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Statistical mechanics of black holes
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We analyze the statistical mechanics of a gas of neutral and charged black holes. The micro-
canonical ensemble is the only possible approach to this system, and the equilibrium configuration
is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes
are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature
is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in
general break the bootstrap property. The problems of black-hole decay and of quantum coherence
are also addressed.
PACS number(s): 97.60.Lf, 04.20.Cv

I. INTRODUCTION

It is by now well known that the area of a black-hole
event horizon has received an interpretation in terms of
thermodynamical entropy and that the black-hole mass
has been related, in this thermodynamical picture, to a
temperature called the Hawking temperature [1,2]. Black
holes should then thermally evaporate, with the evap-
oration process ending when the black hole reaches its
extreme limit.

This state of affairs has been viewed quite recently with
a certain amount of criticism [3—5], particularly in view
of the loss of quantum coherence in the black-hole de-

cay process. The above interpretation of black-hole phe-
nomena such as the decay (evaporation) process seems
to imply that thermodynamics is more fundamental than
quantum mechanics in this problem, and that pure states
are converted into mixed states. This state of affairs has
caused concern among researchers in this field.

Although such a problem originally arose in the mid-

seventies, a recent surge of interest has occurred in con-
nection with the discovery that black holes can carry
quantum hair (for a nice discussion, see Ref. [4]). Quan-
tum hair has the general effect of modifying the usual
Hawking relation for temperature in terms of mass and
affecting the expression for the entropy. It was hoped
that black holes would carry quite a lot of quantum hair,
enough to actually reduce the thermal attributes down

to zero and thereby generate the recovery of quantum
coherence.

Strings actually do carry quite a lot of quantum hair
(recall the massive string excitations) and so attempts
have been made to establish a connection between strings
and black holes [6, 7].

The degeneracy of string states at mass level m is well
known to be an exponentially growing function of mass.
Typically, it is given as [8],

psgring (m) ~ c m ea PHm

where the constants c, a, and PH (the inverse Hagedorn
temperature) are model dependent. A microcanonical
analysis reveals that strings obey the following bootstrap

condition [9—ll],

A(E)
( )

~1) E~oo, (1.2)

where A(E) is the microcanonical density of states.
Historically, the bootstrap condition was applied to the

statistical model of hadrons in an eff'ort to explain the
ever-increasing number of nuclear resonances found at
higher energies [9—11].

The degeneracy of states in mass space [Eq. (1.1)] was
first arrived at as a solution of the self-consistent con-
straint [Eq. (1.2)], and only later was it recognized as
a truly stringy attribute. In the context of the statisti-
cal model the bootstrap constraint implied that hadronic
resonances could be viewed as being made of resonances,
thereby replacing the elementary particle concept. Scat-
tering theory was later developed and the property of
duality was further demonstrated. A by-product of the
duality symmetry in the scattering amplitudes is that the
number of open channels in a scattering process rises in
parallel with the degeneracy of states [Eq. (1.1)] as the
energy is increased [10].

Like strings the degeneracy of states associated with a
black hole increases exponentially, with the argument of
the exponential now quadratic in mass, at least to leading
order in a U(1) charge expansion.

As an example, in natural units (5 = c = G = 1),
a Schwarzschild (neutral) black hole has the following

density of states in mass space,

s(m) = 47rm (1 4)

pschw(m)

where m is the mass of the black hole. This result is a
nonperturbative quantum eKect in the sense that it is ob-
tained from the &KB method and that the argument of
the exponential is of order 5 . (For a detailed deriva-

tion, see Ref. [4].) The constant c here represents the
unknown eEects from the purely perturbative quantum-
field-theoretical sector of the theory.

