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The thermal history of the string universe based on the Brandenberger and Vafa scenario is ex-
amined. The analysis thereby provides a theoretical foundation of the string universe scenario. In
particular, the picture of the initial oscillating phase is shown to be natural from the thermodynam-
ical point of view. A precise description is also given of the transition process from the stringy phase
to the radiation-dominated phase. Through the discussion it is shown that the well-known form of
the string multistate density is incorrect in the interesting parameter region.
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I. INTRODUCTION

Since the Green and Schwarz anomaly cancellation [1]
proved the importance of superstring theory (SST), de-
tailed studies of it have been done. One unfortunate fea-
ture of SST is the fact that its typical energy scale is 1019
GeV which is far beyond our experimental access. How-
ever this does not necessarily imply that SST allows no
experimental test. The most important feature of SST is
that it unifies the theories of matter and gravity. This im-
plies that SST in principle has an ability to determine the
structure of space-time in which the strings themselves
live. If SST is the true theory of the whole Universe, it is
conceivable that SST has left some relics in our Universe
observable even today. In fact the presently observed
isotropic, uniform, and almost flat universe must have
been determined by SST. From this point of view string
cosmology has been studied by some authors [2-6].

Brandenberger and Vafa [4] proposed an interesting
scenario of string cosmology. The starting point of their
scenario is the heterotic string theory in the space of a
nine-dimensional torus Universe of the Planckian size and
a time dimension 7% x R. They argued that this small
universe was oscillating in some period and eventually
three dimensions out of nine began to expand resulting
in the present large Universe.

In order to get a deeper theoretical understanding of
their scenario, we perform a detailed thermodynamical
analysis of it in this paper. Our strategy in this paper is
to use the microcanonical formalism to follow an entire
thermal history. So far several authors have employed the
microcanonical formalism to examine the thermodynam-
ical functions of the string gas. However the relation of
their results to the thermal history of the string universe
seems to be unclear to us.

In order to clear up these situations in this paper we
give a concrete framework by which we can follow the
thermal history of the string universe using the ther-
modynamical functions of the microcanonical formalism.
According to this framework and based on some assump-
tions such as the local thermal equilibrium and others
which we will state precisely later, we will determine the
thermal history of the nine-dimensional torus universe of
Brandenberger and Vafa as follows.

In the initial epoch during which the torus universe
is oscillating, very high energy strings occasionally emit
zero modes (massless point particles) due to cosmologi-
cal expansion and sometimes absorb zero modes due to
cosmological contraction. This process is shown to be
adiabatic. This adiabaticity, or in other words reversibil-
ity, ensures that the oscillation is not damping. Thus
our result is quite consistent with the picture of the ini-
tially oscillating universe which is followed by the three-
dimensionally expanding epoch.

After some three-dimensional directions start to ex-
pand with the remaining six dimensions being kept
Planckian, the energy of zero modes and strings hav-
ing no winding along the three dimension (which we call
nonwinding strings) grows roughly in proportion to the
expanding volume. The temperature is shown to be fixed
as the Hagedorn temperature in this period. This infla-
tionlike energy growth is possible because the highest en-
ergy strings (which we call winding strings) continue to
supply energy by their decay.

This epoch ends when the high energy strings decay
away. At this stage what is left are the dominant zero
modes along with a few nonwinding strings. From that
time the redshift of the zero modes gets effective, result-
ing in a decrease in the temperature. The remaining non-
winding string modes are shown to quickly decay away
because of their high specific heat. In this way the string
universe is shown to transit to the conventional radiation-
dominant universe. The exposition of this thermal his-
tory is the main result of this paper.

Our plan of the discussion is as follows. In the next
section we explain on what setting we proceed with the
discussion in this paper and summarize the approxima-
tions and assumptions used in this paper. In Sec. III we
will give a brief review of the Brandenberger and Vafa
scenario to fix the notation. In order to follow the ther-
mal history of the string universe, we need to calculate
the multistring state density. In the ideal string approx-
imation the multistate density is evaluated by the single
state density. In Sec. IV we give a detailed discussion
on the single string state density. We especially explain
the change occurring in the single state density induced
by cosmological expansion, which is of importance in dis-
cussing thermal history. In Sec. V we give a remark on
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the value of the total energy of our microcanonical en-
semble. This value turns out to be the key parameter
which determines the thermal history. In Sec. VI we will
provide a framework of the microcanonical formalism on
which we can follow the thermal history. From Sec. VII
to Sec. IX we will evaluate the multistate density from
the single state densities. In these calculations a novel
technique is introduced and used extensively. In Sec.
X the thermal history of our string universe is deduced
by gathering all the knowledge obtained in the preced-
ing sections. The last section is devoted to some dis-
cussions. In the Appendix we will ascertain the validity
of the Maxwell-Boltzmann approximation which will be
used in this paper.

II. SETTING

In this section we are going to make sure of the tools
and approximations we use in this paper. As is well
known the thermodynamical treatment needs special care
in string theory because of the exponentially growing
state density (7, 1]. One method to treat such a system
is to extend the temperature to a complex number [7-9]
in the canonical formalism, and another is to quit us-
ing the canonical formalism and use the microcanonical
formalism [4, 10-14].

Both methods are actually connected through the
Laplace transformation. We will take the latter treat-
ment in this paper. Our interest in this paper is funda-
mental string theory, not cosmic string theory. However
so as to clarify our setting it is useful to review what is
known in the studies of the cosmic string.

The ensemble of the cosmic or fundamental strings is
in general subject to both statistical mechanics and the
dynamics of the theory. In the case of cosmic string the-
ory the dynamics is shown to prevail over the statistics
(10, 11]). This is a consequence of the following settings.
First of all for cosmic string theory one assumes Ein-
stein gravity with a Robertson-Walker metric as a back-
ground since the relevant energy scale is not so close
to the Planckian scale. One describes the string as a
Nambu-Goto string in a radiation- or matter-dominated
background. Then the description of the system simpli-
fies well thanks to the one scale principle [10, 11]. This
principle ensures that sooner or later the system will be
attracted to a scaling solution irrespective of the initial
configuration of the strings. It is shown that this behav-
ior of the string ensemble is far from thermal equilibrium.

However in our case of fundamental string theory, it
is no longer a natural assumption that simple Einstein
gravity is applicable because the relevant energy scale
is as high as the Planck mass. The dynamics of funda-
mental strings is poorly understood at present; thus, we
cannot proceed further as in the case of cosmic strings.
That is why we focus on the thermodynamical analysis
and follow the thermal history using it in this paper. This
strategy is essentially the one proposed by Brandenberger
and Vafa [4].

