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Stochastic inflation: Quantum phase-space approach
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In this paper a quantum-mechanical phase-space picture is constructed for coarse-grained free quan-
tum fields in an inflationary universe. The appropriate stochastic quantum Liouville equation is derived.
Explicit solutions for the phase-space quantum distribution function are found for the cases of power-
law and exponential expansions. The expectation values of dynamical variables with respect to these
solutions are compared to the corresponding cuto6' regularized field-theoretic results (we do not restrict
ourselves only to (4 )). Fair agreement is found provided the coarse-graining scale is kept within cer-
tain limits. By focusing on the full phase-space distribution function rather than a reduced distribution
it is shown that the thermodynamic interpretation of the stochastic formalism faces several diSculties
(e.g., there is no fluctuation-dissipation theorem). The coarse graining does not guarantee an automatic
classical limit as quantum correlations turn out to be crucial in order to get results consistent with stan-

dard quantum field theory. Therefore, the method does not by itself constitute an explanation of the
quantum to classical transition in the early Universe. In particular, we argue that the stochastic equa-
tions do not lead to decoherence.

PACS number(s): 98.80.0r, 03.70.+k, 05.40.+j
I. INTRODUCTION

The paradigm of stochastic inflation, first introduced
explicitly by Starobinsky [l], has recently become popu-
lar as a means of investigating various features of
inflation. Some studies using this formalism are those of
density perturbations from inflation [2], the very large
scale structure of the Universe [3], "eternal inflation" [4],
power-law inflation [5,6], and speculations regarding the
relationship of this formalism to quantum cosmology [7]
(this list is by no means exhaustive).

It must be admitted, however, that there is still no
iron-clad justification for the systematics of the method
nor, for that matter, a clear-cut interpretational scheme.
The claim at issue is that the infrared behavior of mass-
less or small mass quantized scalar fields in an
inflationary universe can be described in terms of a real
time classical random process. The source of the noise is
taken to be large scale quantum fIuctuations which are
continuously generated in an inflationary universe by red-
shifting of the ultraviolet sector. A key question here is:
can these quantum fluctuations be treated as being classi-
cal?

These fundamental issues have been considered previ-
ously for free fields [8]; however, the situation for in-

teracting fields is not clear, and it is not obvious how far,
if it all, any of the present "derivations" are correct [9].
In this paper we leave aside for the moment the problem
of interacting fields and attempt a further clarification of
the issues addressed in Ref. [8]. To do so we will derive a
phase-space quantum master equation for a quantum dis-
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tribution function (the Wigner function) and study its
solutions. In our stochastic approach averages with
respect to this distribution function are supposed to
reproduce quantum field theoretic expectation values. A
study of the solution itself is supposed to enable one to
judge the "classicality" of each physical situation. The
new method is distinct from the conventional approach
(where one takes as given a classica/ Langevin equation),
and enables the inclusion of crucial quantum correlations
that have been unjustifiably neglected in the past.

A subtle and important aspect of the Wigner distribu-
tion function is the fact that essential quantum features
are hidden in quantum correlation "cross terms" that
disappear when one integrates over any one of the phase-
space variables to produce a one-variable (necessarily
positive definite) distribution function. Such a reduced
distribution is essentially useless as a diagnostic tool for
studying quantum correlations in phase space (as will be
seen forcefully in this paper). Unfortunately it is on pre-
cisely such objects that attention has been focused till
now. Here, with the full Wigner function at hand we will
be able to go much further with regard to clarifying the
physics behind the stochastic approach. It has been no-
ticed previously [8] that the reduced distribution for a
massive scalar Geld in de Sitter space has, at late times, an
intriguing thermodynamic interpretation: it corresponds
to a Boltzmann distribution at the Gibbons-Hawking
temperature. However, the full distribution found in this
paper does not have a thermal form even though the re-
duced distribution is the same. This can be traced direct-
ly to the fact that quantum correlations have not been
neglected; indeed they are every bit as important as the
remaining contributions. We will go more deeply into
this question in Sec. V.

It has long been appreciated that the stochastic ap-
proach probes the infrared sector of the relevant field
theory. The length scale is set by a certain parameter e
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which is usually taken to be small (i.e., attention is
confined to length scales much larger than the time-
dependent horizon length). Assuming inflation began at
a finite time in the past, one cannot take e to be arbitrari-
ly small independent of the time scale of interest: a small
e is consistent only with the "late times. " It is also well
known that the quantum theory of free fields in an
inflationary spacetime has a nontrivial infrared sector
and that a simple (though certainly not rigorous) way to
calculate expectation values of field variables is to set an
upper momentum cutoff at the Hubble scale (correspond-
ing to e= 1). The stochastic picture conflicts with these
field-theoretic results unless e is small; this is due to the
fact that in the stochastic approach one focuses essential-
ly on the zero mode and attempts to include inhomo-
geneities only through a noise term. Though this approx-
imation appears to be quite drastic, we will show that the
stochastic calculations even for e-1 are never too far
from the naive field-theoretic results. (Unlike some previ-
ous work, our formalism does not restrict the value of E).

Previous work in stochastic inflation has concentrated
mainly on the quantity (4 ). In this paper we extend
the method to compute (4m+m4) and (m ). Such
quantum averages would be needed if one wished to corn-
pute the expectation value of the stress tensor. (While for
a small mass Geld, and an exponential inflation, the dom-
inant contribution to to (T„) is from terms ~(4 ), it
is important to check if the calculation of the other terms
is trustworthy. ) Earlier approaches to stochastic inflation
implement approximations which lead to incorrect values
for these quantities. Indeed, precisely these approxima-
tions formed the basis of some arguments about stochas-
tic inflation leading to an automatic classical limit for the
quantum field theory. We will argue against any such re-
sult in Sec. V.

An interesting (and somewhat uncomfortable) feature
of the quantum phase-space distribution found in this pa-
per is that, in some cases, it depends quite strongly on e
and is indeed singular in the limit @~0. Therefore, while
it is true that (4 ) (as well as the reduced distribution
for the field alone) may be independent of e for small
values of e, this parameter does not drop out of the phys-
ics. A finite value of e is necessary for the distribution
function to exist; this is true even for a massive field in an
exponentially expanding Universe where to leading order
all quadratic phase-space expectation values are indepen-
dent of e.

An important issue that seems to have received
insufficient attention in the stochastic inflation literature
is a discussion of the role of initial conditions. Massless
theories in inflationary spacetimes suffer from infrared
divergences. Typically these divergences are "fixed" by
assuming that inflation began a finite time in the past and
thereby modifying the infrared structure of the quantum
state of the field. Expectation values then have two
contributions: one each from the preinflationary
and inflationary sectors. One can show that the
preinflationary contribution falls rapidly with time and
can always be neglected compared to the inflationary one
(see the Appendix). In the stochastic paradigm there are
also two contributions to expectation values: a systemat-

ic piece arising from the dynamical evolution of an initial
condition and a stochastic piece due entirely to the noise
source. We will show that, while at late times, and for ar-
bitrary initial conditions, the second piece always dom-
inates the first, this is not true at early times. While the
matching of the quantum states in the preinflationary and
inflationary regimes at the onset of inflation can also pro-
vide an initial condition for the stochastic method, the
time dependences of the systematic contribution in the
stochastic method do not always match the time depen-
dences of the preinflationary contribution in the field-
theoretic calculation. This fact coupled with the small e
restriction might limit the application of stochastic tech-
niques in accurately studying the onset of inflation. The
use of the method for studying phase transitions in the
early Universe should also be approached with some cau-
tion [10]. (Of course all this is not a serious problem if
one is only interested in late-time results. }

The attempt in this paper is to push the formalism of
stochastic inflation as hard as possible in simple exam-
ples: we find that some of the appealing original results
no longer appear as compelling as at first sight. Howev-
er, it is still a remarkable fact that a simple stochastic
model suffices to (almost) correctly calculate field-
theoretic expectation values and further that the essen-
tially nonstationary phase-space distribution nevertheless
yields a thermal (or "random walk" ) distribution for the
reduced distribution function. Whether this has a deep
significance is unfortunately not clear.

The organization of the paper is as follows: In Sec. II
we derive the appropriate stochastic quantum Liouville
equation for the coarse-grained field using the phase-
space formulation of quantum mechanics and obtain the
general solution. In Sec. III we apply these results to the
case of an inflationary expansion; power-law expansions
are dealt with in Sec. IV. The existence of classical sto-
chastic interpretations is discussed in Sec. V via a study
of the solutions of the quantum Liouville equation. We
conclude with Sec. VI where the results are reviewed and
future directions for research are suggested. The quan-
tum field theoretic derivations of the results obtained via
the stochastic approach are given in an Appendix.

II. THE STOCHASTIC QUANTUM
LIOUVILLK EQUATION

In this section we wi11 set up a formalism to study the
evolution of coarse-grained free scalar fields in a spatially
flat inflationary Friedmann-Robertson-Walker (FRW)
universe. We will work under the "test field" assump-
tion; i.e., the contribution to the stress tensor from the
field is taken to be small compared to that of the matter
driving the expansion. All of our results will therefore
not be applicable to an inflaton field but some may indeed
be extended to that case.

