e ' Hi (err) Cku . (33c)

Using the limit H (x) g2/mxexp[i(x —rn7r/2—x))1

vr/4)], we see that

HI'&(~r) - -iH,"&(~r), (33d)ur)) 1

which implies that the contributions from all frequencies
(d )& 1/r satisfy Q t,

———g„and thence Q &Q „& 0 as
was to be proved. But what about contributions from
ur & 1/r? Because @is always finite and f0*' x"Hs (x)dx
converges only for n & —1, it is always the case that as
(d ~ 0, A((d) ~ u" with n & —1. This implies that the
low-frequency, cu & 1/r, contributions to g q and g „are

g,g(u) 1/r) g, ,(u) & 1/r)
1

(34)

which are negligible compared to the O(1/~r) contribu-
tions from u )) 1/r when r is sufFiciently large. Thus,
for large r the waves necessarily carry C energy outward
through radius r (C q

= 4e ~Q qg, , & 0). Q.E.D.

VII. CONCLUSIONS

In Secs. III—VI we have derived all the properties of
the C energy that were needed, in Sec. I, to infer the
dynamical evolution of a thin, cylindrical shell of counter-
rotating dust: By giving the dust particles arbitrarily
small amounts of angular momentum per unit mass, we
guarantee that centrifugal forces will convert the shell's
collapse into a bounce, thereby preventing formation of
a singularity. After its bounce, the shell will oscillate
radially, and then as gravitational waves carry away C
energy, it will settle down into a static, equilibrium state.
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APPENDIX A: RADIAL NONCLOSURE
OF SPACE

In this appendix we show that, if the space around an
initial, MSRF configuration is not closed radially, then
throughout the shell's spacetime to the future of the ini-
tial configuration we can introduce coordinates (t, r, z, t&&)

in which the line element takes the canonical form (1)
with0&r &oo.

The proof begins by introducing coordinates (t, r, z, (t )
in which the line element takes the form (12). Such coor-
dinates are permitted throughout any cylindrically sym-
metric spacetime with vanishing net momentum density
along the Killing directions [10,11].

Following Thorne [11],we define the character of space-
time at any event to be D(+& if VP is spacelike and
points away from the symmetry axis, D~ & if VP is space-
like and points toward the symmetry axis, D~s"& if VP
is timelike and points toward the future, and D~s1& if
VP is timelike and points toward the past. [Recall that
P = ~8/8z~ ~8/8$~; cf. Eq. (12).] The vacuum field equa-
tion P,—, —P„-„- = 0 [Eq. (13)] implies that spacetime
can change character only on radial null surfaces, which
Thorne [11] calls critical surfaces, or across the nonvac-
uum dust shell.

The nature of the character change across any critical
surface is constrained by the geometric optics focusing
equation for radial null geodesics (Eq. (22.37) of MTW
[4]). This equation implies that P can never have a min-
imum along any ingoing or outgoing radial null geodesic;
this, in turn, implies that the only kinds of (vacuum)
critical surfaces that can ever exist are these: An out-
going null surface with spacetime character D( & in the
past and D~o"& in the future or with D~o~& in the past
and D~+& in the future, and an ingoing null surface with
character D~+& in the past and D~oi& in the future or with
D(s~& in the past and D~ & in the future.

The nature of any character change across the dust
shell is constrained by the junction condition for the (tP
component of the extrinsic curvature [generalization of
Eq. (24b) to the case where spacetime is not necessarily
D~+& on both sides of the shell). This junction condition
says

P+ „—P „=—4A/1 + u' & 0 . (A1)
Since P is continuous across the shell and VP = P e +
P „e„(where the notation is that of Sec. II B, generalized
to the case where the spacetime character is not neces-
sarily D~+& everywhere), Eq. (Al) implies that, as one
moves from the shell's interior to its exterior (its "—"
side to its "+" side), the only allowed character changes
are D~+~ to any other character, and Dt t~ or D~ ~~ to
D(—)

By hypothesis, there is an initial MSRF configuration
in which space is not radially closed. The fact that this
configuration is momentarily static implies that nowhere
on its spacelike hypersurface can spacetime have charac-
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ter D~ 1 ~ or D~ &&; radial nonclosure means the character
must be D~+& far outside the shell; and smoothness of
spacetime near the symmetry axis implies character D~+~

there. These constraints on character, together with the
constraints on character change listed in the preceding
two paragraphs, imply that on the initial hypersurface
the character is everywhere Dt+~.

As the spacetime evolves forward off the initial hyper-
surface, the only way any change of character could occur
would be if a future-directed, ingoing or outgoing criti-
cal surface were to be created at some moment at the
shell's location. By examining various hypothetical char-
acter changes across such a critical surface and across
the shell to its future, one discovers that there are no
patterns of character change that satisfy the above con-
straints. Therefore, the spacetime character must remain
D&+& throughout the future of the initial hypersurface.
Q.E.D.

APPENDIX B:RADIAL NONCLOSURE
FOR MSRF CONFIGURATIONS

Inside any MSRF configuration, spacetime is flat and,
therefore, in the notation of Sec. IIB and Appendix A,
P „=e@'. This, together with A = Ae @' and the
junction condition (Al), implies that

e @'P+„——1 —4A/1+ us (»)
In order for space to be radially nonclosed outside the
shell, the character must be D~+& there rather than D~

(these are the only possibilities for a MSRF configura-
tion, cf. Appendix A); this corresponds to the require-
ment that P+,„must be positive and not negative; this,
by virtue of Eq. (Bl), corresponds to A/I + u2 ( 1/4.
Thus, for a MSRF configuration space will be radially
nonclosed (character D(+) everywhere) if Av'I + u
1/4, and radially closed (character D( ) outside the shell)
if Av'1+ u2 & 1/4.
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