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It is argued that “eternal inflation” must have a beginning in time. Conditions are formulated for a
spacetime to describe an eternally inflating universe without a beginning, and it is shown that these con-
ditions cannot be satisfied. A rigorous proof is given for a two-dimensional spacetime, and a plausibility

argument for four dimensions.
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I. INTRODUCTION

Inflation is a period of rapid (quasiexponential) expan-
sion in the early history of the Universe [1]. During this
period, regions initially within the causal horizon are
blown up to sizes much greater than the present Hubble
radius, and the observable part of the Universe comes
very close to being homogeneous, isotropic, and flat. The
inflationary expansion is driven by the potential energy of
a scalar field @, while the field slowly ““rolls down” its po-
tential V(@). When @ reaches the minimum of the poten-
tial this vacuum energy thermalizes, and inflation is fol-
lowed by the usual radiation-dominated expansion. The
evolution of the field ¢ is influenced by quantum fluctua-
tions, and as a result thermalization does not occur
simultaneously in different parts of the Universe. Fluc-
tuations in the thermalization time give rise to small den-
sity fluctuations on the observable scales, but result in
large deviations from homogeneity and isotropy on scales
much greater than the present horizon. In fact, it can be
shown [2-9] that at any time there are parts of the
universe which are still in the inflationary phase. Once
started, inflation never ends completely. Inflating regions
constantly undergo thermalization, but the exponential
expansion of the remaining regions more than compen-
sates for the loss.

A model in which the inflationary phase has no end
and continually produces new islands of thermalization
naturally leads to the following question: can this model
be also extended to the infinite past, avoiding in this way
the problem of the initial singularity? The Universe
would then be in a steady state of eternal inflation which
does not have a beginning. This possibility was pointed
out by Linde [5] immediately after Steinhardt [4] suggest-
ed that inflation may have no end. However, it was soon
realized by Linde himself [6] and by others [2,4] that this
idea could not be implemented in the simplest model in
which the inflating Universe is described by a de Sitter
space. In a more general case, the situation remained un-
clear [8].

*On leave from Tufts University.

The purpose of this paper is to investigate the possibili-
ty of eternal inflation, without a beginning, in greater de-
tail. To simplify the terminology, the word “eternal” will
be used for the case when inflation is infinite in both time
directions, and ‘“‘semieternal” when it is infinite only in
the future. (Note that this terminology is different from
that used by Linde [7,8].) In the following sections, some
necessary conditions will be formulated for a spacetime
to describe an eternally inflating universe. Then it will be
shown that under rather general assumptions these con-
ditions cannot be satisfied. Hence, the Universe must
have a beginning, and eternal inflation (in the above
sense) is impossible.

Before analyzing the most general case, we shall clarify
the ideas using simplified models. In the next section the
possibility of eternal inflation is discussed in the context
of “old” inflationary scenario [10], in which the vacuum
energy is strictly constant and vacuum decay occurs
through bubble nucleation. Old inflation is known to be
semieternal; bubbles cannot fill the entire Universe, since
the space between them is expanding so fast. In the
thermalized parts of the Universe the distribution of
matter produced by colliding bubble walls is grossly inho-
mogeneous, making old inflation unsuitable as a realistic
cosmological model. Here we shall disregard this aspect
of the problem and will only be concerned with the ques-
tion of whether or not old inflation can be continued back
to the infinite past. We shall see that the answer to this
question is “no”. Exponential expansion of the false vac-
uum is unavoidably preceded by an exponential contrac-
tion. If vacuum decays by bubble nucleation, the bubbles
have no trouble filling the Universe during the contract-
ing phase, so that the whole Universe thermalizes and
collapses to a singularity, without ever making it to the
expanding phase.

Guided by this discussion we shall formulate two con-
ditions that a spacetime describing an eternally inflating
universe should satisfy (Sec. III). In Sec. IV it will be
shown that these conditions cannot be satisfied in a non-
singular two-dimensional spacetime. The realistic case of
a four-dimensional inflating universe will be studied in
Sec. V, and the conclusions will be briefly discussed in
Sec. VI.
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II. CAN OLD INFLATION BE ETERNAL?