The above density of states has been given the interpre-
tation [1, 2] of a thermodynamical system with entropy,
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and inverse temperature,

S
pH+lvklzg (m) = = Svrm

dm
(1.5)

Equation (1.5) however yields a negative specific heat,

~ =- 2dm
(&V)Hawking = P

~Hawking

Svr
(1.6)

It is important to recall that the results in Eqs. (1.4)
—(1.6) can be derived (e.g. , see Ref. [4]) by analyti-
cally continuing the expression for the black-hole metric
to imaginary time and so to Euclidean space-time. The
temperature emerges as the inverse period of the com-
pact Euclidean time and its relation to the black-hole
mass is determined from the requirement of the absence
of conical singularities of the Euclidean space-time. This
Matsubara-type method produces results which, in the
thermodynamical interpretation, belong to the canonical
ensemble.

Although usually interpreted as a sign of instability,
the negative specific heat [Eq. (1.6)] represents neverthe-
less a flaw in the above thermal interpretation. The main
point here is that, within the canonical (thermal) ensem-
ble the specific heat is always a positive definite quan-
tity [11,12]. Gravitational systems (e.g. , supernovae and
galaxies) are known to exhibit a negative microcanonical
specific heat [12]. However, in the canonical ensemble one
sees only a phase transition, so that the canonical spe-
cific heat is always positive. The above results therefore
point in our judgment to an inconsistency of the thermal
interpretation, not just an instability.

The present work is based on the observation that two
interpretations of the density of states [Eq. (1.3)] exist
for the Schwarzschild black hole (or any black hole), one
of which of course must be wrong. The above thermo-
dynamical interpretation [1,2] is one such interpretation.
However, as was pointed out, it leads to undesirable fea-
tures such as a negative canonical specific heat as well
as a breakdown of the laws of quantum mechanics as
pure states evolve into mixed states during the process
of black-hole evaporation. This interpretation seems to
run into problems with both thermodynamics and quan-
turn mechanics.

In the other interpretation, we simply regard Eq. (1.3)
as the degeneracy of states of a quantum Schwarzschild
black hole at mass level m, in a way analogous to the
degeneracy of states in string theory. In this way the
laws of quantum mechanics remain untouched and the
process of black-hole evaporation can be understood from
an 8-matrix —theory point of view.

One then naturally becomes interested in the problem
of understanding the statistical mechanics of a gas of such
objects.

In the following sections we shall find that the micro-
canonical ensemble is the unique sensible framework for
analyzing this problem. At least for the Schwarzschild
ease it will be found that the bootstrap constraint [Eq.
(1.2)] is met, hence providing us with the novel view of a
black hole as an object itself made of other black holes,
very much as in the old statistical model of hadrons.

In this section we analyze the statistical mechanics of
a gas of Schwarzschild black holes with degeneracy given
by Eq. (1.3). In this problem as a working hypothe-
sis we shall assume that the equilibrium state (if any)
can be achieved on time scales less than the individual
life-times of the black holes in the gas. This is tanta-
mount to neglecting the decay rates (hence collision pro-
cesses) so that one remains conveniently in the ideal-gas
approximation. There is a simple argument establish-
ing the nonexistence of the canonical ensemble descrip-
tion of a gas of black holes with degeneracy given by
Eq. (1.3). Recalling the form [Eq. (1.1)] for strings, it
is well known that the canonical ensemble breaks down
whenever the exponential factor in Eq. (1.1) wins over
the Boltzmann factor e i in the statistical sum (inte-
gral over mass). For strings this occurs at temperatures
above the Hagedorn temperature PH'. For black holes
however the exponential factor always dominates and so
the canonical partition function diverges for all tempera-
tures. One may then expect large disparities, which show
up as unbounded fluctuations in the thermal ensemble,
in the energy distribution among the components of the
gas. This is in fact what happens.

We now turn to the unique approach to this prob-
lem, namely, the microcanonical description. The mi-
crocanonical density of states is written as follows,

A(E, V) = ) A„(E,V), (2.1)

in which we have defined the density of states for the
configuration with n black holes as,

A

A„(E,V) =

X de+' pBH m' p'

xb E —) E; 6 ) p, , (22)
i=1 ) (i=1 )

The equilibrium state of such a system is not thermal.
A quantum coherent view of black-hole decay (evapora-
tion) can also be obtained in a way analogous to strings.
Black-hole states decay into other black-hole states. Al-

though the problem of constructing black-hole scattering
amplitudes is not addressed in this paper, we shall nev-
ertheless demonstrate that the number of open channels
for n-body decay of a Schwarzschild black hole does in-
deed grow precisely in parallel with the density of states
[Eq. (1.3)], thereby allowing duality symmetry for black-
hole scattering amplitudes. Black holes may belong to a
certain class of string theories, as conjectured previously

[6]
Obvious applications of the considerations presented in

this paper lie in cosmology and the very early Universe,
as well as in galaxy formation and the general theory of
gravitational collapse.