The line element for the spacetime is

ds = dt +a(t) dx dx—
=S(q) ( —dg +dx dx},

where, in terms of the cosmic time t, the conformal time
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dt'
a(t') (3)

A massive minimally coupled scalar field has the La-
grangian

X(@,@„)=——,
'& —g (g""4„4„+m 4 ),

which, with the metric choice (2), reduces to

X(e 4 )= ——'( —S 4'+S e 4 +S m 4 )

(4)

~ ~

«XX,„)=—
—,

—i'+X, ,X„+ S'm' —
S

X'

One advantage of working with the conformal field and
the Lagrangian (7) is that the equation of motion for the
field

0 ~

j' —V y+ S m ——y=O
S (8)

The overdot represents differentiation with respect to the
conform al time. In terms of the "conformal field, "
defined via the time-dependent canonical transformation,

y=S4,
and modulo an integration by parts, the Lagrangian (5)
becomes

yi(x, il) =S(i))4i,(x, i)) (14)

matter: The two Hamiltonian descriptions will, upon
canonical quantization, lead to inequivalent descriptions
in terms of different vacua. Furthermore, there are well
known diSculties if one chooses to select the time-
dependent ground state of the Hamiltonian as the "in-
stantaneous diagonalization" vacuum [11]. These prob-
lems will be of no concern to us as in our case the choice
of quantum state will be an independently defined adia-
batic vacuum (details will be given later). (We note in

passing that for spatially flat FRW models Weiss has
shown [12] that with the specific Hamiltonian (11) the in-
stantaneous diagonalization approach can be made con-
sistent with a "mode quantization' for certain special
choices of the latter. )

In our case there is a conceptually important conse-
quence of (11) being the chosen Hamiltonian. In the
stochastic-inflation literature there appears to be a ten-
dency of interpreting the Hubble damping term in (9) as
being of a truly dissipative nature. This runs the risk of
repeating an old error in quantum mechanics: the con-
fusion of a time-dependent mass with true damping [13].
Working with (11) and the associated equation of motion
(8) manifestly eliminates the possibility of such misinter-
pretations.

The scalar field is now quantized in the standard
manner [14];first we introduce the modes

does not have the first derivative in time "Hubble damp-
ing" term found in the equation of motion for the origi-
nal field

ik x

( ),
(2 )3g2 Xk

where yk ( il ) is a solution of

(15)

(g) +2 @ V2(g) +S2m 2(P —
OS

and that the canonical momentum

(9)
Xk +~k+k

with cok the oscillator "frequency, "defined via

is of the usual flat-space form.
The Hamiltonian corresponding to (7) is

2 2co~—=k + Sm S

The annihilation and creation operators with respect to
these modes, which satisfy the commutation relations

~ ~

H(y, mr)= —f dx irr+y;y, + S m

which is that for a free field in flat spacetime with a time-
dependent mass. The Hamiltonian equations of motion
are

[&k,& i, ]=5(k—k'),

[&),&g ]—0

are then used to build the field operator

y(x, i) ) =S(r) )4(x, il )

(18)

(19)

(20)
6H

7T
5m X

(12) = fdk[ai, yi,(xi))+,a ~q(x, il)] . (21)

5H 2 2 2 S
5y S=Vy — S m (13)

The form of the Hamiltonian (11), though "canonical, "
is hardly unique; if we had worked with some other
choice of time and field it would have been "natural" to
consider a different description in terms of a different
Hamiltonian. At the level of a classical treatment, and
even at the level of quantum dynamics, this difference is
largely irrelevant. However, there is an aspect of the
quantum treatment where such a difference does indeed

As is well known the annihilation and creation operators
are not umquely specified by (18) and (19). Further re-
strictions are needed to fix these operators and thereby to
uniquely specify the "vacuum" state annihilated by &&.

We will turn to these issues shortly.
A seemingly generic feature of inflationary spacetimes

is the "destabilization" of massless scalar fields [15,16]
due in part to infrared divergences [17]. To render the
quantum state infrared finite one assumes a benign
Robertson-Walker expansion in which there is no in-

frared divergent vacuum prior to inflation (a radiation-
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X=XL, +Xs

+8
(24)

(25)

The Heisenberg operators y and 8& satisfy the classical
Hamiltonian equations of motion. Substituting (24) and
(25) in (12) and (13) we find

yl =fL+F ), (26)

dominated universe, for example). The quantum state in
the inflationary phase is matched to an infrared finite
quantum state (e.g., the conformal vacuum) at the time
when inflation takes over from the previous epoch. It is
then possible to show that the new state is always free
from infrared divergences [17]. The key result, however,
is that the expectation value (4 ) in the infrared finite
(and ultraviolet regulated) state starts to grow at the on-
set of inflation; for power-law inflation (4 ) grows to an
asymptotic constant value, whereas in the ease of an ex-
ponential expansion it grows linearly with cosmic time
without any upper limit. These otherwise puzzling re-
sults have a natural interpretation within the framework
of stochastic inflation [8].

Crudely speaking, "destabilization" occurs when, with
m =0, the aPz term in (16) goes negative with the passage
of time, at ever higher values of k. Modes at long wave-
lengths behave as amplitudes for upside-down harmonic
oscillators (with time-dependent "frequencies") and due
to the inflationary expansion there is a continuous flow of
short-wavelength modes into this unstable infrared sec-
tor. Therefore we focus attention on the long-wavelength
modes, i.e., those with k &S/S, by defining the coarse-
grained quantum field

j'L, (x, r))= fdk8(ks k)[dq—y~(x, rl)+& ~f(x, ri)] (22)

and the corresponding coarse-grained momentum

8L(x, rl)= fdk8(ks —k)[8~q(x, g)+u ~Px, ri)] .

(23)

For the moment we will leave the upper cutoff kz
unspecified beyond the fact that it is set by S/S (however,
it is important to remember that this cutoff is time depen-
dent). The corresponding short-wavelength fields ys and

8& are defined by

(30)

(31)

It is also straightforward to compute that

(P;(x(,ri))P J(x2, r)2)) —28,J(x),x2, g))5(ri) —r12),

where, with R =
l x, —x2l,

sinks R
, kslksl

k Ixk (ni)l'
4~ k&R s

1 2
. »nksR

4m. kgR s s

(32)

(34)

sink+ R
ks l ks l

k xk, (ni )xk, (ni »

(35)

important to note that this contribution exists even for
free fields. )

In order to proceed further we have to decide which
quantum state the field is in during the inflationary phase.
It is known that the adiabatic vacuum suffers from in-
frared divergences; to produce states free of such diver-
gences one usually modifies the long-wavelength mode
structure of the quantum state (i.e., long compared to the
time dependent horizon length at the onset of inflation)
but leaves the short-wavelength structure the same. This
implies that the quantum state for computing expectation
values of F ', and P z, and of various powers of these
operators, is the adiabatic vacuum. Other choices are
possible when describing different physical situations, for
example, thermal states have been considered in Ref. [6]
and more general vacuum states in Ref. [8].

Eventually we will deal specifically with an exponential
expansion and with power-law inflation (i.e., where the
radius of the Universe goes as a power, greater than 1, of
the cosmic time). For such a Robertson-Walker universe
we will assume the quantum state for the short-
wavelength modes to be the adiabatic vacuum (which
reduces to the Bunch-Davies vacuum [18] for de Sitter
space). For the moment, though, all that is relevant is
that the chosen state by annihilated by the operator && of
(21), so that

~ ~

81 =V' jL —S m ——jr +f2, (27) »nksR
8„(x„x„g,)=,kslksl leak (rI))l' . (36)

4~ k&R s

where

F;(x,g) =is fdk5(k —ks)[e„g„(x,g)+a t~„'(x,q)],

P ~(x, g) =ks fdk5(k —ks)[&„y„(x,q)+u ~k(x, rI)]

(29)

The new terms P
&

and F 2 arise simply because ks is time
dependent. These terms represent the inflow of short-
wavelength modes into the infrared "condensate. " (It is

It is at this point that a stochastic interpretation suggests
itself. The quantum expectation value may be regarded
as an averaging bracket for the white (albeit nonstation-
ary) "noise" operators F t and F 2. Since we are dealing
with a free theory it is trivial to verify that the higher
moments of these operators are those appropriate for
Gaussian noise. The fact that the noise is white stems
from the theta function cutof in momentum space. Oth-
er cutoffs are certainly acceptable; however, they will lead
to the noises being colored and unnecessarily complicate
the derivation of the phase-space picture. We emphasize
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that physical results do not depend strongly on this
choice.

The "diffusion matrix" B,. has two curious features: it
is complex (albeit Hermitian) and singular. We will show
later that as far as the stochastic quantum Liouville equa-
tion is concerned what is really relevant is Bj+Bj;,
which not only is necessarily real but also has a nonzero
determinant. The complex nature of B, is essential for
B'j +Bj to be nonsingular. It is important to be cautious
when implementing approximations for the diffusion ma-
trix and not to prematurely throw out the essential imagi-
nary pieces. Finally, the fact that B&2 and B2, are com-
plex implies that these cross correlations cannot be un-
derstood on a purely classical basis.