In the old inflationary scenario, the false vacuum has
the energy-momentum tensor

T,,=p8uv » 2.1

with p=const. The homogeneous and isotropic solution
of Einstein’s equations with 7', from (2.1) is the de Sitter
space, which can be represented in the form

ds*=dt?—e?Higx? | (2.2)
where
H*=87Gp/3 . (2.3)

This space has a horizon of radius H ~!; observers
separated by a greater distance cannot communicate. We
shall first assume that the inflating part of the Universe is
described by the metric (2.2). The general case will be
considered afterward.

Let us first recall the arguments showing that old
inflation is semieternal [10]. Bubbles nucleating in false
vacuum expand, rapidly approaching the speed of light.
In de Sitter space this corresponds to having asymptoti-
cally static boundaries in comoving coordinates. The
physical radius of a bubble formed at time ¢, is [for
H(t—1t,)>>1]

1 H(t—1t,)
le v

r(t,t)~H 2.4)

An expanding bubble can affect the geometry of the out-
side region only within a distance of ~H ! from its
boundary. Hence, although bubbles carve large volumes
out of de Sitter space, the geometry of the remaining re-
gions is practically unchanged. We shall first assume that
inflation starts at some time ¢, and later consider the lim-
itt 0> T ™.

Bubble nucleation is a stochastic process with a con-
stant probability A per unit spacetime volume. The prob-
ability for no bubbles to be formed in a four-volume Q is
[10,11]

Po=e (2.5)
Here is a quick derivation. Let P( A) be the probability
for no bubbles to nucleate in spacetime region 4. Then,
for nonoverlapping regions 4 and B, P(AUB)
=P(A)P(B), and for an infinitesimal volume dQ,
P=1—AdQ. The only function P({) with these proper-
ties is (2.5).

The probability for a given spacetime point x =(z,x) to
be in the inflationary phase is given by (2.5) with (2 being
the volume occupied by false vacuum in the past light
cone of x. For H(t—ty)>>1, this is

_ A4rm
‘Q:_}H_S(t_to) . (2.6)

(This equation is easily understood if we note that null
geodesics continued to large negative values of ¢, asymp-
totically approach the horizon, which is a sphere of ra-
dius H~') From (2.5) and (2.6), the fraction of space
that is still inflating at time ¢ is
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4A

f(t)=exp ——(t—to)] . 2.7

3H?

It decreases with time and vanishes as 1 — + . Howev-
er, the physical volume of inflating regions,
V(t)x<e3H!f(t), grows with time. The reason is very sim-
ple: for sufficiently small A the rate of expansion of false
vacuum regions is greater than the rate of their decay.

An argument similar to that in Ref. [9] shows that
inflating regions form a self-similar fractal of dimension
d < 3. This fractal dimension can be found from
3—d

-1
d ) (2.8)

fl)= R

where H ! is the size of the smallest bubbles and
R ~H lexp[H(t—1t,)] is the size of the largest bubbles
(formed at t =t;). A comparison of (2.7) and (2.8) gives

_4mh
3HY
The meaning of the fractal dimension is easy to under-

stand. Consider a sphere of radius r centered on a point

in an inflating region. As r is increased, the volume occu-
pied by false vacuum inside the sphere grows (on average)
like ¥ < r? The deviation of d from 3 can be attributed
to the fact that, as the sphere becomes larger, it is likely
to include larger and larger bubbles. Of course, the
inflating regions have a fractal nature only on scales

H7'<r<R. Forr>R,Vr’

Let us now ask what happens if we remove the begin-
ning of inflation to the infinite past, t,— — . As I al-
ready mentioned in the Introduction we will not be con-
cerned with the question of whether or not this model is
realistic (it is not). The question is whether or not, by let-
ting t,— — oo, one obtains a consistent model of eternal
inflation.

As t,— — o0, the upper cutoff on the size of the bub-
bles is removed, R — oo. At the same time the probabili-
ty (2.5) for a point to be in the inflationary phase and the
fraction of space f occupied by the false vacuum both
vanish. We note, however, that for a point (x,?) in an
inflating region there is a finite probability that inflation
will continue for any given time interval Az. This proba-
bility is given by

d=3 (2.9)

PAQ=e_}‘AQ , (2.10)

where AQ is the four-volume between the past light cones
originating at (x,¢) and (x,¢ +A¢):

AQ= 4773
3H

At . (2.11)

The vanishing of f in Eq. (2.7) simply expresses the fact
that an object of fractal dimension d <3 cannot fill the
three-dimensional space; a randomly chosen point is most
likely to be inside an infinitely large bubble. However,
the physical volume occupied by the false vacuum is still
increasing with time, and it may appear that we have a
model of eternal inflation.