II. A SIMPLE CASE: THE SCHWARZSCHILD
BLACK HOLE
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where E is the total energy of the system and where V
is the volume of the gas.

We can write the product of the degeneracy of states
as,

2 T4 2 A 2am, &aP, xE'&-aP, ip; (2.8)

in which we have made the working assumption that
black holes obey the particlelike dispersion relation,

E =p +m (2 4)

As is clear from Eq. (2.3), the high-momentum states
contribute negligibly (they are actually exponentially
suppressed) to the microcanonical density of states.
Hence at high energy the dominant contributions orig-
inate from mass. Following Frautschi and neglecting the
momentum-conservation 6 function in Eq. (2.2), the mo-
mentum integrations simply become n decoupled Gauss-
ian integrals, the values of which can be absorbed into
a redefinition of the volume factor. Equation (2.2) then
reduces to,

V ~ A QQ

A„(E,V) = —, dE; PBH(E;)
a=1

Again, Frautschi has made a general analysis of systems
with degeneracy p(m) of the following generic form,

p(m) = f (m) e (2.6)

where f (m) is a polynomial in m. Substituting this form
into Eq. (2.5), we find the maximum value of the inte-
grand to be at E, = E/n for any p (i.e., the total en-

ergy is evenly distributed among all parts). For p ( 1
this is the dominant configuration. However for p ) 1
contributions from the integration boundaries yield the
dominant configuration in which most of the energy is
carried by a single black hole. Such a configuration is
the one for which, e.g. , the nth black hole carries the en-

ergy E„=E —(n —l)mp while the n —1 other black
holes carry energies E; = mp (i = 1, ..., n —1). Since a
Schwarzschild black hole corresponds to p = 2, the den-
sity of states [Eq. (2.5)] finally becomes,

IQ

(E V) e4m[E —(n —1)mP] e4m(n —1)mp

(2~)s n!

(2.7)
an expression valid at high energy E.

The most probable equilibrium configuration is the one
satisfying the condition,

n,

xh'~~ ) E, —E
dA„(E, V)

(2.5) We find

A=N(E, V)

=0. (2.8)

cV
exp[4(N+ 1)] =

s exp[s(mp) —mppH k' g(E (N —l)mp)], (2 9)

where s(x) is the Hawking entropy [Eq. (1.4)],
PH+wklzg(&)

=— g& ~
and 4(X) iS the PSi funCtiOn.

Now since the lightest object in the gas is the extreme
Schwarzschild black hole, we have mp = 0. Therefore,

exp @(N + 1) =- cV

The total entropy of the system is now given as,

(2.10)

S(E,V) = ln A(E, V) ln A~(E, V)
cV= Nln —lnI'(N+ 1) + s(E),2x' (2.11)

where N(V) is given by Eq. (2.10). The inverse tem-
perature P is obtained from the total entropy according
to

dS BS BN BS
dE BN BE BE

The first term on the far right is zero at the maximum
value of 0 [recall Eqs. (2.8) and (2.11)]. We find quite
generally that

I

So the microcanonical temperature for a gas of
Schwarzschild black holes is the same as the Hawk-

ing temperature of the black hole carrying the greatest
amount of energy in the gas.

The microcanonical specific heat is likewise negative,

2dE —pzv= P
dp

(2.14)

OS
OV

(2.15)

where P is the pressure, we obtain the following equation
of state:

NP=—
V ' (2.16)

a result identical to Eq. (1.6). Although this result im-

plies that instabilities will develop if the gas is brought in

contact with a heat bath, it is not an inconsistent finding.
The specific heat is allowed, in principle, to be negative
in the microcanonical ensemble.