According to the conventional stochastic interpreta-
tion we should view (26) and (27) as Langevin equations
for the classical stochastic variables yL and mL with F;
and F2 viewed as classical noises [19]. However, it is not
at all obvious why this should be true. The Langevin
equations (26) and (27) are operator equations and we
must have further information about the quantum state
of the system before any classical interpretation can be
accepted. Furthermore, the noise operators do not com-
mute:

i . sinks R
[F 1{x1 211)~~2(x2~ 92)] 2 "slks I

ksR

(37)

In principle the noises are certainly not classical: we will
go on to show that neglecting the quantum correlations
buried in the noises produces results conflicting with
standard field theory. (The question of the quantum state
and the quantum nature of the coarse-grained fields has
been taken up in more detail in Ref. [8] where it has been
pointed out that the coarse-graining by itself does not
lead to a set of classical equations. ) Here we follow a
different path by deriving a quantum stochastic Liouville
equation that incorporates, at least to some extent, the
correlations between the noises.

The fact that P ', and Pz do not commute implies that
(26) and (27) should be treated as two separate Langevin
equations. Strictly speaking it is not valid to substitute
(26} in (27) and treat the resulting equation as a stochastic
equation second order in time. This will lead to wrong
answers for averages involving mL. The approach we will
follow avoids this pitfall.

The Hamiltonian equations of motion (26) and (27) are
exact, as no approximations have been made so far. The
first approximation we make is to drop the spatial-
derivative term in (27); this is because we will be interest-
ed only in the behavior of the quantum field at "large"
scales. The coarse-graining will be implemented in the
sense of a temporal ensemble, i.e., we focus attention on
one spatially fixed coarse-grained domain and consider
the evolution of the coarse-grained quantum field defined
on that domain. The spatial coarse-graining and this in-
terpretation imply that all two-point objects be evaluated
with the spatial separation between the points being
much less than the coarse-graining scale, i.e.,
R (&2~k+ . With this limit in place and with the

neglect of spatial derivatives, the quantum Langevin
equations are

XL ~L+~ 1 (38)
~ ~

—S'm' ——X, +F2, (39)

where

(40)

and

1

2 ks I ks I I gk ( rl1 ) I (41)

1B, (ri, )= k Ik Iy (7J, )y„* (71,), {42)

1

, k s Iks Iik, (n1)Xk, (n1» (43)

1
22{ 71)= 2 ks Iks I Inks( 11) I (44)

where the time-dependent "frequency"

S
co =S m2: 2 2

S (46)

The coarse-grained field is now viewed as the coordinate
variable in the one-dimensional quantum-mechanical
problem specified by (45). The terms containing F', and

F2 are taken to represent stochastic external perturba-
tions with correlations specified by {40)—(44). {The Ham-
iltonian (45) is a time-dependent generalization of the
randomly forced oscillator considered previously in a
difFerent context by Merzbacher [20].} The idea now is to
study the one-dimensional quantum mechanical problem
instead of the original field theory. It is important to
note that for a quantum analysis we cannot just use the
equations of motion (38) and (39); a Hamiltonian is neces
sary. On the other hand, were we only interested in a
classical analysis, the equations of motion would su%ce.
(A discussion of this point is given in Ref. [21].)

Before proceeding further some cautionary remarks
are in order. First, while the above assumption is an im-
provement on previous work to the extent that we are not
assuming the system to be classical, it still does not con-
stitute a well controlled approximation scheme. In par-
ticular, the Hamiltonian (45) has been written down sim-

ply by fiat. Nevertheless, to see whether the results and
insights obtained using this approach are persuasive, our
attitude will be to take the formalism as it stands and
proceed as far as possible without any further assurnp-
tions. Second, there is a coordinate dependence inherent

Spatial variations within one coarse-grained domain can-
not be sampled by the coarse-grained field; this accounts
for the fact that there are no terms rejecting such a
dependence in (38)—(44).

The dynamical equations (38) and (39) can just as well
be obtained from the stochastic Hamiltonian

H(yL, mL) = ,'rrL + ,'a1 (2—1)yL +—F;nL F2yL, —(45)



46 STOCHASTIC INFLATION: QUANTUM PHASE-SPACE APPROACH 2413

p(XL XL) g II j Pj(XL Wj (XL (47)

in the phase-space formalism we will be employing short-

ly: the distribution function is not invariant under
canonical transformations (this feature is generic to quan-
tum mechanics and is not specific to our problem). We
will return to these problems in more detail later on.

The quantum system is completely described by its
density matrix, which, written in the coordinate represen-
tation

ordering of operators [23]. A further obstacle to the
literal interpretation of a Wigner function as a true distri-
bution function over a classical phase space is the fact
that in general it is not positive definite. (Fortunately we

will not encounter the ordering problem nor the lack of
positivity in our example. ) More on the Wigner function
can be found in the reviews of Hillery et al. [24] and
Narcowich [25].

The Wigner transform of the quantum Liouville equa-
tion (48) yields

obeys the quantum Liouville equation

&P(XL&XL)=[H(XL) ~ (XL)]P(XL&XL) . (48)

fw(XL~PL~ I) Ofw(XL~PLi I)
an

Lsfw—(XL pL n» (55)

The passage to a quantum phase space is now made via
the Wigner transform [22] of the density matrix:

where the Liouville operator has been written as the sum

of a systematic piece

fw(XL PL)= f e ' 'P(XL+XL j'»X Lo =PL,
&X

XL
&

2

L BPL

and a stochastic piece49

(56)

where the new variables

XL (XL +XL

&i. =Xz, Xi.

(50)

(51)

The Wigner function fw(XL, pL ) is always real and prop-
erly normalized over phase space (for bounded systems);
moreover, it is square integrable (a property not shared in
general by classical distribution functions):

fdXLdpLfw(XL PL)=1, (52)

f dXL dpL fw(XL pL, )—2' ' (53}

where in the second expression the equality holds for
pure states. Quantum expectation values for functions of
yz and 8'I alone are given correctly as phase space aver-

ages with respect to the Wigner function, as, for example,

( h ( 8L ) ) =f dXL dpL h (pL )fw(XL, pL ) (54)

but not for mixed operators such as y I 8I . This is relat-
ed to the ordering problem in quantum mechanics; the
Wigner formalism is associated with Weyl's rule for the

Ls=F'& +F2
L PL

= ~ a
Ff —(z&

—XL, zz —
pL ) .' az;

(57)

(58)

LOg LOq—
8

v(XL pL ~}= eLse —o(XL pL ~)
an

=Q(rj)o(XL,pL;rj) .

(60)

(61)

This equation has the forrnal time-ordered exponential
solution

We now implement the strategy of Kubo [26] in order to
obtain a simple derivation of the stochastic quantum
Liouville equation (cases more complicated than the one
considered here are treated elsewhere [21]}.To begin, we

focus attention on the dynamical e8'ect of Lz by shifting

to the interaction picture
—L0r]

fw(XL, PL;rj)=e ' cr(XL,PL;rj) .

In terms of o(XL,PL', rj) the Liouville equation (55) be-

comes

I1

o(XL,PL , rj)= 1+ d'rj, Q(g, )+f dg& f dr)2Q(g&)Q(g2)+ . o(XL,PL,'go)
7f0 Ip Ip

exp dq'0 q' g &~,pz., go
gp . . T

(62}

where the initial value cr(XL,PL, go) is specified at some initial time rjo. All the noise terms come multiplied together in
each term of the series. If we take the average over noise of (62), these terms will either be zero, or will produce 5 func-
tions. It is easy to see that only the quadratic product of noise terms needs to be computed, this following from the
Gaussian nature of the noises. With ( )& denoting an average over noise, we find

a2
(Q(g, }Q(r)2})~=2Bj(rj,)5(g) —rj2) e ' ' e'a, a: (63)

The noise averaged version of the time-ordered exponential solution (62) then turns out to be
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a2
( o (XL PL /) &N II(XL PI. Ijo)+ f IjlBj( I'jl )

g
e ( 1I XI. PL 91)&N

QQ zi az. C, 64)

which may be immediately differentiated to yield

a LQg a —LQg
&~(XL pL /)&N Bj(n) e '

Z Z
e ' &~(XL pL n)&N

an
[.

Zf ZJ

We recall that the transformation to the interaction picture involved only Lo, which is of course unaffected by averages
over the noise. Therefore, there is no difficulty in writing (65) in terms of the original distribution function:

a a'
&fw(XL PL'rj) &N= I o&fw(XL PL a) &N+B j(a)

& &
&fw(XL PL'rj) &N .

an Zf ZJ
(66)

This is the required stochastic quantum Liouville equation and, as is obvious, it has the standard Fokker-Planck form.
Alternatively, (66) may be written in a more convenient form in terms of the explicitly symmetrized diffusion matrix
D;, =(B, +B; ) as.

a 1 a(fW(XL PL 9) &N
= Lo(f w—(XL,PL, 1) &N+ D(&(v))—

~
(fw(XL PL' )) &N

an
(67)

The stochastic equation (67) and the nature of its deriva-
tion merit a few clarifying remarks. First, it is not neces-
sary to being with the Wigner formalism; we can just as
well employ the density matrix (either by following the
procedure used here or the influence functional approach
[27]). The stochastic equation for the density matrix can
then be converted to one for the Wigner function by im-
plementing the "twisted product" [25]. Second, as only
the case of free fields is treated here, the Hamiltonian is
at most quadratic in the dynamical variables. This is why
(67) is of the standard classical Fokker-Planck form; such
a simplification does not obtain in general [21]. Of
course, even if the form of (67) is classical, this does not
imply that all solutions be classical distribution functions.
It should be emphasized though that XL and pL are not
operators and can be treated as ordinary classical objects.