The trouble with this model is that the metric (2.2)
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does not cover the whole de Sitter space [12]. The space-
time described by this metric is geodesically incomplete.
If a timelike geodesic is followed back in time, it reaches
t= — oo in a finite proper time, indicating that the space-
time has an “edge” and can be continued. The full de Sit-
ter space is covered by the metric

ds*=dt*—H ~*cosh*(HT)d Q% , 2.12)

where dQ? is the metric on a unit three-sphere. This
shows that the phase of exponential expansion at 7>0 is
preceded by a phase of exponential contraction at 7 <0.
Of course, the contracting phase does not describe an
inflating universe. If such a contracting universe were
filled by a false vacuum, the nucleating bubbles would
rapidly fill the space. The whole universe would thermal-
ize and collapse to a singularity, without ever getting to
the expanding phase.

The situation can be illustrated using a Penrose dia-
gram. To make things simpler let us consider a (1+1)-
dimensional version of (2.12);

ds*=df*— H 2cosh®(H?)d6* . (2.13)

With a new time variable 7, such that dyn=Hdf/
cosh(Ht), the metric takes the form

1
ds’=————(dn*—d6?) . (2.14)
H?cos’y K
Both variables 7 and 6 have a finite range;
—w7<0=w, —7w/2<9=<w/2, (2.15)

with 6=—m and 6= identified. The corresponding
Penrose diagram is shown in Fig. 1. Since the metric
(2.14) is conformally flat, the null geodesics are
0=xn+const and are represented in the diagram by
straight lines at 45° to the horizontal. A coordinate

transformation
t=HIn sinn +cosf
cosm ’
. (2.16)
=" sin6

sinn+cosf ’

t=const

X=const
T /
2

FIG. 1. Penrose diagram for de Sitter space. The lines of
constant x and ¢ in coordinates (2.17) are indicated. The shaded
region is not covered by this coordinate system.
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brings the metric (2.14) to a form similar to (2.2):
ds?=dt?—e?Hidx? .

We see from (2.16) that t— — o corresponds to
sinn+cos0=0, that is, n==16—m/2. The spacetime re-
gion not covered by (2.17) is shaded in Fig. 1. The
boundary of this region is the future light cone of a point
at past timelike infinity.

The trajectories of expanding bubbles in de Sitter space
are illustrated in Fig. 2. Bubbles nucleating at late times
do not collide. The corresponding lines in the diagram
hit the future infinity J* (9= +m/2) before they inter-
sect (see, e.g., the bubbles originating at points P and Q in
the diagram). However, there is an infinite number of
bubbles originating at past infinity J~ in the vicinity of
n=—m/2 (since the spacetime volume of this region is
infinite). These bubbles have no trouble colliding and
rapidly fill the entire Universe, as illustrated in the figure.

In terms of the probability (2.10) for inflation to per-
sist, a nonzero answer was obtained only because the two
light cones bounding the volume AQ were cut off at the
surface t=—o. In the full de Sitter space (2.14),
AQ = o0 and P,,=0.

In our discussion so far we assumed that the part of
spacetime occupied by false vacuum is exactly de Sitter.
It has been conjectured [13] that, roughly speaking, all
solutions of Einstein’s equations with an energy-
momentum tensor (2.1) asymptotically approach de Sitter
space. This is the so-called cosmic no-hair conjecture. It
is usually applied to the asymptotic future, but it should
be equally valid for the asymptotic past. Particular ver-
sions of this conjecture with different assumptions about
the initial state have been proved in Refs. [14—18]. In the
most general case, the no-hair conjecture is certainly
false. A simple counterexample is given by a small closed
universe filled by gravitational waves which recollapses
before the vacuum energy (2.1) can take over. A version
of the conjecture that would be suitable for our purposes
is that all solutions of Einstein’s equations with T, of
the form (2.1) which are geodesically complete to the past
are asymptotically de Sitter. The condition of geodesic
completeness excludes singular spacetimes such as a
closed collapsing universe. We shall not continue this
line of argument, since, as we shall see in the following
sections, eternal inflation can be ruled out without relying
on spacetime being asymptotically de Sitter.