Below we clarify our approximations used in this pa-
per. Actually, we are going to investigate the properties
of the string ideal gas in this paper. Thus we need some
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assumptions to identify our system with the real Uni-
verse. We summarize them here.

First we have to assume the validity of the local ther-
mal equilibrium and that the ideal gas approximation is
reasonably good for the string universe in the period of
interest. If one of these is not a good one, our system
of the string ideal gas is not guaranteed to be a good
approximation of our Universe.

Next we have to assume that some special roles of
(quantum) gravity, if any, are not important in consider-
ing the thermal history of our Universe. Of course string
theory by birth is the quantum theory unifying gravity.
Therefore, some special effects may well exist concerning
gravity. But our present knowledge is so poor that we
have to assume their unimportance.

Even under this difficult circumstance we do think that
it is much more meaningful to do something rather than
doing nothing. Some foothold may well be found by such
trial. Our main purpose of this paper is to provide the
zeroth approximation of the whole story of the string
universe.

Within these approximations the thermodynamical
functions have been calculated by some authors in several
models of SST [7-10, 12, 13, 4]. In following the thermal
history we actually need another assumption to deter-
mine the history uniquely. As a last assumption we re-
quire that the usual mechanism of the redshift works for
massless particles even in the Planck time. We call this
assumption a normal energy loss. In the initial epoch,
this condition is shown to be equivalent to the equien-
tropy condition which is also adopted by [4].

III. COSMOLOGICAL SCENARIO

In order to fix the notation we present a brief review of
the Brandenberger and Vafa [4, 6] scenario in this section.

They started with the heterotic string theory [15] in
the nine-dimensional torus T° x R. For this model the
single string spectrum reads [1]

e2=2r 4+ 4(ng + np)M2,

2
(ﬂ> —+ (miaiMf)z} ,
a;

m,»=n,-=0,:t1,:t2,...,
nR,nL=O,1,2,...,

M,=1/v2d.

1)

9

S

i=1

where

In these expressions v/2ma; is a linear size of the torus.
In string theory, M, which is of the order of the Planck
mass, is the only dimensionful constant. We frequently
set M, to unity in the sequel.

The significant feature of this model is a duality a «
1/a which is manifest in the spectrum. This symmetry
connects the large volume world with the small volume
world. This is called the target space duality [16]. The
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self-dual point of this duality is @ = 1 (in units of 1/M,).
It is known that in the low energy limit of the closed
string theory there emerges Einstein gravity [1]. However
Einstein gravity does not respect this duality [4]. This
means that the use of Einstein gravity is not legitimate
in this realm.

They considered that Einstein gravity is modified in
this realm so as to respect this duality. The winding
mode is thought to play an essential role in this realm.
Their approximate estimation showed that the winding
mode works to slow down the expansion of the Universe
while the momentum mode slows down the contraction.
These effects make the Universe oscillate around the self
dual point for awhile [6].

Their description of how a three-dimensional universe
is born is as follows. Suppose that a d-dimensional space
out of nine gets larger than average by accident. Then the
winding modes along these d directions get more massive
than the rest so that they tend to decay more than aver-
age. Consequently, the number of these modes would be
reduced. Since the winding modes slow down the expan-
sion, these d directions become easier to expand than the
other directions. Thus the perturbation considered above
has an unstable nature. They suggested that in this way
d-dimensional space becomes much larger in size than the
Planck length while the remaining 9 — d dimensions are
kept at the Planckian scale. Since the Planckian scale
is invisible at low energies, this mechanism effectively
reduces the dimensionality of space-time; a(d + 1 < 10)-
dimensionally large universe arises out of a small 7° x R.
They called this mechanism a decompactification.

IV. SINGLE STATE DENSITY

In this section we are going to investigate the funda-
mental properties of the single string state density f(e).
This provides the theoretical foundation of our discussion
of the thermal history of the string universe. In fact, as
we see in the later sections, the thermal history is de-
duced from the functional form of the multistate density
and the multistate density is calculated from the single
state density. In the high energy range the functional
form of f(g) has already been estimated analytically. We
first review this result and explain how its volume de-
pendence comes out. Later this volume dependence will
prove to have key importance in observing the thermal
history of the string universe. Next we will give our nu-
merical estimation of f(¢) by the direct counting of the
single string states in the low energy range. This clarifies
the explicit number distribution of the strings. Lastly we
remark that an interesting effect in the single state den-
sity is induced as the cosmological expansion proceeds.

A. High energy behavior

For the general closed superstring theory in a compact
space which is multiply connected, the single state den-
sity is written as [7-13, 4]

cv
577+1

f(e) = efue (2)
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for large enough energy e. In this expression n = D/2
with D being the number of noncompact dimensions,
V denotes a D-dimensional volume and 1/8y is a con-
stant called the Hagedorn temperature. The constants C
and By depend on the string model. The above form of
the single state density is uniquely implied by the single
string spectrum (1). From (1) we learn that the energy
of the string consists of a kinetic part r and an oscillation
part ng + nz. For the kinetic part 72 we have winding
modes a;m; in addition to the usual momentum modes
because it is the closed string theory in the nonsimply
connected manifold.

Before considering the volume dependence of (2), let us
consider what form of the single state density is implied
in the usual relativistic particle. Such a system does not
have an oscillation mode and a winding mode; the spec-
trum (1) reduces to a simpler form €2 = E?=1 (n; /ai)2
on the d-dimensional torus. The single state density in
this case is proportional to the surface area of the elliptic

sphere in d dimensions having axes €ay, . ..,ca4. Namely,
we get
d d _ y.d-1
fle) o< — (ITa:) et =vert, (3)

where V is a d-dimensional volume.

This represents a simple fact: the single state density is
an extensive quantity. One of the peculiar phenomena in
string thermodynamics is that f is no longer an extensive
quantity. In fact the number D in (2) is not the total
space dimension but the noncompact dimension. This
means that f is not extensive. In the extreme case of a
totally compact space, f is volume independent.

Let us see how this peculiar behavior comes out. Only
the kinetic part reflects the structure of the space, so that
we concentrate ourselves on the degeneracy of the kinetic
part. Just like the case of the usual point particles, the
degeneracy is obtained as the surface area of the elliptic
sphere having the axes ajr,...,a97,7/a1,...,7/ag, see
(1). The state density is therefore proportional to

d r T r
— lairXar X .- Xagr X — X — X -+ X — |.
de ai a ag

(4)

This shows that f() is certainly a; independent. This
property is essentially a consequence of the cancellation
between the momentum mode and the corresponding
winding mode. As the volume expands the phase space
of the former increases while that of the the latter de-
creases. Now let us see what happens if D dimensions
are open. This time D momentum modes miss their
partner to cancel, so that a; dependence remains. Ac-
cordingly we get f(¢) « aj---ap. This surely explains
the peculiar volume dependence shown in (2).