We point out that there is no need to invoke any ad hoc
thermodynamic analogy (e.g., fiuctuation-dissipation rela-
tions) in our derivation of the stochastic quantum Liou-
ville equation as was done by Graziani [28] in a first at-
tempt to apply the Wigner-function formalism to sto-
chastic inflation. As we will show in the following sec-
tions, such relations do not hold in general and any anal-
ogy with conventional Brownian motion must be treated
with extreme caution. A related remark is that since (67)
is formally a master equation one might expect to define a
suitable entropy satisfying some variant of the 0 theorem
[29]. For example, it is easy to see that because of the
diffusion term, the "linear entropy" or "mixing parame-
ter" Trp = J dXLdpLf~~ will always decrease with time

(implying that the quantum state is getting more and
more mixed). This must not be interpreted in the sense of
"quantum decoherence" [30] as we are dealing with a free
theory and there is no coupling to some external environ-
ment. (One way to understand this result may be that
this decrease simply mirrors the loss of information in-
herent in our time-dependent coarse graining. )

Finally we draw attention to some technical issues.
Note that no assumption is needed as to the symmetry
properties of B,, (rj); this allows for the fact that the

noises do not commute. Note also that while separately
B,z and B2, need not be real, they appear in (66) only in
the symmetrized combination B,2+B2, (since partial
derivatives commute), which, as is clear from (42) and
(43) is always real. The derivation of (67) is also free from
any kind of "slow-roll" assumption although this merit is
mainly technical as physical results at late times remain
unaffected when such conditions are imposed (see Ref.
[8],Appendix A).

We now turn to the problem of solving the stochastic
quantum Liouville equation. Formally, the solutions are
not difficult to obtain as (67) is just a Kramers equation
describing a time-dependent Ornstein-Uhlenbeck process
[31]. The average values satisfy

d„&z,&„=A,j(~)(zj & (68)
dn

given the initial condition (z, (go) &N=zo. The matrix
A; is definedby

aLoft=A;,
~ «Ifw)

zi
(69)

and in our case, A11= A2z=0, A i&= 1, A21= —oI (g).
The propagator for the average values (z, &, G;I, satisfies

d
G;, =A;kGk, , G;I(rjo)=5;, .

dn

The second moments follow from

(70)

d
(z, z &N=A, k(zi, z &N+ A k(z, zk &N+D, . (71)"

dn

This equation is also obeyed by the covariances
:-,j= (z,z &N

—(z, &N (z &N, which can themselves be ex-

pressed in terms of the propagator as

:-(g)=G(g):-(ijo)G(i) )

+ dn'G nG 'n'Dn'G 'n'Gn
9Q

(72)
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X exp ——(z —(z )„):- (z —(z )„)1

2

(73)

The function W(z, rl;zp, rip) serves as the ProPagator for
the Fokker-Planck equation (67). Solutions for arbitrary
initial conditions fs,(zp 'gp) can be generated from it by

fz, (z, g)= f dzpW(z r/'zp 'gp)fear(zp 7)p) . (74)

These general results will be applied to exponential and
power-law expansions in the following sections.

III. EXPONENTIAL INFLATION

The case of a de Sitter expansion furnishes a particular-
ly simple example in which to implement the procedures
of Sec. II. Our stochastic approach not only reproduces
some previous field theoretic results but also introduces a
new interpretive framework. In this section we aim
mainly to obtain quantitative results.

The scale factor for de Sitter space is

S(q)=— 1

Hog

and the conformal time

(75)

The first term is the systematic contribution arising from
a reversible dynamical evolution from the given initial
condition. The second term represents the irreversible
stochastic contribution due to the diffusion matrix.

It can be shown [31] that the general solution of (67)
with 8-function initial conditions W(z, alp) =g,.5(z; —z;p)

1s

1
W(z, 21;zp, gp) = (Det=)

2~

"unstable" sector is characterized by k (2/2l . There-
fore, following Starobinsky [1]it makes sense to set

ks(21) =—
71

(78)

where e is a constant that serves to parametrize the
cutoff. If we assume that inflation began at time go, im-

plying a natural infrared cutoff rip
' (more details may be

found in the Appendix), it is clear that E cannot be arbi-
trarily small, as we must have eg ' & go '. If one is in-

terested only in late-time results, i.e., when g &&go, then
e may be taken to be small. In this paper we will not re-
strict e to be arbitrarily small but will allow it to be as
large as unity. In principle, it is desirable that physical
answers not depend on e; this will turn out not to be the
case. As will be shown later all infrared divergent quanti-
ties are only weakly dependent on e, but this does not
hold in general (the situation is more complicated for
power-law inflation). Our stochastic approach will

correctly reproduce the cutoff dependences for infrared
finite quantities calculated from conventional quantum
field theory (see the Appendix).

A curious special property of de Sitter space is that
even when the mass is nonzero (no infrared divergence),
there is still an initial growth of (4 ) to an asymptotic
limit (4 )an, which is the value in the Bunch-Davies
vacuum [15]. The mathematical reason for this behavior
is simply that the mass and curvature contributions in
(77) scale identically with conformal time and that for m

small compared to Ho there is still an "unstable" infrared
regime despite there being no infrared divergence. As
will be made clear in the next section, this feature is not
shared by power-law inflation.

The mode equation (77) admits the general solution

211/2e ivy/2H(1)
( k21 )+C rll/2e —ivm/2H(2) (k71)

—Hot
e

Ho
(76)

where

(79)

We note that here we are not really interested in the case
of an eternal de Sitter expansion. Initial conditions for
stochastic inflation will be assigned in the finite past, at
the beginning of the inflationary phase.

The scalar field modes now satisfy

2

xk+k+ 2 2
2 xk —0 (77)

Ho

If the mass is zero or at least small compared to Ho, the

9 m'
V

4 H,'
(80)

The arbitrariness of the de Sitter vacuum is reflected in
the various possible choices for C, and C2. In this paper
the quantum state we will use is the Bunch-Davies vacu-
um [18],characterized by C1 =0 and C2 =&~/2.

The symmetrized diffusion matrix D; now follows
from (41)—(44):

3

D„(21()=2B„()l)) = I( (81)

3

D(2(rl() =B)2(g()+B2)(F12)= rl( Re H' '(e) ——v H'„'*(e)+EH' '*1 (e)

=D2)(vl(),

e 1
2

D22(2l) ) =2B22(rl) ) = 2l)
——v H„(e)+EH„'1(e) (83)
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Our eventual goal is to solve the Fokker-Planck equa-
tion (67) given the diffusion coefficients (81)—(83). The
potential term in the systematic component (56) of the
stochastic Liouville operator is characterized by

co (g)= ——v
1 2 1

(84)
4 ~2

For all the cases we consider in this paper co (g) will be
negative (as v ) —,'). We are dealing therefore with a
time-dependent upside-down harmonic oscillator. The
equation for the propagator (70) can now be easily solved,
and in terms of the initial time go, we find

v+ 1/2=1G()(g)= (v —
—,')

2v 10

HI)2(kg) =i 2k
1/2

e
—ikg

(89)

H"' (kg) = 2k'
1/2 —ikg

(i —kr)) .
(kg)

(90)

The diffusion matrix then takes the simple form

Dll('91)= '91 (I+e )
1 3 2

4m.

1 4D,2(v), ) =D2, (g, ) =-
4m.

(91)

(92)

considered in this paper.
We now confine attention to the massless case where

the parameter v= —,', and

—v+ 1/2

+(v+ —,
'

)
7/Q

(85) Dq2(r)))= r), (1 e+—e ) .
—5 2 4

4~
(93)

)
1/2

( )
990 'g

12 9
V go

12

G, (r))= (gg )
2v 90

v —1/2
1

Gq2(ri) = (v+ —,
'

)
2v Yfo

' —v —1/2

+(v —
—,
'

)
7l

90

(86)

(87)

(88)

This is the general solution, valid for all the special cases

Note that to leading order (for e((1) the diffusion ma-
trix is independent of e. It is misleading, however, to
conclude that the actual value of e is not important, as at
this order Det ",

1
=0 (notice that this is a direct conse-

quence of retaining noise cross correlations). In order to
eventually obtain a nonsingular covariance matrix we
must go beyond this level of approximation; the final
solution for the Wigner function is in fact strongly depen-
dent on e.