J‘i‘

(2.17)

P

/\/\é_\/\/

FIG. 2. Expanding bubbles in de Sitter space. Bubbles nu-
cleating at points P and Q never collide, but the space is readily
filled by the bubbles nucleating at 7.
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III. CONDITIONS FOR ETERNAL INFLATION

The analysis in the previous section cannot be directly
applied to realistic inflationary scenarios. In realistic
models the false vacuum energy p is replaced by the sca-
lar field potential V' (¢) which can vary in space and time.
The field ¢ is usually assumed to be slowly varying and
the spacetime to be locally close to de Sitter, but the glo-
bal structure of spacetime can be quite different. More-
over, quantum nucleation of bubbles is replaced by a
quantum random walk of the field ¢, which is followed by
thermalization when ¢ gets close to the bottom of the po-
tential. One can still find the probability for inflation to
persist at a given point for a specified period of time, but
now this probability depends on the initial value of ¢ at
that point. As a result, the locations of thermalization
regions are strongly correlated (unlike the bubble nu-
cleation sites). Finally, if the magnitude of V(¢) gets
near the Planck scale, the gravitational action may get
significant quantum corrections, and classical Einstein
equations can no longer be used.

In this section I shall try to formulate some necessary
conditions that a spacetime should satisfy in order to de-
scribe an eternally inflating universe. I shall try to reduce
to the minimum any assumptions about the dynamical
laws that govern the evolution of geometry and of the
scalar field . However, to make the discussion meaning-
ful, we will have to assume that, to a reasonable approxi-
mation, the spacetime can be treated as a classical
Riemannian manifold. Although eternal inflation is
sometimes described as occurring at Planck scale, the
description invariably relies on classical spacetime con-
cepts such as ‘“‘causality,” “beginning,” “end,” etc. We
shall also assume the spacetime to be causal, that is, to
contain no closed nonspacelike curves.

In the previous section we saw that the spacetime (2.2)
describing an inflating universe is geodesically incom-
plete. If eternal inflation is possible, one should be able
to construct a complete spacetime which has the neces-
sary properties of (2.2). It should be clear from the
preceeding discussion that the essential property required
for eternal inflation is a nonzero probability for inflation
to continue at a given point for a specified interval of
time. In the old inflationary scenario this probability is
given by (2.10) and its nonzero value is guaranteed by the
finiteness of the four-volume AQ in (2.11). To formulate
the corresponding requirement in the general case, we
shall assume that the boundaries of thermalized regions
expand at a speed approaching the speed of light, like the
walls of bubbles expanding in a false vacuum. More pre-
cisely, it will be assumed that a spacetime point P can be
in an inflating region only if its past light cone contains
no thermalized regions. I do not have any solid facts to
justify this assumption, except that it is hard to imagine a
different type of behavior in a relativistic theory. In addi-
tion, it will be assumed that the probability of forming
thermalized regions does not vanish in the infinite past.
Otherwise, it could be possible for the false vacuum to
survive an infinitely long contraction phase. This possi-
bility, however, is against the spirit of eternal inflation,
which assumes a ‘“‘steady-state” picture of the Universe.
With this assumption, the probability of having no
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thermalized regions in an infinite volume vanishes, and
we arrive at the following condition.

Condition 1. Let P and Q be two points in an inflating
region, with Q to the future of P. Then the volume of the
spacetime region between the past light cones of P and QO
satisfies

A< o . (3.1

The definition of A} is somewhat ambiguous in cases
when the light cones of P and Q intersect. In the general
case, AQ should be understood as the volume of the
difference between the pasts of P and Q.

I mentioned at the beginning of this section that a
spacetime describing an inflating Universe is expected lo-
cally to be close to de Sitter space. This means that the
Riemann tensor is approximately given by

RuvaT:Hz(x )(g‘ngVT_gVOguT) ’ 3.2)
where H(x ) is a slowly varying function:
|VH| <<H?* . (3.3)

Corrections to (3.2) are expected to be of the order
(HL)™!', where L is the characteristic scale of variation
of H. The magnitude of H at a given point is determined
by the local value of the scalar field potential. For a clas-
sical picture of spactime to be valid, H must be bounded
from above by some value H,,, smaller than the Planck
mass. Since inflation ends when @ gets sufficiently close
to the minimum of V(g), it is clear that the magnitude of
H in inflating regions should also be bounded from below.
This leads to a condition 2.