B. Numerical analysis in low energy range

We present here the result of our numerical analysis.
In Fig. 1 is presented the plot of f(¢)e™P#¢ in the totally
compact case D = 0. In the current situation the kinetic
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FIG. 1. The plot of the single string state density of the
totally compact model normalized as f(e)e PHS. This is pre-
dicted to tend to 1/e.

energy is discrete by the finiteness of the space, which
makes the energy spectrum discrete as seen in Fig. 1. We
also plot £ f(¢)e~PH¢ in Fig. 2. The asymptotic behavior
f(e)e=PHe — 1/¢ is clearly seen in Fig. 2. This is the
first time that this aysmptotic behavior is shown to set
in already at ~ 10Mj.

These two figures in fact have a clear physical mean-
ing. It is shown [12] in the microcanonical formalism that
f(e)ePH¢ and ef(e)e~PHE represent the number distri-
bution and the energy distribution of the strings respec-
tively.

As we will recognize later, the D = 3 case is relevant to
our discussion. The value of f(g)e™PH¢/V versus ¢ is pre-
sented in Fig. 3. The spiky behavior therein represents
the opening of various modes. The analytic estimation
indicates that the quantity tends to behave like C/e5/2
for large € [see (2)]. The plot €5/2f(e)e~P#¢/V is shown
in Fig. 4 which justifies this asymptotic behavior and tells
us where this behavior sets in.

2.0 T T T

0.0 T 1 1 i
0 5 10 15 20

Energy € (Mg)

FIG. 2. The plot of f(c)e™”#¢. This shows the predicted
asymptotic behavior.
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FIG. 3. The semilog plot of f(¢)e™P#%/V in the case of
the space having D = 3 open dimensions.

C. Change in the single state density

In this subsection we examine what occurs to f(e)
when three accidentally chosen directions expand while
the remaining dimensions are kept Planckian. Because
we will restrict ourselves to the case in which three direc-
tions are expanding at an equal rate, we set a; = ag =
as=aand ag =---=ag =b~1 [see (1)] from now on.

In the preceding section we saw that the high energy
behavior of the single state density f(e) is independent
of a since D = 0. This is a consequence of the can-
cellation between the momentum mode and the winding
mode. However this cancellation becomes incomplete at
low energies for the following reason.

As a gets larger the winding mode along the a direc-
tion is getting heavier. Eventually the winding mode
in that direction becomes too heavy to be excited espe-
cially in the low energy range. This means the wind-
ing modes along the expanding three directions are ef-
fectively frozen. Then the cancellation between the mo-
mentum mode and the winding mode breaks down in the

T T T T

w s o

Energy € (Mg)

FIG.4. The semilog plot of €%/2 f(¢)e~?#¢/V. This shows
the expected asymptotic behavior.
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low energy region. As a result the single state density
behaves as if D = 3 instead of D = 0 at low energies.
Namely f(¢)e PH¢ behaves as CV/e%/2 at low energies
and as 1/¢ in the high energy range, respectively. We de-
note this energy mg which separates the low and high en-
ergy ranges. As a becomes large, the strings with higher
energies behave as if D = 3. Namely the effective D = 3
range extends as the Universe expands.

In fact it can be shown by examining the functional
form of the state density that as a grows mg grows at
the rate mo(a) o a?. This is justified by the numerical
analysis of Allega et al. and ours. This phenomena has
been discussed also by other authors, in different ways
by Slomonson et al. in [9] and by the authors of [17, 14].

Before closing this section we summarize the behavior
of the single state density f in an expanding epoch. Be-
low the first excitation energy € < mj, f describes the
zero modes which are regarded as the usual point parti-
cles. In the range between m; and mg the state density
behaves as a string gas in open three space dimensions.
We call the string in this range a nonwinding string be-
cause such a string does not wind along the expanding
directions. Note that the nonwinding string in general
winds along the remaining six directions.

Lastly, for an energy greater than mg(a), f behaves as
a string gas in the totally compact space. We call such a
string a winding string. We can express the single state
density using the step function 6 as:

£() = £2() + —gre®0(e — ma)B(mo(a) —<)
+ -i—eﬁ”EQ(e — mp(a)) (5)

with n = 3/2, where f, denotes the state density of the
zero modes. Although our interest in this paper is in the
n = 3/2 case only, we keep 7 arbitrary in the subsequent
expressions for better understanding of the structure of
our treatment. We again stress here that f is propor-
tional to V below mg(a).

V. HOW BIG SHOULD
THE TOTAL ENERGY BE?

In this section we will give an important remark on
the question of how big the total energy E of our micro-
canonical ensemble should be.

Let us consider the string distribution in the initial
epoch. The number distribution of strings are displayed
in Fig. 1; see the second paragraph of Sec. IV B. The first
excited state opens at m; = v/8(xMj,) corresponding to
N =ngr +ny = 2 instead of N = 1 since the latter is in-
consistent with the level matching condition of heterotic
string theory [1].

The quantity FE is the total energy of the microcanoni-
cal ensemble which we have to introduce at the beginning
of the discussion. What we can find from Fig. 1 is that if
we take E of the order of M, as in the usual dimensional
analysis, we have no string modes from the beginning
since the distribution terminates at ¢ = E. In such a
situation our Universe is no longer a model of string cos-
mology.
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You may say that we only have to take E as large as we
like. However in cosmology with causality we can only
have a finite region in thermal equilibrium because the
speed of light is finite. We are dealing with equilibrium
thermodynamics in this paper. Therefore it is implicitly
assumed that the spatial region having energy E must
be in thermal equlibrium. Consequently we cannot take
E as large as we like.

Now we define F to be the maximally allowed energy
in thermal equilibrium and discuss how big E can be.

Since our present knowledge of string theory does not
allow us to determine the value of F, we are left with
two possibilities. The first one is that the region having £
(defined as above) is smaller than the whole Universe; the
second one is that the whole torus universe is in thermal
equilibrium.

First we consider the former case. Because the value
of E is considered to be the maximal energy which a sin-
gle string can occupy, it appears that E must be large
enough in order for our Universe to be regarded as a
model of string cosmology. But it is not necessarily the
case. In fact there is a loophole in this argument. A
string extending over beyond the causal region can have
an energy much greater than E. Such a noncausal fun-
damental string may well be produced if the Universe
itself is born through quantum tunneling or something
like that. However such a situation is beyond the control
of our present technology. We do not and cannnot go
further in such a case in this paper.