From the formula,

dS ds
P = PHawking = 8&E ~

dE dE
(2.13) which is that of an ideal gas.

Finally, it is readily seen that the bootstrap condition
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is satisfied for a gas of Schwarzschild black holes, pro-
vided [cf. Eqs. (1.2), (1.3), and (2.11)],

cV 1

(2~)s I'(N + 1)
(2.17)

III. THE REISSNER-NORDSTROM BLACK
HOLE

In this section we analyze the case of a gas of charged
Reissner-Nordstrom black holes with identical individual
charges Q. These individual charges are taken to be much
smaller than the total energy E of the system. For such
a case the density of states for the configuration with n
black holes is given by the following generalization of Eq.
(2.7),

cV "1
(E V Q) es(z (n1)—mP,;Q)e(ta 1)s(rnP, Q—)

(2vr)s n!

(3.1)

which is valid at high energy E, and where s(m, Q) is the
Hawking entropy of a single Reissner-Nordstrom black
hole of mass m,

- 2
Q2

s(mQ) = ~m 1+ 1—

That this is so originates from the fact that an extreme
Schwarzschild black hole is massless. Equation (2.17) to-
gether with Eq. (2.10) tells us that the size of the quan-
tum corrections to the density of states Eq. (1.3) deter-
mines the volume of the gas in units of the Planck volume,
as well as the size of the most probable configuration. As-

suming N » 1 and c » 1, one gets,

V inc, N inc.(2~)2

(2.18)
c

In the following sections we extend our analysis to
gases of black holes carrying U(1) electric charge, namely,
the Reissner-Nordstrom and dilaton black holes.

mp =Q. (3 5)

The most probable configuration N(E, V, Q) is the one
which maximizes the density of states [Eq. (3.1)]. We find

4 (N+1) s(qiQ) —qPH~v ki„g(E—(1V—1)Q)Q)cV
(2n.)2 (3.6)

Now since E » (N —l)Q, we get the following approxi-
mate relation:

cV ~

4(N+1) -ln, —8~QE+0(Q') . (3.7)

For large N the condition

cV S~QE
(2ir) s (3.8)

must be satisfied. Clearly at high enough energy the
above condition cannot be met. The most probable con-
figuration at high energy is the one for which N is as
small as possible, i.e., N = l. In the statistical bootstrap
model of hadrons the configuration N = 1 corresponds
to an elementary particle and is usually ruled out. In the
present microcanonical formulation there is no logical ar-
gument to exclude such a case.

The most probable equilibrium configuration of a gas
of Reissner-Nordstrom black holes is then described by
the conditions,

(N —1)Q « E « E, , N » 1,
E=E, , N=1, (3.9)

(3.10)

For small charge Q we get

where E, is an "ionization point" determined by the fol-
lowing formula:

W

QpH, k;„s(E„Q)= s(Q, Q) +ln 2
—4(2) .

The corresponding Hawking (inverse) temperature is
given by the relation

s ln
q

—9(2))
1 cV

The total entropy of the gas is given as follows,

(3.11)

S
PHawkins(mq Q) =

dm

Q2= 2am 1+ 1—
m2

-1/2
x

i
1 —

2 i
. (3.3)

The degeneracy of states for such a hole is given by

pR~(m, Q) = c exp s(m, Q) . (3.4)

Again for this case the dominant equilibrium configura-
tion of the gas is not thermal, but given rather by the
state with one very massive black hole and (n —1) light
ones with mass mo.

Since extreme Reissner-Nordstrom black holes have
mass m = Q, and since these are the lightest elements of
the gas, we have the identification

NP = —.
V

(3.14)

S(E, V, Q) ln A~(E, V, Q)

= Nln
2

—lnI'(N+ 1)
cV

+s(E —(N —1)Q, Q) + (N —1) s(Q, Q) .
(3.12)

As in the Schwarzschild case the microcanonical temper-
ature is the same as the Hawking temperature of the most
massive black hole in the gas,

P(E, V, Q) = PH, k;„(E—(N —1)Q, Q), (3.13)

with N(E, V, Q) given by Eq. (3.6). The equation of state
is that of an ideal gas,
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Clearly the bootstrap constraint cannot be met for Q g
0 and/or N P 1. At the "ionization point", however, the
bootstrap constraint is trivially met (there is a single
black hole). Inserting N = 1 and E = E, into Eq. (3.12)
leads to the volume constraint,

V = V,:—(2m') (3.15)

The lone black hole occupies a region of space with a size
of the order of the Planck volume.