Condition 2. The Riemann tensor in inflating regions is
approximately given by (3.2) with

H . .>H(x)>H,, (3.4)

where H, and H,,, are positive constants.

The question we would like to address in the following
sections is whether or not a spacetime can be geodesically
complete to the past and satisfy conditions 1 and 2. The
analysis is much simpler in the two-dimensional case
which is discussed in the next section. The realistic case
of a four-dimensional spacetime in studied in Sec. V.

IV. NO ETERNAL INFLATION IN TWO DIMENSIONS

In a two-dimensional spacetime the metric can always
be brought to a conformally flat form

ds?=Cl(x,t ) (dt*—dx?)=C(u,v)du dv , 4.1)

where u=t—x, v=t+x. The null geodesics in metric
(4.1) are lines of constant « and v. This makes it particu-
larly convenient for the analysis of condition 1. Consider
the light cones originating at points (u,v,) and (uy+A,
vo+A) with an infinitesimal A. The two-dimensional
version of condition 2 requires that the spacetime area
between the two light cones be finite:

Af "Clug,v)do+A [ "Cluvp)du<oc . (42)

The lower bounds of integration cannot, in general, be set
to — oo since the variables u and v can have a finite range.
[See, for example, the two-dimensional de Sitter metric
(2.14).]
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Null geodesics have vanishing length, but the role simi-
lar to length is played by the affine parameter, p, which is
defined up to multiplication by an arbitrary constant [12].
In terms of this parameter, the null geodesic equation has
the standard form

xH +T# x Vxo'=0, (4.3)

where primes stand for differentiation with respect to p.
For the geodesic u=u,, v=v(p) in metric (4.1) this
reduces to

[Clug,vv']'=0, (4.4)
and thus
dp=Cl(ugy,v)dv . (4.5)

Similarly, for the geodesic v =v,, dp =C(u,vy)du. Now,
if the geodesics are indefinitely continued to the past, null
geodesic completeness requires that p— — c. This im-
plies that the integrals in (4.2) are divergent, and thus
condition 1 cannot be satisfied.

In the above analysis I have implicitly assumed that
the null geodesics ¥ =u, and v =v, do not intersect again
in the past of the point (uy,v,). If they did, then the in-
tegration in (4.2) would have to be cut off at the point of
intersection, and the resulting area would be finite. A
simple example of this sort is a flat spacetime (4.1) with
C=1 and topology of S; XR, so that points (x,¢) and
(x+L,t) are identified and ¢t =const sections are circles
of circumstance L. It is clear, however, that this “coun-
terexample” has nothing to do with eternal inflation:
since light rays can run around the Universe and come
back, the whole Universe can be thermalized by a single
“bubble” in a finite time.

Turning now to condition 2, it will be shown that this
condition can be satisfied only if the Universe has an ini-
tial contracting phase. Let us consider a congruence of
past-directed timelike geodesics emanating from some
point P in an inflating region. We can construct a “syn-
chronous” coordinate system by choosing these geodesics
as lines of constant x and choose the time coordinate ¢ to
be the proper time along the geodesics with t=0 at P
(and ¢ <0 to the past of P). The constant time lines will
then be the curves perpendicular to the congruence and
the metric will have the form

ds’=dt’—a*x,t)dx? . (4.6)

It will not be necessary to assume that this coordinate
system covers the whole interior of the light cone, and we
will not be concerned about the range of the coordinate
x.

The coordinates (4.6) are singular at ¢t =0, where all
geodesics meet and

a(x,0)=0. 4.7)

Since the geodesics are converging at point P we must
also have

a(x,0)<0, (4.8)

where an overdot represents differentiation with respect
to t. Similar singularities could generally occur in the

2359

past of P if some of the geodesics crossed again, but we
will see that if condition 2 is satisfied, this never happens
and the coordinates (4.6) can be extended to the infinite
past.

The Riemann tensor in two dimensions is exactly of
the form (3.2) with

H*=id/a , (4.9)
and the condition (3.4) reduces to
d>Hla . (4.10)

Now, from Egs. (4.10), (4.7), and (4.8) it is not difficult to
show that, for ¢ <O,

a(x,t)>Hg 'a(x,0)sinh(Hyt) . (4.11)

Equation (4.11) shows that the particles represented by
the geodesics spread arbitrarily far apart as t— — 0.
They spread faster than they would in flat spacetime,
where we would have a(¢) < [t|, indicating that at early
times the Universe is contracting from an infinite size. It
also follows from (4.11) that a (x,t) is always positive at
t <0, and thus the geodesics never cross.