Next we consider the second case when the whole Uni-
verse is in thermal equilibrium. Now we simply conclude
that the value of E must be large for the Universe to be
full of strings. There is no loophole this time.

Because the loophole in the former possibility is out of
our control we assume that F is large enough in this pa-
per. Of course the alternative case that our Universe has
no strings even in the initial epoch is another possibility.
However we will not treat this case since the purpose of
this paper is to explore the possibility of a universe full
of strings.

As we stated before our scenario is based on that of
Brandenberger and Vafa in which the string universe is
supposed to oscillate around the self dual point for an
initial period. This picture nicely fits the second case
mentioned above, since the oscillation over many periods
tends to thermalize the whole Universe. Even if we had
started in the loophole case, this oscillation makes the
noncausal strings causal. Moreover, we point out that
this picture has another advantage from the cosmological
viewpoint. This picture is plausible from the viewpoint
of the horizon problem. If the whole Universe would be
thermalized during the initial period of oscillation, we
would go through history with the background radiation
of the same temperature at any part of the Universe.

VI. FRAMEWORK TO FOLLOW THE THERMAL
HISTORY

In this section we intend to give a concrete framework
to follow the thermal history of the string universe. Many
authors have discussed the behavior of a string gas in the
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microcanonical formalism so far [7-13, 4]. The stringy
phase has been examined in various ways and the dif-
ferences lying between the stringy phase (which is fre-
quently referred to as a high-density phase) and the low-
temperature phase (which is referred to as a low-density
phase) have been exposed.

However very little attention has been paid to the tran-
sition of these two phases. The problem how a stringy
universe evolves into a radiation-dominated universe is
still an open problem. In order to treat the transient
period we present a concrete framework based on the
microcanonical formalism.

The multistate density is written by the single state

n

wy(e;) = z:l % /0 I:[ldejfz(ej)é
n= j=

=1

EZ_E 6]' )
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density under the Maxwell-Boltzmann (MB) approxima-
tion as [12]

0o 1 o N n
o) -3 5 [ [ese(E-3e). ©

n=1

We discuss the validity of the MB approximation in the
Appendix.

We recall that the single state density f is expressed
as a sum of the state densities of zero modes, the non-
winding strings and the winding strings. We define the
multistate densities associated with these regions by im-
itating (6) as

=1 [®° 7 CVde; 4. =
wn(en) =) ;L—,/O II 6,?+1J€ﬂ"5’9(€j —m1)8(mo(a) —€;)8 | en — D _&;5 |, (7)
=1 %j j=1

n=1

J

<) 1 oo N de. n
awlew) =3 o [ TT Ee™6(e; —mol@)s | ew = 3 e;
n=1" j=1

The similarity between (6) and the Taylor expansion
of the exponential function enables us to anticipate that
Q is expressed as a product form of w’s. Actually, we can
prove by a straightforward calculation that

OE) = [ desdendew ox(ex)am(em)ow(ew)
X86(E —€, —en — ew). 8)

The carets on the top of w’s mean the addition of the
delta function: @(e) = w(e) + 6(¢). These carets enable
us to express the equation in a simple form as above. The
necessity of the delta functions is readily understood if we
recall that the right-hand side of (8) counts the number
of all the composite states of three kinds of substances:
the zero modes, the nonwinding strings, and the wind-
ing strings. For example there are also the states hav-
ing no zero modes, which must be counted. The term
6(e.)wn(en)ww (ew) is responsible for these states to be
taken into account in the integration.

Based on the equation we argue as follows. Because the
delta function ensuring energy conservation is included
in the right-hand side of (8), we can perform an inte-
gration over ey to obtain a two-dimensional integration
over (€;,en). In many cases of interest the integrand has
a sharp peak at some single point on the (¢,,ex) plane,
and the contribution from this point dominates the inte-
gral. The position of the peak is dependent on a since
the w’s have an implicit dependence on a. We denote the
position of the peak as (e,(a),en(a)).

If we recall the fundamental principle of the equal a

j=1

priori probability, we conclude that we find the subsys-
tem in the energies (e,(a),en(a)) when the size of the
Universe is a. This is because this state has an over-
whelming probability. This is nothing but the essence of
the microcanonical formalism.

Therefore, once we find the functional form of e,(a)
and ey (a), we can follow the thermal history of the Uni-
verse. This is our strategy — to determine the thermal
history in the microcanonical formalism. To carry out
this program we need to calculate the multistring state
densities. In the next three sections we will evaluate the
multistate densities associated with nonwinding strings,
winding strings and the zero modes successively.

VII. MULTISTATE DENSITY OF THE
NONWINDING STRINGS

The evaluation of the multistate densities wy(g) and
ww (€) have been given by several authors [10, 12, 13, 4].
The method used there is the Laplace transformation and
the saddle-point approximation. We note that the latter
is reliable only for large €. However, as we will see later,
the small € behavior of wx(€) is necessary in the analysis
of thermal history.

In the following we will employ a completely new
method to examine the form of wy and wy . That is the
characterization of w’s by a differential-difference equa-
tion. We will show that w’s are solutions to some linear
differential-difference equations, and solve them to find
the functional form of w’s.
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A. Evaluation
First we remark that we can factor out the exponential part of wy as wx(€) = A(e,v)eP#¢ with
A vde;
(e,v) = Z - H n+le(eJ m1)8(mo(a) — ;)6 | € — Zej , (9)
Jj=1 .7 j=1
where v = CV. This is possible since the integration is constrained by the delta function. If we denote
An(e,v) / n+1 6?(5J m1)8(mo(a) — ;)6 | € — Zsj , (10)
j=1
(9) is rewritten as
[e o) ’Un
Agv) =) —An(,0). (11)
n=1
We change the variables as €; — ex; and obtain
de
An(e,v) = ,mH ,,H@(guJ my/e)é(mo(a)/e — z;)0 | 1 — sz (12)
By operating €0, and nvd, on it we have
€0:An(e,v) = —(mm +1)An(g,v) + An—1(e —m1,v) — 'T;'L_An 1(€ — mo, v)
1 0
and
N8, An(e,v) = ——An 1(e — mg,v), (13)
respectively. Here we made use of the fact that mo(a) o a? o« v*/7 (see Sec. IV C).
!
From these we obtain
Ale) = —2rd (__>
(1+ € B +1vdy) An(e,v) K
n v v
= TAn(E0) + o Anea (e = 0 (14) xexp g (<25 ) + ] B m), 19