Inserting Eq. (3.15) into expression (3.11) for E, we
And

1E, [inc —4(2)] .
8~Q

(3.16)

—Sn QE
(27r)s

(3.17)

In this approximation the total entropy [Eq. (3.12)] be-
comes

S= 4~E2+ 8~QE+ e ' &~+ O(Q2).
(2') s

This expression gives for P,

(3.18)

Of course, consistency requires that inc )@(2) .
For E ) E, there is no equilibrium configuration. It

seems plausible to speculate that some kind of phase
transition may occur at the "ionization point. "

We close this section by providing approximate formu-
las in the large-N (E (( E,) region. For large N, Eq.
(3.7) becomes

P 87rE+87rQ 1 — e ~ + 0(Q ),(2')s (3.19)

Thus the charged black hole, like the Schwarzschild black
hole, cannot reach thermal equilibrium with its surround-
ings.

In the next section we analyze a somewhat more gen-
eral ease, the so-called dilaton black hole.

IV. THE DILATON BLACK HOLE

The dilaton black hole [13,14] is somewhat similar to
the Reissner-Nordstrom black hole with the added corn-
plexity of the eKects of an additional dilaton field cou-
pling.

The microcanonical analysis of a gas of dilaton black
holes is identical to the case of the Reissner-Nordstrom
black-hole gas. The Hawking entropy and temperature
however are now given by

which is, to the same approximation, the inverse Hawk-
ing temperature. In this case again the speci6c heat is
negative,

—1

O' —
IqdE

(2~)s=-8~ E'+2QE I1 — ' e-"~~
~

+O(Q').

(3.20)

2cL

(1 g2)Q2
s(m Q) = 7rm 1+ 1— (1+a )Q

2
( — 'iQ'

~

(4.1)

(1 —~2) Q2
PHawgins(m Q) = 4am 1 + 1—

m
(1+a2)Q2

m2 i+
(4.2)

Again the degeneracy of states is given as

p(m, Q) = e exp[s(m, Q)] . (4.3)

Notice that the case a=O reduces to the Reissner-
Nordstrom black hole.

The extreme dilaton black hole has a mass

( Q

1+ a2
cV+» —~(2)(2')s,

(4.5)

2=
1+0 (4.4)

Again, for small Q, the result is found to be similar to
the Reissner-Nordstrom case,

Repeating the analysis of the previous section, the "ion-

ization point" (N = 1) at high energy E, is found to be
given by the formula

(4.6)

For large N the density of states 0 is a maximum at
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s—ÃQEj(1+0 )
I

( )Q (( E ((
(2x)s i, vol+a~

(4.7)

The total entropy of the gas is

S(E,V, Q) = ln AN

cV
Nln s

—lnI'(N+ 1)

( (N —1)Q
v'1+ate

' )
+(N —1) sI,Q I

. (4 8)&v'I+a" )
The microcanonical temperature is again easily derived.
We find

dS BS BN BS
dE BN M BE
B (E (N —i)Q

Q)
BE
( (N —1)Q= PHawking I 41+ az

(4 9)

in which we once again used the fact that N(E, V, Q) is
the most probable configuration, i.e., &g = 0.

For large N we have the following approximate expres-
sion

8~Q cV
P = 8~E+ 1 — 8 ~~+

(2~)s

+Ol I I
«E«E.