It is a tedious but straightforward exercise to obtain
the covariance matrix using (72). We assume an initial
distribution such that z;0 =0 but impose no conditions on
:";(go). Ignoring for the moment the systematic com-
ponent, the stochastic contribution turns out to be

ln( / ) 2 490 ~ 1+
E' + E

4~292 3 9

2 2

1 ——
18~2q2 4

2 2 3E' 'g
1

E + 7j

18m' go 3 12go
(94)

n(70 ) e E E1+—+—+
4~253 3 9 36~2~3

2 C2 62~3
1 ——+

36m go 3'9o

(95)

22

ln(go/r) ) e2 z4
1+—+-

4~2q4 3 9

2 2 2

1 ——+
9m g 9agg

g2 /2' 3

1 ———
69o

(96)

One can easily check using (72) and (85)—(88) that at late times the systematic contribution to the covariance matrix is
negligible compared to the stochastic piece. (Initial conditions are discussed further below. )

The full solution for the noise averaged Wigner distribution function follows trivially from (73) and (74). In this sec-
tion we will concentrate only on the covariance matrix itself, as all average values of interest can be computed directly
from it. Detailed study of the distribution function will be postponed to Sec. V.

The covariance matrix (94)—(96) refers to the "conformal" variables XI and pL . Reverting to the original field 4, we

introduce new c-number variables P, and p, via the canonical transformation

x
S

(97)

(98)

The corresponding covariance matrix may be written as
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-(41 (y2 ) g —2

12 21 i'YcPc iN 12 g 11

22 {Pc)N ~ 22 ~~ 12+

(100)

(101)

where all averages of the type {z;(71)) vanish as a consequence of our choice z 0=0 for the initial condition. Compar-
ison with the field theoretic results is simpler if we introduce the ' velocity" P,

' (the prime denotes differentiation with
respect to cosmic time) in place of the canonical momentum p, . Noting that for de Sitter space, Inripl&=H0(r rp),
where tp denotes the beginning of the exponential expansion, and using (94)—(96), the new covariance matrix (for a
massless field) turns out to be

3 2 ~4

, (r —r, ) 1+—+-
4m

((t() 2 3Hp
1 ——

S 12~
~($) 4 4

22 & p —6H(t —t )

c N g6 24~2

2~2 2~2 2 26' Hp Vp 3H (t to) p p 3H0(t to)+ 1 ——— e 1 ——+ e
18' 4 1877 3 12

2 2~ ~~p —3H (t —t )0 0
—3H(t —t )

e 1 ——+—e 0 0

12& 3 6

(102)

(103)

(104)

The above results record only the stochastic contribution
to the covariance matrix. It is easy to compute the sys-
tematic contribution for an arbitrary initial choice of:-;.
from (72) and (85)—(88) (since the Wigner distribution
function must be square integrable we cannot take the in-
itial distribution to be a 5 function over phase space).
The contribution to =11 consists of a constant piece and
terms that fall off exponentially with cosmic time. Con-
tributions to =&2 and:-22 also display a similar exponen-
tial falloff. It is important to note that these contribu-
tions, though insignificant at late times, can dominate
similar terms that already exist in the stochastic piece
(especially for small values of e). Therefore, only the late
time limit is independent of initial conditions. This is in
contrast with the field theoretic case where the contribu-
tion from initial conditions is usually irrelevant even at
early times (see the Appendix). We also draw attention
to the fact that the exponential falloffs in the stochastic
calculation are not the same as the field theoretic ones;
again, this is of no consequence at late times.

As long as the initial distribution is such that (pc )N
and {p,)N are zero (i.e., z;0=0), at late times (21 small)
and with e (& 1, the leading-order contributions are

H
(r —r, ),

4m

e2a'12, e 0

Acmic

N

(105)

(106)

~(p) 4 4=22,, E Hp= &~')„=~c

The ='1~1' term reproduces the standard quantum field-
theoretic result [15] [and (A5) in the Appendix] for the
expectation value (@ ), here viewed as a noise average
for the c-number variable P, provided that e is small.
However, if we set e-1 the answer does not agree with
the field-theoretic result (A5) found in the Appendix
(which unlike the stochastic calculation is essentially

cutoff independent).
For the sake of comparison, if we set e= 1 in

(102)—(104) we find, at late times,

13HG
(& —

& )11 c N 36 2 P

5~0-(((1 3

S 72m

~(p) 4
22 { p2) 0

S 24

(108)

(109)

(110)

whereas the corresponding field theoretic results (A5),
(A9), and (A12) of the Appendix give, at late times:

Hp
(r —r, ),

4m

] E' Hp—
& ee'+e'e) =

2 8m

e4H4

16m

(112)

(113)

We see that while the stochastic results for =',2' and:-22'
correctly reproduce the the cutoff dependence found in
the field-theoretic case, the numerical values of the
coefficients do not rnatch. This is not a serious problem,
as these quantities need to be renormalized anyway
(something that is beyond the scope of this paper).

The technical reason for the disagreement between the
field-theoretic and stochastic calculations is the neglect of
spatial derivatives in (39). One is attempting to approxi-
mate a time-dependent quantum sum over modes by a
modified dynamics (via the noise term) for the zero mode
and neglecting all the other modes (apart from their con-
tribution to the noise). When computing {4 ) via the
standard field-theoretic method, the infrared sector pro-
vides the dominant contribution. On the other hand,
when computing {4N'+4'4)/2 and (4' ), extra mul-
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tiplicative factors of k and k (see the Appendix) weaken
this infrared dependence. One expects therefore that the
stochastic method should work better for (4 ) and, as
we have seen, this is indeed the case. The fact that sto-
chastic results are more accurate for small values of e is
also easy to appreciate: a small e means that only long-
wavelength modes are contributing to the noise so that k
is indeed small and can be neglected. However, if we let e
be of order unity, then the neglect of spatial derivatives
will lead to errors. A possible remedy is to work with a
Wigner functional derived directly from the field theory
but this may well be at the expense of the calculational
ease that characterizes the present approach.

We now consider the massive field but confine atten-
tion to the case m &(Ho. The propagator G(il) is still

given by (85)—(88) except that the parameter v is now
given by

3 m

2 3H0
(114)

In the limit of a small mass the diffusion matrix is essen-
tially the same as for the massless case (since v- —,').
Keeping the diffusion matrix given by (91)—(93) but using
(114) for the propagator, it is a simple matter to solve for
the stochastic contribution to the covariance matrix. The
final expressions are very long and not very illuminating.
Here we present only the leading-order stochastic terms
at late times:

3Ko
(P, )~= 1 —expc N

8m

2m

3H

4 2

1+ + +
9H'

(115)

Ho ~2 64
(P,P,')~= 1+E 1+— + exp

2m
(r t,)—

0

(116)

(P' ) = e+ 1 —exp
H

c N 24~2 H2
pm 2m

(r to } —+, 1 —exp — (t to)—
3Ho Ko 3Ko

(117)

where we have dropped all terms that vanish faster at late
times and also neglected terms that are of higher order in
m /Ho. An interesting feature of the massive case is that
all contributions arising from ='; '(i10) are negligible even

at early times (unlike the massless case). The agreement
with field theory is remarkably good. With e small, or
more precisely, in the range

exp[ —3Hol(2m )] (&e (&m IH0, (118}

all asymptotic late-time values are exactly reproduced
(similar inequalities are derived somewhat differently in

Refs. [1] and [19]). Unlike the massless case, this time
the approach to these late-time values is also in agree-
ment with the field-theoretical results (i.e., no mismatch
in the exponentially falling-off terms). At late times the
above expressions reduce to

in agreement with the field theoretic results (A17), (A21),
and (A23) of the Appendix (with e in the previously indi-
cated range). Unlike the massless case there is no
leading-order e dependence in =12 and:-22. To avoid
Det=';&'=0, it is important to keep the subdominant mass
squared term in (119). It is again easy to verify that
agreement with field-theoretic results does not extend to
the case e-1; the two calculations now differ by multipli-
cative factors of order unity.

IV. POWER-LAW INFLATION

In this section we treat a power-law expansion a (t) —t~

with p & 1 and consider only the case of a massless scalar
field. Assuming that inflation set in at the initial time go
(with the scale factor set to unity at this time), we find,
from (3),

3H0='~I=(y') = 1+
8m m 9H

s(i)) =
7/0

(1 —2%)/2

(122)

~(iti)
12

S

, (119}
1 —3p

2(1 —p)Ho=(P,P', )z- 1 —exp
Sm'

2m
(r —t, )

0
It then follows that

2m—exp — (t to)—
3H0

(123)

1 2
V

4
S
5

(120) (124)

It is useful to note that for p & 1, v& —,
' and also that as

t~ ~, g~0. In the formal limit p ~ 00, v= —,
' which is

the value for de Sitter space.(121)

-(i') 2=22, m "'o 2m
g6 c

24 2 3K
= ( P,

' )~ = 1 —exp — ( t to)—
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+ ——v yl, =0 . (125)
1 1

4 ~2

The scalar field modes now satisfy
I —2v

+ k+m
90

P —2

8~

2

1+—e +—e
1 2 1 4

3 9

(131)
This time the mass and curvature contributions scale
differently with conformal time. It is easy to see that at
late times the mass term dominates the curvature contri-
bution since v& —,. Therefore, as cosmic time increases
(and the conformal time decreases) there is a continuous
flow from the "unstable" to the "stable" sector. Howev-
er, destabilization will still occur for the massless case
where the "unstable" sector is characterized by
k &(v —

—,')/ri . We see also that even in the case of
power-law inflation it is only natural to implement the
same choice that we made in the last section, i.e., to set
ks(rl) =e/rj

The mode equation (125) for a massless field admits the
general solution

(132)

t0
5 +—1

p
(133)