We conclude that if a two-dimensional universe is
geodesically complete to the past, then (i) condition 1
cannot be satisfied and (ii) condition 2 can be satisfied
only if the Universe has an initial contracting phase.

V. FOUR DIMENSIONS

Let us now turn to the realistic case of inflation in four
dimensions. The analysis here is more complicated, and I
will only be able to give a plausibility argument, rather
than a proof, that AQ = o0. Starting with condition 1, we
consider the spacetime volume between the past light
cones of two points P and Q with a small timelike separa-
tion. As before, we begin by setting up a convenient
coordinate system. If y is a timelike curve connecting P
and Q, we can choose one of the coordinates, u, so that
the surfaces of constant u are past light cones of points
on Y. Each light cone is a congruence of null geodesics,
and we can choose the remaining coordinates x ', x?, and
v so that x'=const on the geodesics and v is an affine pa-
rameter along the geodesics. This determines v up to a
transformation

v—f(u,x" v +g(u,xi) . (5.1)
Noting that the null geodesics are normal to the surfaces
u =const, we can write the metric in the form

ds>=g,,du’+2g,,du dv+2g,du dx'+g,dx'dx] .
uu uv ui ]

(5.2)
Using the null geodesic equation and the fact that v is an
affine parameter, it is easily verified that

98,y
dv

Finally, we can use the freedom of transformation (5.1) to
set

=0. (5.3)

guw=1. (5.4)

The determinant of the metric (5.2), (5.4) is
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g=—"2g | (5.5)

where Y'g =det(g;;), and the spacetime volume between
the light cones u =ug and u =uy+Ais

AQ=A[  dvdx'dx™—g=A[dvA . (56
u~u0
Here,
Alug,0)= [VPg d’ (5.7)

is the area of the surface of constant v on the light cone
u =uy. Now, since v is an affine parameter and we as-
sume the spacetime to be geodesically complete to the
past, v must have an infinite range. Hence, for AQ to be
finite, the wave-front area A must vanish [19] faster than
[v| Tasv— — 0.

The vector 8x*(v) connecting points with the same
values of v on a pair of nearby geodesics on the light cone
satisfies the geodesic deviation equation,

D? dx” dx°
— K= | 14
2 dx#=RY,, pa— 6xF . (5.8)
The initial conditions for 8x*(v) at v =0 are
5x#(0)=0, %Sx“(O)EK“#O . (5.9)

With the Riemann tensor from (3.2), the right-hand side
of (5.8) vanishes, and the geodesics diverge linearly with
v, 8x#=kv. This suggests that the wave-front area in
(5.7) is quadratically divergent, A <v?, and that AQ in
(5.6) is infinite.

It should be noted, however, that the form (3.2) of the
Riemann tensor cannot be exact for H (x)7const. Small
corrections to this form can become significant over a
large distance along the geodesics, and can in principle
modify the character of geodesic divergence. Unfor-
tunately, I was unable to prove that this does not happen
in a spacetime satisfying condition 2. Compared to the
two-dimensional case, the situation is complicated by the
fact that null geodesics can cross and form caustics, and
the coordinate system (5.2) cannot generally be extended
to the asymptotic region. (In two dimensions, the light
cone at each point consists of two null rays travelling in
opposite directions, and null geodesics pointing in the
same direction never cross).

The behavior of timelike geodesics in a spacetime with
Riemann tensor (3.2) can be studied as was done in Sec.
IV for the two-dimensional case. One finds that the sepa-
ration of nearby geodesics diverges exponentially with the
proper time 7 as 7— — . Details are given in Appendix
A. Faster-than-linear divergence of geodesics indicates
an initial contracting phase. Since past-directed geo-
desics originating at point P are all contained within the
past light cone of P, the rapid divergence of geodesics
suggests that the wave-front area A should also diverge.
This argument, however, falls short of a proof, since one
can imagine a sequence of three-surfaces of increasing
three-volume, which are bounded by two-surfaces of de-
creasing area. (A lower-dimensional analogy would be a
balloon of increasing radius with an opening of decreas-
ing circumference.) A proof of AQQ= o at the same level

ALEXANDER VILENKIN 46

of rigor as in Sec. 4 for the two-dimensional case remains
a problem for future research.