Summing up this equation over all n we get the equation

(1 + €8% + nd,) A(e, v) = %A(e —my,v).  (15)
1
This is the equation exactly satisfied by A.
When ¢ is large compared with m;, we can use an
approximation A(e — m1,v) = A(e,v) — m18.A(e,v) to

rewrite the equation as

,,mla + nuo,
my

(1 +ede + ) Ale,v) = %A(e,v}.
1

(16)

In the case that a string has a high energy density

€/my >> v/nm] (which is the case studied in Refs. [10,

12, 13]), we can neglect the third term of the left-hand

side of (16) in comparison with the second term. The
equation reduces to

(14 €8 + nudy)A(e,v) = —A(e,v). (17)
m{

This can be solved with ease to obtain

with some analytic function g(z). The last step function
means that A(e,v) = 0 for € < m; by definition. Com-
paring this with the 7 = 0 solution which will be obtained
in the next section, we can determine g up to z as

g(z) =0+ [nO(m) + 1]z +---, (19)

where O(n) represents the function of 7 vanishing at n =
0.

Consequently for the string gas which has an energy en
such that v/ne}, ~ 0, the multistate density is expressed
as

cv cv
wn (g,v) = const x —FTeXP (W + 51{5) . (20)

This reproduces the known result [10, 12, 13].

We have examined the high density region above. How-
ever, we will realize that for our string universe the re-
gion with low energy density £/m; << v/nm] is relevant.
Thus we have to evaluate wy (&, v) in this low energy den-
sity. Before carrying it out we estimate the position of
the peak of A and the height of it which are of importance
in thermal history.
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Setting € = e,(a) in (16) this equation is reduced to
an ordinary differential equation
v
(1 + nvd,)A(en(a),v) = WA(eN(a),v), (21)
1
since 9. A vanishes on that point. This ordinary differ-
ential equation is readily solved and we get the height of
the peak:

const
A(en(a),v) = PRyl [

] . (22)

The logarithm of this is nothing but the entropy of
the nonwinding strings. Therefore, the expression simply
tells us that the entropy produced when D-dimensional
volumes out of nine expands is proportional to the ex-

nmy "
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panding volume (note that v = CV).

Next we determine the functional form of ey (a). From
a numerical determination of A(e,v) which we will give
later, we see that v/nm," is much greater than e,(a)/m;.
In this case we can neglect the second term instead of the
third one in (16). This reduces the equation to

v v
(14 pogmde +m, ) Alew) = o dle0). (29

By solving it we can determine the functional form of
A(e,v) in this region as

Ale,v) = #exp [h (i - L,,) +— ] , (24)

n
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FIG. 5. The plots of In A(e, v) versus € at growing values of a’s. (a) is for a = 1, (b) is for a = 1.4, (c) is for a = 1.6, (d) is

for a = 2.4, and (e) is the close view around € ~ m; of (d).
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where h is some function to be determined by a bound-
ary condition. But the explicit form of k is unnecessary
for our present purpose. The function A(e,v) is maxi-
mized when the function h(z) is maximal. Denoting the
position of the peak of h(z) as z = ¢, we can express the
position of the peak of 4, enx(a) as

en(a)/my = 77_:1;7 +c. (25)

Numerically it can be expressed as en(a) =
4.00a%+const. Namely ex(a) increases in proportion to
the volume for large a.

We solved (15) for small e, at growing values of a. Fig-
ure 5 shows the plot of In A(e, v) versus €. As the energy
increases, new modes start to open. This fact is exhibited
in the low energy behavior of A(e,v) as the emergence
of several peaks. We see that the position of the peak
moves to higher energy as a grows. In the high energy
region, the spiky behavior seen at low energies is smeared,
resulting in a smooth curve. Figures 6 and 7 show the
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FIG. 7. The plot of In A(en(a),v)/v versus a. This is
consistent with the analytic estimate.
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plots of [en(a)/mi]/a® and In (A(en,v))/(v/nm]) versus
a, respectively. The behavior in both figures is consistent
with the above analytic estimate.

To prepare for later usage we present here the plots of
a microcanonical temperature of the nonwinding strings.
This quantity, defined as

Bn(e,v) = O Inwpn(e,v) = 8 In A(e,v) + Bu, (26)

measures the rate of entropy increase due to energy in-
crease. We show the plots of 8y /By versus € in Fig.
8.

The global decreasing behavior means that the spe-
cific heat is globally positive. The point of € on which
Bn = B is where In A(e,v) peaks. The local spiky be-
havior around € ~ m; means there is thermodynamical
instability in this region.

VIII. MULTISTATE DENSITIES OF THE
WINDING STRINGS

Next we calculate the multistate density of the wind-
ing strings. We only have to make an analogue of the
previous discussion. Since = 0 in the present case we
get

(1+€8.)A(e) = A(e — mo) (27)

instead of (15). Using a similar approximation we have
8. A(e) = 0. Determining the normalization by

/
A(mo) = / ':Tle(mo —e€1)é(e - €1)|5=m0 = 1/mo,

mo
(28)
we finally obtain
1 ﬂ €
ww(e) = —e’Hh(e — myg). (29)
Mo

This reproduces the known result [4]. One particular
feature of this functional form is that wy (¢)e™?#¢ has
no peak. This is not the case for the nonwinding strings
and the zero modes.

IX. MULTISTATE DENSITY OF THE ZERO
MODES

In this section we estimate the multistate density of
the zero modes. When we enter into the thermal history
of the string universe, the knowledge of the position of
the peak of the function w, (&, v)e~P#¢ will be necessary.
We will determine this in the last part of this section.

The multistate density w,(e,v) in (8) can be rewritten
as

w,(g,v) = °¢

© 4 0o M k
x;m—/o Hdsjfz(ej)e"ﬁefé e—zlsj ,
=

(30)
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with an arbitrary positive 8 parameter noting the delta
function constraint.

In order to estimate the power series above, we note
two facts here. First the sum of the exponential function
3~ z* /k! receives its dominant contribution from the k =
z term. In fact it can be verified that the expression z* /k!
if seen as a function of k has a sharp peak at k = z.

Next we can ascertain that the power series of w,(e)
can be regarded as 3~ z* /k!. In order for it to be valid it is
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1.05F : i
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=
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sufficient that the important contribution to the integral
of &’s comes from the diagonal region €1 ~ g9 ~ -+ ~ .
As mentioned before f, behaves as a positive power of
€; see Sec. IVA. This enables us to apply the well-
known inequality ¥/z1€z -k < 1 >_¢&; to conclude that
I1 f2(¢) maximizes on the diagonal region justifying our
claim.