' 4/p

( y~2) ~
—4

S' ' 12~' ' 1 1 e+5 —+-
2p p 2

4 t0
2

4
1 2 1 e2

+e —+-
2p p 2

(134)

(p)
' 3/p

4c4c N 2 IO

-i2 (,)
1

12~ g0

y„(q)=C,q'"I'„"(kq)+C,q'"H P'(k~) (126} (135)

or, in terms of the original field,
V

y„(~)=c,~,'" " H'„"(k~)
g0

+C2ri' H' '(kri) .
l0

(127)

The adiabatic vacuum is specified by C, =0, C2=i/n/2,

where terms lower order in 1/p and vanishing faster at
late times have been dropped. The variables P, and p,
are still defined by (97) and (98) except that S(i)) is now
given by (122). For small e, (131) is in agreement with
the field theoretic calculation of Ref. [16] [also compare
with (A29) of the Appendix]. However, just as for the
massive field in de Sitter space, e cannot be arbitrarily
small. Consistency with the field-theoretic results (A36)
and (A42) of the Appendix requires that

i.e.,
' j/2

p &(e (&1 (136)

xk(ri) = 8'."(kq) . (128)

Assuming that all "high-frequency" modes were in the
adiabatic vacuum at the onset of inflation, (128) enables
us to compute the diffusion coefficients (41)—(44), which
are the same as (81)—(83) except that now v is specified by
(123).

Power-law inflation with p ))1 can be treated in a sim-
ple and direct manner by following the same approach as
that for the massive field in exponential inflation. Note
that when p is large,

3 1 1 1v- —+—+ + + (129)

This allows us to approximate the diffusion matrix by the
one for v= —'„(91)—(93}. The propagator 6 (i)} is given by
(85)—(88) with v specified by (129). The stochastic piece
of the covariance matrix can now be found by a straight-
forward computation. The result is too long to write out
in entirety and we content ourselves by just displaying
the leading-order terms:

(137)

3
2

12w2
(138)

in (133) and (135). The above expectation values were
also computed by Kandrup using a diff'erent method [6].
While our result for ( P, ) is in agreement with his, this is
not true for the other two cases. The inconsistency can
be traced to an approximation for the noise that does not
take the commutator properly into account (see the dis-
cussion of this point in Sec. II).

In this case, while at late times (P, )z goes to a con-
stant (as for the massive field in de Sitter space), (P,P,') N

and (P,' )N vanish. This is in contrast with the case of a
massive field in de Sitter space where these quantities, in-
stead of vanishing, also go to constant values. The role of
initial conditions is similar to that for the massive field in
de Sitter space rather than the massless one: the sys-
tematic contribution to the covariance matrix is always
negligible as long as p ))I (but not otherwise}. Conse-
quently, the late-time results follow from (131}—(135}:

-(4) (y2) P —2 1
iI 1 2 1 41+—e2+ —e4

3 9

4
4

( &2) ~ —4
4c N 24 2 90 (139)

(130) where we have taken e« 1. For e= 1, we have
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(X2)'Itc X p 90

3

5 3 0

Acmic

N 2 )0

(140)

(141)
f~(z, rt) = (Det=) exp ——z= z

1 1iz 1

2~
(148)

terms of the conformal variables Xl and pL. In all the
examples we studied, z,.o=O in which case the general
solution (73) becomes, at late times,

( '2) 1 —4
t

0c N
24 2 90 (142)

The field-theoretic results (A29), (A37), and (A43) of
the Appendix yield the corresponding late-time limits:

all contributions from nontrivial initial conditions having
washed out in this limit. Converting to the variables P,
and p, appropriate to the original frame, the distribution
function (148) goes over to

(@2) P —2

8~2
3

(143)

(144)

fc/(y„pc ) = (Det-='~')1

Xexp ——' ='i&i' 'y,'+2:-'

4

4 to(@')= g0'—
16m

(145) ~(p)+ -"22 pc (149)

(146)

with the result

H0(t t0)—
(P, )N-— 1+—e +—e (147)

There is reasonable agreement with the stochastic results
when e is small but as is expected the results diverge from
each other when e- l.

The limit p ~ cc may be applied to (131)using

2/p
7l 2 7l—1+ ln + ~ ~ ~

7/0 p '9o

It is important to appreciate that while f,~
gives the

correct expectation values (Secs. III and IV) and is a per-
fectly respectable classical distribution, it is not a Wigner
function defined from the beginning for the variables Pc
and m, . This is because, as we noted earlier, these distri-
butions are not invariant under canonical transforma-
tions. {We are treating the conformal variables yL and
m.L as the preferred variables to quantize. } However, the
key point is that in our case the linear entropy remains
invariant under this transformation.

A key observation regarding (149) is that a knowledge
of the reduced distribution

Since H0=rt0 ', this agrees with the result (102) for a
massless field in de Sitter space. In a similar manner one
can check that (p, {()', )N and (p,' )N also reduce to the
appropriate expressions for a massless field in de Sitter
space as calculated from the stochastic approach.

f.(4. )
= Jdp. fw—(4, J2', )

2
0c—I:-&~&'] exp (p)

(150)

V. SOLUTIONS AND INTERPRETATIONS

In this section we study the full phase-space distribu-
tion function. Given that we have already computed the
relevant covariance matrices it is now a simple matter to
write out the corresponding Wigner functions. In the ex-
an-.ples studied here these distributions will be positive
definite and as such may be interpreted as true probabili-
ty distributions, at least formally.

A knowledge of the distribution function is important
as it will enable us to critically address issues such as the
existence of Auctuation-dissipation relations and whether
or not there exist late-time thermal solutions. These are
the problems we will tackle first.

The stochastic Liouville equation (67) is written in

is of no use in reconstructing the original distribution.
This trivial fact has important consequences if one at-
tempts thermodynamic interpretations of the results from
our stochastic analysis using only the reduced distribu-
tion. Other points to keep in mind are that, in some
cases, to leading order in e, Det='~'=0 (therefore the dis-
tribution function is not independent of the cutoff, and
that the cross term proportional to P,p, represents a non-

trivial contribution from quantum correlations. In order
to discuss these issues more concretely we now return to
the specific cases studied earlier.

We consider first the massive free scalar field in an ex-
ponentially expanding universe. At late times, with e

satisfying the condition (118),we have

12'
fcl Ac~pc 2 3 p

12m 2 6 12 9H
+102 ~c 2 3 ~c~c 2~6 2Ho mS m S m

(151)

Clearly this distribution is not stationary because of the dependence on S(g). On the other hand, the corresponding re-

duced distribution has the "equilibrium" form
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f„(P,)=
0

1/2
4m m.

P 3H4 0c
0

(152)

1/2
H=m

T exp[ po—„EH()C )]2~ cxH
(153)

where PoH=—ToH Ho——l27r is the Gibbons-Hawking temPerature of de Sitter sPace [32], VH=47rHo l3 is the three-
volume within the Hubble radius, and EH(pc ) = V(pc ) VH is the energy of the scalar field within that volume (the kinet-
ic energy is not important if the field is in the "slow-roll" regime). The thermodynamic interpretation of the stochastic
formalism [8] was suggested by the striking Boltzmann-like nature of (153). However, the full distribution (151) does
not seem to encourage such speculation: it is not stationary nor of the form e ~ [nor is the reduced distribution f„(p, )—PE„.of the form e "'"].

We observe that transforming to a new variable v, =p, IS makes the late-time distribution (153) time independent.
However this transformation is not canonical and does not preserve the linear entropy. Therefore the distribution
f (p„uc ) is not physical. In any case such a trick fails for the case of power-law inflation: there the phase space distri-
bution cannot be made time independent.

Turning now to the massless case, at late times:
1/2

27r p, 4$,p, 6p

H Ho(t to) e S H (t to) —e S H
)

1 247r
J cl Y c&Pc 2S3 H7( )0 0

(154)exp

The singular nature of this solution as e~O is apparent (as is the fact that it is explicitly time dependent). Note, howev-
er, that, in this case,

' 1/2

f„(P,)=
2772

H (t t )— (155)

which is independent of e. The late-time reduced distribution (155) is a solution of the diffusion equation

a l a'—f„(((},) =—D f„($,)
Bt " ' 2

(156)

with D =Ho/47r . This is suggestive of a (usual, time-independent} random-walk interpretation. However, the time
dependences of the terms ccp, and cc p,p, in the full distribution are hard to reconcile with this view.

The case of a massless field in a power-law spacetime is treated next. Here the late-time full and reduced distribu-
tions are, respectively,

' 1/2
4m '90 t 3f(0 p}=cl c& c 2 S3E' 0

4no t 3no
exP —47r 7Io + —P,P, + —P,

P eSp &0
' eS &0

(157)

f„(P,) =2rio

' 1/2

exp
4m go $2 (158)

6' 6' 3Ho ~

mHoS H
(159)

2 3 "(IHo7(t —t, }

—3H(f —t )0 0&67r e

"(IHo(t to}—(160)

6~go3 2

e &3pS

3 3p 2
7T gp

e2&3p to
(161)

As with the massless field result (154), the full distribu-
tion is again singular in the limit e~O. Also, the reduced
distribution (158) is independent of e, as in the other
cases. Unlike the other two cases, however, it does not
seem to have any "natural" interpretation.