VI. DISCUSSION

I have presented arguments indicating that the
Universe cannot be in a state of eternal inflation, with no
beginning and no end. It appears that inflation, when
continued to the past, is necessarily preceded by a period
of contraction, during which regions where false vacuum
energy is thermalized would merge and fill the entire
Universe. No false vacuum would then survive, and the
Universe would never start inflating.

Thus, inflation does not help to avoid the problem of
initial singularity. If an inflating Universe is followed
back in time, we must arrive at some hypersurface =
which, from the point of view of classical spacetime,
represents the beginning of the Universe. What could be
the nature of this initial hypersurface? It could be the
surface where the curvature becomes Planckian, and the
classical concepts of space and time are no longer applic-
able. Alternatively, the origin of the Universe could be a
quantum tunneling event described by an instanton with
a curvature well below Planckian. Then the surface =
corresponds to the state of the Universe at nucleation and
can be determined from the instanton. Variations of this
idea have been discussed in Refs. [21-23]. In both cases
2 should not be pictured as a mathematical surface, but
rather as a somewhat fuzzy boundary region correspond-
ing to a transition from classical to quantum description
of spacetime.

Although eternal inflation with no beginning appears
to be impossible, I would like to emphasize that inflation
can be, and typically is semieternal, that is, eternal only
to the future. We thus have a peculiar situation where
the classical spacetime of the Universe must have a begin-
ning, but probably has no end. As inflation continues,
new regions of thermalization are formed, and we live in
one of these regions. Our region is likely to be at a very
large (but finite) distance from the hypersurface =.

APPENDIX

In this appendix we shall discuss the divergence of
timelike geodesics in a spacetime with Riemann tensor of
the form (3.2). Let us consider a congruence of past-
directed timelike geodesics originating at some point P.
The geodesics can be parametrized by the proper time 7
with 7=0 at P and 7 <0 to the past of P.

The vector 8x*(7) connecting points with the same
values of 7 on a pair of nearby geodesics satisfies the geo-
desic deviation equation,

D? u dx” dx?

— =RH —— &x”P Al)
dr* ox P dr dr * (
where D/dr stands for a covariant derivative. Since

D" /d*=0, it follows from (A1) that
? dxﬂ
— Sx* |=0, (A2)
d” | dr

In the case under consideration (dx*/dr)8x" and its first
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derivative are both equal to zero at 7=0, and Eq. (A2)
ensures that dx* remains orthogonal to dx*/dr at all 7,
dx* _
77_—8x “—0 .
Now, with the Riemann tensor from (3.2), Egs. (A1)
and (A3) reduce to

(A3)

2
an#=H2(r)ax# ,

dr

where H(7)=H(x(7)). This equation is solved by the
ansatz

(A4)

OxH(t)=F (7)bxf(1) , (A5)
where the function F (1) satisfies the equation
F"(r)=H*7)F(1), (A6)

the primes denote derivatives with respect to 7, and the
vector 8x{(7) is parallel transported along the geodesic
x (7),

D

Eng (r)=0.
Since parallel transport preserves the norm of a vector,
|8x4(7)|=const and F(r) describes the change in the
magnitude of 6x#(7). The initial conditions for Eq. (A6)
at 7=0 are

F(0)=0,

(A7)

F'(0)<o0, (A8B)

where the second condition follows from the fact that the

geodesics are converging at 7=0.

Comparing Eqgs. (A6), (A8) with (4.7), (4.8), (4.10), we
see that they are formally equivalent, and the same argu-
ment as in Sec. IV yields

F(1)>Hy 'F'(0)sinh(H,7) . (A9)

For a slowly-varying function H (7) with |H'| << H? we
can go further and solve Eq. (A6) using a WKB-type ap-
proximation,

Fn~Hg'F(O)sinh | [TH(&)d¢ | . (A10)
It is also clear from Egs. (A9) and (A10) that nearby geo-
desics exponentially diverge toward the past. Faster-
than-linear divergence of the geodesics indicates that the
Universe is contracting at early times.

As already noted, small corrections to the form (3.2) of
the Riemann tensor can become significant over a large
distance along the geodesics, and their effect on the geo-
desic divergence should be investigated.
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FIG. 1. Penrose diagram for de Sitter space. The lines of
constant x and ¢ in coordinates (2.17) are indicated. The shaded
region is not covered by this coordinate system.