Because z of Y zF/k! corresponds to z; =
f0°° fz(€)e=Pede of (30), we only have to focus on the
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The plots of the microcanonical temperature of the nonwinding strings By (e, v) versus € at growing values of a’s.

The figure (a) is for a = 1, (b) is for a = 1.4, (c) is for a = 1.6, (d) is for a = 2.4, and (e) is the close view around & ~ m1 of
d).
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k = xo term. Let us examine for which energy ¢ this
term does not vanish. For the delta function not to van-
ish, the argument of it must vanish. So let us see what is

the typical value of Z;.c:l €; in the delta function of (30).
This is estimated as

k o] -
i Jodeefi(e)e”*
<;EJ~> ~ ey) = ke

= /00 deef,(e)ePe. (31)
0

We define here h and n as

h(B,v) = /0 - ef.(e)e Pede,
(32)

n(B,v) = /Ooo fo(e)e Pede

for later convenience. As a result we realize that
wz(€,v)e™P¢ has a sharp peak at € = h(3,v) with the
height exp[n(8, v)] with some width ¢(8, v).

Making use of a function G(z) having a peak at z =
0 with a unit width and a unit height we can express
wz(e,v)e‘ﬂs as

€ — h(ﬂ’ ’U)
a(B,v)

Especially the case 8 = By will be relevant in later ap-
plications. We write it here with an explicit numerical

w,(e,v)e Pe =G ( ) exp[n(B,v)]. (33)

|

Q(E,’U) = R;

= exp [Bu E + n(BH,v)] /oo deszNdewG<
0
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coefficient:
h(Bx,v) = 65.0a%. (34)

It is worth noting that this argument does not apply
to the evaluation of wn(e,v). As we saw in (2) the sin-
gle state density was a product of the exponential part
and the negative power of €. The exponential part is
irrelevant since it can be factored out as usual. While
the fact that the remaining part is a negative power of
¢ implies the situation opposite to the above case since
1/(e1€2 - - - £x) maximizes in the boundary region such as
€1 ~E, €1 ~Ey~ -~ g ~mi. The is the essence of
what is called the Frautshi-Carlitz picture.

X. THERMAL HISTORY

In this section we explicitly follow the thermal history
of our system using the multistate densities calculated in
the previous sections. The history that we are going to
describe below consists of two distinct epochs which we
refer to as epoch I and epoch II, respectively.

We insert w’s obtained above into (8). Among the con-
stituents of Q, wy and wy have the same exponential
dependence efH:. As for the zero modes, we can for-
mally factor out the same exponential using the previous
formula (33) with 8 = By

If we insert these w,, wy, and wy into (8), the ex-
ponential factors can be combined to form exp(SyFE)
thanks to the delta function §(¢ — ew — €, — en) and
then be picked out from the integral as

€z — h(ﬁH’ ’l))

q(Bw,v) ) Alenv)

X[G(EW - m()) +6(6W)]5(E — &, —EN — Ew).

A. Oscillating epoch and epoch I

As we mentioned before we find the system with ener-
gies €, e, and ey are determined as the position of the
peak of the integrand. The functions G and A prefer that
e, and £y take their most probable values, respectively.
The winding string energy ew is adjusted to meet the
requirement by the delta function since the integrand of
(35) does not have other dependence on ey .

The function for the zero modes strongly favors

€. = e;(a) = h(Bu,v) = Aoo de Efz(a)e_ﬁHE’ (36)

[see (32)], while the favorable value for the nonwind-
ing strings is similarly determined as ey = en(a) =
myv/(nm7)+const, which is derived in (25). Accord-
ingly the most probable value of ey is determined as
ew =ewl(a) = E —e,(a) — en(a).

Because both e,(a) and ex(a) grows as a® for large a,
the ratio of ey (a) to e,(a) approaches a constant. Nu-

(35)

I

merically, however, we see that ey(a) << e, (a) from
(25) and (34). Namely the zero modes are always dom-
inant over the nonwinding strings. In view of e,(a) in
(36), we can find that the zero modes are distributed in
the canonical distribution with the Hagedorn tempera-
ture 1/By. Namely the temperature in this period is
fixed to be the Hagedorn temperature. Therefore, the
total energy of the zero modes grows in proportion to
the volume. The reason why it is possible is that the
winding strings continuously supply the energy by de-
cay. The supplied energy is also given to the nonwinding
strings, resulting in the growth of ex(a) found at (25).
The conversion of the energy into the nonwinding strings
and the zero modes continues until the winding strings
disappear [i.e., ew(a) = 0]. We call the period epoch I
before their disappearence.

Here we give an important comment on the change of
the total energy E. Generally in cosmology the total
energy is not a constant quantity [18]. For example the
energy density of the radiation-dominated universe scales
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e:(a)/a® x 1/a* (37
implying e,(a) « 1/a. This energy loss is attributed
to the redshift of radiation due to the expansion of the
Universe. If the size of the Universe is multiplied by a
factor a, the wavelength is multiplied by the same factor.
The radiation loses its energy by this effect. The energy
lost is given to the gravitational field. We call it a normal
energy loss.

This energy loss is deduced from Einstein gravity. It
is true that in the period in question Einstein gravity
is not a reliable approximation because of the possible
string corrections. However, even in this period, we con-
sider that this energy loss works for the zero-mode sector.
Then we decide to take the normal energy loss as an as-
sumption based on which we follow the thermal history
of the Universe. It is amazing to observe that this normal
energy loss nicely fits to our scenario. We will show it
below.

In the pure radiation case the normal energy loss is
described in the differential equation as de,(a)/de =
—e;(a)/a. In order to apply this to our case we have to
take the existence of the other modes into account. The
energy exchange between the other modes and the zero
modes is allowed while the energy loss is only through
the redshift of the zero modes —e,(a)/a. Therefore the
normal energy loss now means

a%[ez(a) +en(a) +ew(a)] = -C%E(a) = —%e,(a).
(38)

Adding this equation to the previously given conditions
we can uniquely determine the functional form of e,(a),
en(a), ew(a), and E(a) throughout thermal history.