The late-time linear entropies o = J dP, dp, f,&
for the

three cases studied above are, respectively,

In all cases cr is approximately proportional to S . The
possible significance of this result will be discussed later
below.

It is by now clear that the late-time phase-space distri-
butions obtained here are very difficult to fit into a con-
ventional Brownian-motion picture. In fact, this is a very
obvious point and manifest in our stochastic Hamiltonian
(45). In standard Brownian motion the environment with
which the system interacts produces both dissipative and
diffusive effects. The dissipative effects arise from the
back reaction of the environment. Such an effect is ab-
sent in stochastic Hamiltonians of the type (45}. In prin-
ciple, then, there simply cannot be a fluctuation-
dissipation theorem of the usual sort: this conclusion is
manifest in the fact that in no case are our late-time solu-
tions for the distribution function stationary. (However,
this does not mean that there cannot be asymptotically
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constant values for some average quantities. )

We recall that the origin of the stochastic noise is sim-

ply because the "system size" is changing with time and
not because of some external interaction. It appears that
a mistreatment of this key has led some authors to claim
that quantum decoherence occurs in this model. That, in
fact, it does not can be explained by the following direct
argument for which the author is indebted to Juan Pablo
Paz.

The transition from quantum to classical was studied
in the context of stochastic inflation by Morikawa [33]
and Nambu [34] who analyzed the properties of the evo-
lution operator for the reduced density matrix of the
long-wavelength modes. When this propagator is written
in path integral form the effect of the short-wavelength
modes appears to be contained in a term that is rather
similar to the Feynman-Vernon influence functional [27],
F=exp(il ). In ordinary open systems, the presence of
an imaginary part in the influence action I produces a
tendency towards diagonalization of the reduced density
matrix in a fixed basis. This is known as decoherence.
For stochastic inflation, the imaginary part of I was cal-
culated and related to decoherence. However, it is possi-
ble to show that this interpretation is not correct and that
there is no decoherence produced by the coarse-graining
of stochastic inflation. The basic reason is that the time-
dependent nature of the coarse-graining prevents us from
interpretating the influence functional in the usual way.
In fact the reduced density matrix at a given time can be
written as the product gk k ~,pk. As the number of

S
modes present in the system varies with time, the evolu-
tion operator J (t, to ) has some peculiar properties. It can
be written as a product of an evolution operator for each
mode Jk(t, to) where for k & ks(to) (modes that were al-

ready present in the system at t =to), the Jk(t, to) are or-
dinary unitary operators while for ks(to) &k &ks(t)
(modes that enter the system between to and t) the evolu-

tion operator is simply Jk(t, to)=p&(t). If one writes
these operators in path-integral form one realizes that
there are real exponential terms simply due to the fact
that, if the state of the field is the vacuum, the reduced
density matrix p„(P&,P'k) is a Gaussian. The only effect
that the "influence functional" has in this case is to gen-
erate the above Gaussian factors. It is clear that this is
not related to decoherence but to the fact that new modes
are entering into the system and that the evolution opera-
tor fully contains the reduced density matrix of the in-

coming modes.
Another argument put forward for a late-time classical

limit was that since the commutator (37) is ~e, it is
"small" and can be ignored. This of course cannot be
correct. The reason is that it is not just a single mode
commutator one has to look at but the total integrated
contribution from the initial time to the final time of in-
terest. This is not a negligible fraction.

Is there a classical limit or not, intrinsic to the formal-
ism? The linear entropy does decrease exceedingly rapid-
ly as shown by (159)—(161) but it is not clear what this
means: we have just argued against interpreting this sort
of decrease as being due to quantum decoherence. An in-
tuitive basis for this result may be that it reflects the loss

of information inherent in our time-dependent coarse
graining. With the passage of cosmic time, two-point
functions are averaged over ever smaller corno ving
volumes. The "smearing" scale is set by kz '=g/e and

g —~0 as t ~ ~. Since in our formalism we are tracking
only one coarse-grained domain throughout its history
this represents a loss of information with cosmic time.
We may speculate plausibly that the decrease of 0. as S
supports this viewpoint. However, just because our
knowledge is incomplete is no reason to suppose that the
Universe is becoming more classical.

At the present stage of analysis and understanding it
appears unlikely that the quantum to classical transition
in the early Universe can be explained by the stochastic
paradigm. In particular, the treatment of density pertur-
bations by modeling quantum fluctuations as classical
noise appears to unjustified.

VI. CONCLUSION

This paper's main concern was to model a free field

theory in an inflationary universe by way of a stochastic
quantum Hamiltonian. It was shown that this approach
produced results that agreed well with those from
straightforward quantum field theory. Furthermore, the
role of the length scale parameter e and of initial condi-
tions was considered more fully than in previous work.

The quantum phase-space distribution used in this pa-
per enables a consideration of quantum correlations that
would otherwise be missed. As a result we find that the
@~0limit is singular as far as the distribution function is
concerned. This means that a finite value of e is essential
for the formalism to make sense and that contrary to pre-
vious belief this parameter does not drop out of the prob-
lem. The full phase-space distribution also enables a crit-
ical assessment of such issues as the existence of
fluctuation-dissipation relations. We showed that
fluctuation-dissipation relations do not hold (as indicated

by the fact that the late time solutions are not thermal or
even stationary). However, at least in de Sitter space, the
reduced distributions for the field variable alone have
very suggestive forms corresponding as they do to a
Boltzmann distribution at the Gibbons-Hawking temper-
ature for the massive field, and to a "random-walk" dis-
tribution for the massless field. No such simple distribu-
tion appears in the case of a power-law inflation. The
significance of these results remains unclear at present.

We found that, in order to obtain results more or less
consistent with conventional field-theoretic calculations,
quantum correlations could not be neglected. It was also
pointed out that quantum decoherence does not occur in

the stochastic approach. As a consequence of these two
results, the quantum-to-classical transition in the early
Universe does not seem to be intrinsic to the stochastic
approach. Directly modeling quantum fluctuations by
classical noises as a way to study density perturbations
from inflation is therefore a questionable enterprise.

There are of course many unanswered questions, chief
among them is what happens when interacting fields are
considered and back reaction is included. This we leave
to future work. Furthermore, while it is true that the sto-
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chastic model "works, " at least to some extent, we have
stressed that it is not free from interpretational problems.
One can only speculate whether insights gained from this
approach will actually turn out to be valuable when the
full quantum field-theoretic computations are eventually
done.

Hp Hp
(t —to)+ Inc+ —e

4~' 4~2 2

~2»p —2H (t —t )0 0

8~
(A5)
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APPENDIX

1/2

y„(rt) = — H, rt'"H,",', (kri) . (A 1)

Consider, first, the equal time expectation value

&4(x)4(y)&= f ", dkki lg„(ri) ', (A2)
7fp

where R =lx —yl. Using the exact form of the Hankel
function (90) it is easy to see that

A brief review of conventional field-theoretic computa-
tions of the various expectation values of interest will
now be given. This will enable us to check results from
the stochastic analysis. To obtain finite results we will
impose an infrared cutoff in momentum space at k =

gp
'

and an ultraviolet cutoff at k =eq '. A discussion of the
reasons for picking these cutoffs will be given at the end
of the Appendix.

We begin with exponential inflation and treat the two
cases of a massless field and of a massive field with a
small mass (m «Ho). Considering first the case of a
massless field, the parameter v= —,

' [from (80)], and for the
Bunch-Davies vacuum the mode functions Pk —=yk/S are

where we have already set kR « 1. From (Al),
1/2

Hokrt H' ' (kit),
4

(A7)

and it is easy to compute that
2

—&ei+ee& =1 - p

2 8m 9p

'2

(A8)

If we return to the cosmic time, then with a prime denot-
ing differentiation with respect to t,

Hp—&ee'+e'e&= '(e' —e ' '
) .

2 8~2
(A9)

The last term vanishes at late times and the first term is a
constant that is strongly dependent on the upper cutoff.
[Even if e « 1, consistency requires e »(i) lrto) and the
first term always dominates. ] The late-time answer being
a strong function of the cutoff is simply a consequence of
the extra multiplicate factor of k in Pk, which not only
renders the integral in (A6) infrared finite but also shifts
the dominant contribution from the integrand towards
the upper cutoff.

To compute & 4 & we first use (A7) to show that

leak(iI)l =
—,'Hort k .

With kR « 1, it is now easy to find

(A10)

The last term vanishes at late times and the second term
is an irrelevant constant absorbed in the infrared cutoff.
The first term gives the usual result [15]. Notice that this
term is independent of e; any potential dependence is lost
in the infrared cutoff.

Now we turn to the quantity
—1—&44+44&= f dk k Re[pk(rt)pk(rl)]

2 277'

(A6)

H
leak(g)l'= ', [1+k(g) ]; (A3)

hence the integral in (A2) is infrared divergent and an in-
frared cutoff is necessary. With kR « 1, we find

, f'", dkk'lj„(~)l'
gp

H P 2 4 'g

16~2

or, in terms of the cosmic time,

(Al 1)

&e'& = ln
Hp

4m

1 2 1+—e ——
2 2 gp

2

(A4) H4p

16m.
(A12)

Notice that since ei) ' & i)0 ', & 4 & as computed above is
strictly positive. To write the result in terms of the cos-
mic time, we note that riog =expHO( t —

to ), in which
case

The late-time value is again a strongly cutoff-dependent
constant.