In order to reveal what (38) means we examine the
entropy change of the system under this assumption; the
entropy of this system is estimated from (35) as

S = BuFE(a) + n(Br,v) + In A(en(a),v). (39)

The last term comes from the nonwinding strings. Let
us first examine the case without it. Then the change of
S due to the growth of a reads

d. . ela)  3n(Bu,v)
ES_—'BH a7 a

(40)

Surprisingly we can show that it vanishes. This is verified
by combining the fact that —8g,n(8u,v) = h(Bu,v) =
e.(a) and n(By,v)  1/Bx> [see (32)]. These two imply
ez(a) = z-n(Bw, v) which implies dS/da = 0.

Consequently, we have proven that as far as we neglect
the entropy of the nonwinding strings, the assumption of
the normal energy loss is equivalent to the equientropy.
Let us consider below what this fact means.

The generation of nonwinding strings is rephrased as
the unknotting of the winding strings along the expand-
ing direction. It was the necessary condition for our Uni-
verse to exit out of the oscillation epoch and enter into
the three-dimensionally expanding universe due to the
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Brandenberger and Vafa instability. It is natural to sup-
pose the Universe is oscillating around the self-dual point,
until the condition for the unknotting along some three
directions is met.

On the other hand what we proved above is that the
process in such an epoch is adiabatic. In other words the
process is reversible. Sometimes winding strings decay by
generating the zero modes as the Universe expands and
sometimes the winding strings absorb the energy from
the zero modes as the contraction proceeds. These pro-
cesses can repeat themselves because they are reversible
processes. This situation is naturally identified with the
oscillating epoch of the Brandenberger and Vafa scenario.

Once the unknotting in some three directions proceeds
enough, the entropy generation occurs as we have shown
above. This time we cannot go back because the en-
tropy is generated. Namely the Universe is destined to
be a three-dimensionally expanding universe. This is nat-
ural as we naively expect that the birth of the three-
dimensional universe is an irreversible process. Conse-
quently, we have recognized that the result of our ther-
mal analysis is perfectly consistent with our cosmological
scenario thus far.

The epoch I ends when all the winding strings decay
away, in other words when all the winding along the three
directions unknot. The point a = ag when epoch I ends is
determined by solving the equation E(a) = e,(a)+en(a).
We can easily determine the functional form of E(a) from
(38) as

Bla) = Bo + 3[e:(1) - ex(0)], (4)

where Ey = E(1) is the initially given total energy. Using
this, (25), and (34) we obtain

[ Botie() \V?_ [ 3B\
“°‘(§ez(l>+ezv(1>) —(462(1)) - @

B. Epoch II

We call the period a > ag epoch II. In epoch II there is
no energy supply from the winding strings. The nonwind-
ing strings and the zero modes compete for the limited
amount of total energy E(a) in this time. The three func-
tions E(a), e;(a), and ex(a) in this epoch are uniquely
determined by the three conditions

E(a) = e;(a) + en(a), (43)
ﬂz (ez (a)v U) = ﬂN(eN (a)a U)v (44)
;—aE(a) - —%ez(a). (45)

The functions in the second lines are the microcanon-
ical temperature defined as (3,(g,v) = 9: Inw,(g,v) and
(26). The second equation is an equitemperature condi-
tion. As we stated before the most probable value of the
energy is determined as a meeting point of the competi-
tion between the zero modes and the nonwinding strings.
The functions 8, and By measure how strongly the re-
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spective modes compete for the limited total energy.

These equations provide the rule for the competition
between the winding strings and the zero modes. Now
the thermal history in epoch II can be understood quali-
tatively with the knowledge of 8y, which is given in Fig.
8.

As a grows, the temperature of the zero modes de-
creases due to the redshift. For the equitemperature con-
dition to be met, the nonwinding strings must cool by the
same amount. From Fig. 8 we can readily find that the
nonwinding strings have a very large specific heat. A
very slight change of the temperature corresponds to a
large energy change. Hence a decrease of the temperature
signifies a violent loss of its energy. For this reason the
string modes surviving in epoch II quickly decay away
as the expansion proceeds. After the strings die away
the Universe comes into the usual radiation-dominated
universe with the usual redshift E(a) = e,(a) = 1/a.

XI. DISCUSSION

In this paper we have performed the thermodynamical
analysis of string cosmology focusing on the Branden-
berger and Vafa scenario. Our analysis was based on the
following assumptions: local thermal equilibrium; ideal
gas approximation; normal energy loss; no unexpected
effect due to the non-Einstein correction.

As a result our analysis has presented the following
thermal history of the string universe. In the very initial
epoch the Brandenberger and Vafa scenario suggested
that the Universe oscillates around the self-dual point of
the target space duality. Our analysis has shown that the
emission of the zero modes from the strings due to cos-
mological expansion and the absorption of it due to con-
traction in the initial Universe are adiabatic processes.
Then these could be repeated, resulting in the oscilla-
tory behavior. These observations clarify the nature of
the oscillating period from the thermodynamical point of
view.

Once the accidental three-dimensional expansion is
triggered, nonwinding strings are produced with the en-
tropy production. In this process the winding strings de-
cay producing nonwinding strings and zero modes. Dur-
ing this period the temperature is fixed to be the Hage-
dorn temperature, realizing the inflationlike situation.

This period ends when the winding modes are ex-
hausted. At that time the temperature begins to fall due
to the assumed redshift of the zero modes. The surviv-
ing string modes quickly die away by this cooling process
and there emerges the usual radiation-dominant universe
of the standard big bang cosmology.

Brandenberger and Vafa also addressed the problem
of how our space-time dimensionality is determined to
be four within their scenario. In the rest of this paper
we consider this interesting problem and we propose an
alternative idea to determine the dimensionality of space
time. We first review the Brandenberger and Vafa dis-
cussion shortly and give our reconsideration next.

In their scenario, an expanding universe begins as a re-
sult of the accidental growth of the torus universe along
some d directions in nine-dimensional space. In order for
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the accidental perturbations to grow, the strings should
collide with each other frequently so as to diminish the
number of their winding modes along d directions, be-
cause the winding modes slow down the expansion. If
they intersect they would probably unwind.

On the other hand the string is a two-dimensional en-
tity if seen in space-time. They argued that in order for
two strings to collide with finite probability, d+1 must be
smaller than or equal to 2 + 2 = 4; otherwise space-time
is too broad for two world sheets to have an intersection.
This is their derivation of the relation d + 1 < 4. They
said that the Universe continues to make trials and errors
until they learn that less than or equal to three spatial
directions only become large. When the Universe fin-
ished the course, a (d < 3)-dimensionally large universe
would have been born. Thus, while they presented the
intriguing idea for understanding why d < 3, they did
not succeed in giving compelling reasons why d should
be 3.

Now we reconsider their argument. We cannot fully
agree with their discussion to determine the dimension-
ality because of the following reasons. First, it is true
that, in the point particle case, especially in ¢* theory in
R?, the correlation functions are known [19] to be rep-
resented in terms of random walks in R®. From this, it
is rigorously proven that the theory is free if d + 1 > 5.
However this is not the case for string theory. We have
repeated the same analysis as ¢* theory in the light cone
string field theory [20]. We have found that a ®3 inter-
action term prevents us from constructing an analogous
representation as the ¢* theory.

Second, it is true that the low-energy point particles
cannot travel to the compact direction since the unit mo-
menta are too heavy in such directions. This enforces the
point particles effectively confined in the d-dimensional
space. In this case it is only d directions that the point
particles can utilize to collide. However, we are now con-
cerned with the collision of the strings long enough to
wind the torus universe many times. One can imagine
with ease that these strings need not be confined in d-
dimensional space and can move in any direction. Then
what aspects are relevant to the string case?

Let us recall what occurs to the point particles in the
expanding universe. The expansion makes the mean sep-
aration of particles larger. If the time scale of expansion
time gets shorter than that of interaction time, the inter-
action is effectively frozen.

This consideration gives rise to the following interest-
ing possibility. Let us assume that the accidental expan-
sion in the d(< 9) directions is always too fast to keep
their mutual intersections. If it is true, the expansion in
the d directions plays a negative role with respect to the
unwinding of the winding strings.

To put it another way, the winding strings only can
use the rest of the 9 — d dimensions to unwind. Hence
the greater value of 9 — d is favored from the viewpoint
of killing the winding modes along d directions. This
implies the inequality opposite in direction from that of
Brandenberger and Vafa. One may say that this implies
that d = 1 is preferred. However the story is not so
simple.
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As we have observed in expression (22), the entropy
produced in the process of the unwinding is proportional
to the expanding volume. This means that the Universe
prefers to expand as many dimensions as possible. The
larger value of d is preferred from the second law of ther-
modynamics, the entropy increase. This effect will com-
pete with the preceding one. Our idea is that the number
of the expanding space dimensions is determined to be
three as a result of this competetion. This idea is not
yet formulated on a rigorous ground at present. However
we think it is one of the plausible candidates of a mech-
anism to fix the space-time dimension. We are planning
to make a numerical simulation of the strings to obtain
some indications to this idea.
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APPENDIX

In this appendix we examine what kind of correction
is added when we include the full quantum statistics. A
rough estimation of it has been done in [13]. We will
consider this in our framework. As a result we can show
that the correction in our case is very small.

It is known [12] that the thermodynamical functions in
the canonical formalism and the microcanonical formal-
ism are connected through the Laplace transformation.
If we denote the single canonical partition function for
the nonwinding string as fy(8), this can be explicitly
written as

/i°° dBexp (f"N(,g)) e = A(e, v)efre

—100

(A1)

within the MB approximation, where d3 = d3/2mi.

The multistring state density with all the statistical
effects wn (€) is given by a similar integral, but the inte-
grand should be changed to

oo

f on[ties]

r=1,r:0dd

Z(B) = (A2)

Namely the integrand is a product of the functions
1 f(rB). Equation (A1) readily implies

l

l
Le PHe = m! /dmo -+ - dziexp Z(h(:cj —w/r;) +w/rj — Bami(r; — 1)z;) | 6 [ = — erxj

Jj=0
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/ioo dBexp <%fN(rﬂ)> efe = %A(e/r,v/r)eﬂ""/r.

—100
(A3)
Here we remind the readers of a well-known formula
that the inverse Laplace transform of the product of
two functions is equal to the convolution of the inverse
Laplace transforms of the two functions. Namely we have

/ioo
—100

dp $1(8)$2(B)e’

= /Ooo deidead(e1)p2(€2)8(e — €1 — €2).
(A4)

Now the repeated use of this formula leads us to the mul-
tistate density with full quantum statistical corrections:

o0
wn(e,v) = klim . deides - - deg,

—00

x G(e1,v)b(es,v/3) - élek,v/k)
k

X & (s - err) ,
r=1

where we have set a(e,v) = A(e,v)ePHe. All the summa-
tion and product indices in this appendix mean to run
only odd integers unless otherwise stated.

Now we are going to examine the size of the corrections
to the MB approximation using (A5). Because a(e,v)
does not vanish only for € > m;, the product of (A5) is
actually a finite product.

For the range km; < ¢ < (k + 1)m; with k being
an integer we consider the sequence of odd numbers such
that1 <rg<r1 <---<rand rog+r1+---+r, = k. Only
To has the possibility to become unity. All the corrections
acquired by wy (€, v) in this range are written as the form

(A5)

L= /ds,u <+ dey, afery, V/ro) -+ - aler, V/ri)
x6(e — (ro&re + -+ +T1ER))-
(A6)

If we set v/nm7 = w and €/m; = z, « is rewritten as

1
a= m—exp[h(x —w) +w+ Bgmz]. (A7)
1
Using it and making a variable change e,; = myx; (here j

runs even and odd integer) enables us to rewrite Le~AH¢
as

(A8)
j=0
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This is a typical form of the corrections added to
A(g,v) = ale,v)e~PHE,

This function is expressed as an integration of a prod-
uct of functions of the form

exp (h(z; — w/rj) + w/r; — Bami(r; — 1)z;]. (A9)

First we consider the case rp = 1. We already know that
this peaks at 2§ = w + ¢ with the height —--exp(w),
where c is the point such that h'(c) = 0.

Next we consider the general case r; # 1. In this
case the function is strongly damped by the exponen-
tial suppression exp[—Bgmi(r; — 1)z;]. Actually the
position of the peak is now located around x™** ~ 1.
It can be verified by examining where the cierivative
of the exponent of (A9) changes its sign from positive
to negative. The derivative in question is written as
h(z; —w/r;) — Bami(r; —1). We recall here that we
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had the information on the derivative h'(z) because it
is essentially the microcanonical temperature examined
before, see (26). We know that

K (z —w) = 8;In A=myf0n(e,v)

= Bami(Bn(e,v)/Br).  (Al0)
From our previous numerical analysis (see Fig. 7) we
know that Bn/Bg is very close to unity except when
x ~ 1; we observe that the above derivative is negative
at the entire range except for the very edge z; ~ 1. This
means that the position of the peak is 7** ~ 1, and ac-
cordingly its height is negligibly small. It is no longer ex-
ponentially large like ~ exp(v/nm7). This is always true
if (A6) contains the factor with 7; # 1. Consequently we
conclude that any corrections to MB approximation are
very small.
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