Similar calculations will now be performed for the case
of a small mass, i.e., for m «Hp. Disregarding an ir-
relevant phase term for real v, the mode functions are
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now
1/2

H g H' '(k2)) (A13)

43HO 2m '/3H' 2m—exp — (t —tp)
8~2m 2 3HO

(A17)
where, for a small mass,

3 m

2 3HO
(A14)

As long as e »( —3H() /2m ) (i.e., e cannot be arbitrarily
small},

Since k g ( 1 over the range of integration
go '(k &eg ', we may approximate the Hankel func-
tions by

2' oe '=1+ inc+ .
3H

and, at late times,

(A18}

z~0 l zH', )(z) —+ ——I (v)
2

and using (A2} compute

(A15) 3H

8~ m
(A19)

3HO 2~ 2/3H2 + 2m /3HO

8&m 90
(A16)

a well known result [15].
The calculational strategy used above can also be im-

plemented to find that

H2 ~ 2 2m /3H—&eC+4e) = ';~-', ~ '+~2—
2 8~2 90

1+
90

(A20)

and that

Hp 2~ 2/3H
3

—(44'+4'4) = e '+e —exp
8m

2 2

0
(A21)

Setting m =0 in (A21) we recover the previous result (A9) for a massless scalar field. The late-time limit for
e » exp( —3H() /2m ) is

—(ee+e'C ) = (1+e') .
Hp

8~
(A22)

Unlike the massless case, here the result is essentially e independent provided e is small compared to 1. However, un-
like the situation for (4 ), the late-time value does depend on whether e is small or of order unity.

The expectation value (4 ) can be found in exactly the same way:

4
Hp m 2 2~ 2/3H2&~') = E' exp
4~ 6H

2m
( } + 1

I
4 4Hp(t tp)I+ 2m

I
2 2 (Ht ptp)I

2 2

3H 0 4 3HO
(A23)

2H 2

24m.
(A24)

On the other hand if we set e to be one, then the late-time
limit becomes

If we assume e to be much smaller than unity, then at late
times we obtain, to leading order, an e-independent re-
sult,

1 3p
2(1 —p)

and that the adiabatic vacuum modes are
1/2

(A26)

when e is small).
We turn now to power-law inflation and consider the

case of a massless field. Recall that the parameter v is
now given by

&~') = H4,

16~
(A25)

ITgp
0k(n)= H' )(kp)) .

YJO

(A27)

which is completely different from (A24). It is easy to
verify that setting m =0 in (A23) reproduces the answer
(A12) for the massless case. Therefore for e-l, the
massless and massive cases give the same result (but not

The expectation value (@ ) is still given by (A2) and we
can still use the approximation (A15) for the Hankel
function. If we set v= —', then the de Sitter results for a
massless field are recovered. For vW —'„we have
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2'v 'r(v}2
gp 1—

m. (2v —3}
E'gp

' 3—2v

—2
1 2/() —P)

go 1 —e
m.3(2v —3)

22v 3 —1

(@2) r( )2 1 —2v dk k2(1 —v)

2

(A28)

'3
22v —1 tp—(ee +e C )=, r(v)r(v —I)q,-' —'

2 81r (5—2v) t
'

2p —4

5 —2v 0
X e

(A35)

e 'P=1 ——in@+ .-2/ 2
(A30)

and (A29) is essentially cutoff independent not only as to
the late-time constant value but also as to how this value
is approached. The situation is different when p is not
large. For example, if we consider p =2 corresponding to—5V=—2'

reproducing the result of [16]. [As long as the power law

p ) 1, the parameter v) —'„and it follows that the integral
in (A28) is infrared divergent. The lower cutoff is neces-
sary to get a finite answer. ] We see that (4 ) starting
from some initial value rises to a constant. When the
power law p » 1, (A26) implies that v= —,'+ 1/p, and

2
tp

(A29)
8m

If e))e p/, then

E'
3 02

gp

3

(A36)

(A37)

Ifp~ ~, (A36) reproduces the de Sitter result (A9) for a
massless field (with Ho =2)o ').

Finally we compute (4 ). The standard calculation
yields

1 —2v

(4 )= 2' "I( —1) dkk " (A38)
8m.

—1

It is trivial to check that this quantity is always positive.
At late times it vanishes but the dependence on e is a
function of the power law. For large p, (A35) becomes

—3
' ' 3/p ' ' 2 —2/p—&ee'+em)= ',

2 8~2 go

'2
tp(4') = rl,

-'
1 —@-'

8m.
(A31)

The k integral is infrared divergent provided v& —,
' (i.e.,

1&1(2 & —', ). For the special case v= —,'corresponding to

p =—'„we have

This time while the asymptotic value of (4 ) is indeed
cutoff independent, the approach to it is a strong function
of e.

We proceed now to evaluate (44+44) /2. The usu-
al procedure, beginning from (A6), yields

or

9 6 2
&'90

, q,-'q2in
4m 7l

4

(e' )=,q,
— —ln

9 4 tp

8m tp

(A39)

(A40)

22v —4—&me+em& =
2 3

r(v)r(v —I )q,'-'"q

Xf, dkk
go

(A32)

At late times this expectation value vanishes.
In the general case (vW —,

'
) we find

22( v —1) —4

(~ &= 90 r(v —1)2
tp

8n (7—2v)
The integral in (A32) is infrared divergent for v& —', (i.e.,
1 &p & 2). For v= —,', 2(2p —3)

7—2v 0X e (A41)

—&Ca+me) = q,
—

qin
1 ~ 3 4

2 4~

&'90
(A33)

'3

which vanishes at late times. In terms of the cosmic
time,

—4
(@'2) lO 7J

16~ gp

4/p
4

gp

4—2/p

(A42}

which also vanishes at late times. When p »1, (A41)
gives, to leading order,

—&ce'+e e&=1 , , 3 3 to et
2 477 t tp

(A34) 4
04 t

2 (A43)

After an initial period of growth, at late times this expec-
tation value vanishes.

When p%2 we obtain, from (A32),

The limit p ~ ~ taken in (A42) gives back the de Sitter
result (A12) for a massless field.

We now explain the origin of the cutoffs in the momen-



2426 SALMAN HABIB

turn integrals. To prevent infrared divergences we follow
the strategy of Ford and Parker [17]by assuming that for
Yj'p )q the Universe is radiation dominated and that the
quantum state is the conformal vacuum. Matching the
field modes and their time derivatives at g =gp, one finds

I c,(k) —c2(k)
~=, . (A44)1+(2 "/2m)(kq )' 'I (v)

( z Q 4Ho( t t 0)0
e"-24. (A51)

Comparison with (A5), (A9), and (A12) shows that the
late time results are unaffected: the dominant contribu-
tion to these expectation values comes from the
inflationary sector.

In the case of a power-law inflation, we find

Since the upper cutoff forces kg & 1, we can use the small
argument form (A15) of the Hankel function and com-
pute

I ( )'q,'-'"k-'~C, (k) —C, (k) ~'. (A45)
22

—3

—&ee +e'e&, =
2 16m' p —1

to
2p —1

(A52)

(A53)

We are now in a position to compute the preinflationary
contributions to the various expectation values of in-
terest. First, consider

' 2(2p —1)

(@2) 70 p 1 0

24m p +1 (A54)

gp

8m.
(A46)

which is a constant independent of v. In a similar fashion
we can evaluate

—3

—&em+em)„=
32m (v —1) rip

v+ 1/2

(A47)

and
—4

( @2) IO 'tl

96sr (v —1) go

2v+ 1

(A48)

(A49)

3

—(C e'+e'e), = e
16'

(A50)

If we restrict attention to de Sitter space, then
(A46) —(A48) specialize to

The late time constant value of (4 ) does get shifted due
to (AS2) but for large p this shift is negligible as compar-
ison with (A29) shows. Even for relatively small values of
p, this term is relatively unimportant [compare with
(A31) for p =2]. From (A37) and (A43) we know that for
p ))1, the contributions from the inflationary sector to
(44'+4'4) i2 and (4 ) fall off as (toit) and (toit )

respectively. These falloffs are much slower than those
given by (A53) and (A54): again the preinflationary con-
tributions are insignificant. It is only for weak power-law
expansions (p —1) that this sector is of any significance.

The rationale for the upper cutoff is simple. In quan-
tum field theory in curved spacetime nontrivial ultravio-
let divergences can arise because of the spacetime curva-
ture. In principle one has to apply an appropriate regu-
larization scheme (point splitting, for example) followed

by an ultraviolet subtraction. Following this more so-
phisticated procedure one obtains terms proportional to
the curvature in (4 ). However, these terms either van-
ish at late times (power-law inflation) or are constants
which are small compared to the contribution from the
infrared sector (exponential inflation). In this sense our
procedure is justified. (The fact that kg- I separates the
low- and high-frequency sectors is due to the following
behavior of the Hankel functions: oscillatory for kg)) 1,
and power law for kg &&1.)
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