I

.
i, v'1+ a~) ( v'1+ a2

(4.10)

Finally, the microcanonical specific heat is given by

2 (dp) '
z Bp BpBN

M BN BE

(4.11)

extreme limit E —+ ~, of the gas with total charge

NQ. It is known that, for a ( 1, the dilaton black hole
has a positive Hawking specific heat as it approaches its
extreme limit, whereas for a ) 1 the specific heat is neg-
ative [5]. It may be an interesting problem to analyze
the implications of such properties from the viewpoint of
physical processes in the very early Universe.

N„(m) - p„,;„,(m, ), m, ~ oo, (5 1)

where N„(m) is the number of open n-body channels at
center-of-mass energy m. An explicit expression for the
two-body case is given by

tA-fAQ m m2

N2(rn) = —, dms p(ms) dmi p(mi) .
fAQ fAQ

(5.2)
Consequently, if duality can be argued to be a symmetry
of, say, Schwarzschild black-hole scattering amplitudes,
one should be able to support it by a direct calculation
of Eq. (5.2), making use of the degeneracy [Eq. (1.3)].
Inserting Eq. (1.3) into Eq. (5.2), we obtain (mo = 0)

V. QUANTUM GOHERENT BLAGK-HOLE
DECAY

The previous sections were devoted to the statistical
mechanics of black holes. In this section we attempt to
uncover a few facts about (quantum coherent) black-hole
decay and scattering.

A property particular to strings and dual models is
the duality of the scattering amplitudes. The four-point
amplitude, for instance, can be expressed as a sum over
resonances either in the s- or t-channel, even at very high
energy. Frautschi [10] has pointed out that in order for
duality to hold, the number of n-body channels open in
the statistical model of hadrons, and so the total num-
ber of open channels, must rise precisely in parallel with
the number of resonances as the center-of-mass energy is
increased,

Recalling Eq. (4.9), we find,
2 m fA2

Nz(rn) = — dms drni e ( '+
2I

(5.3)BP O (Osi BN
BE M BN BE

2 &Bp'i Q ON

BE) v'1+ a2 BE

Clearly, contributions from the region mg m give neg-
ligible results. The dominant contribution is obtained
when m )) mz and mi m. This is the same situation
which occurred in the evaluation of the density of states
with n black holes, in which most of the energy was car-
ried by a single black hole and the n —1 others shared
the tiny remnants. In this approximation we obtain

N2(m) = —e4~m
2
c= —ps,hw(m), m —+ oo . (5.4)

This argument can be extended to any n, and one finds
the same result, namely, that as in the string-theory case,
the number of open channels does grow in parallel with
the degeneracy of states as energy is increased.

It is now very plausible to argue that the black-hole (at

(4.12)

Therefore,

(4.13)

Recalling Eq. (4.7) one finds that e&& & 0 so that the
sign of the microcanonical specific heat is determined by
that of the Hawking specific heat.

Although e&z ( 0 is formally valid at high energy, it is
tempting and probably valid to extrapolate to the low-

energy domain where the total energy approaches the

&v(E, V, Q) = (&v)H wki g I
E—,Q I

(N 1)Q-
1+a2 )

Q BN
v'1+a~ BE
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least the Schwarzschild black hole) scattering amplitudes
do share the property of duality with the string scattering
amplitudes.

The above results seem to support earlier conjectures
[6] that black holes do belong to a certain class of string
theories.

VI. DISCUSSION

In this work we analyzed the statistical mechanics of
a gas of black holes from the standpoint of the micro-
canonical ensemble. In fact, as we showed in Sec. I, this
is the only approach to the problem, because the energy
is not thermally distributed among the elements of the
gas. The lack of a thermal distribution of the energy is
reflected by the nonexistence of the canonical partition
function.

A gas of Schwarzschild (neutral) black holes naturally
obeys the bootstrap condition, a property related to the
fact that extreme Schwarzschild black holes are massless.
We found that quantum corrections to the degeneracy of
states play an important role in selecting the most prob-
able number of black holes in the gas. The equilibrium
configuration is the one for which most of the energy is
carried by a single black hole, a situation somewhat anal-
ogous to strings.

For charged black holes such as the Reissner-
Nordstrom or its dilaton generalization, the bootstrap
condition is in general not realized, mainly because the
extreme case is not massless. However, for such models
there is a high-energy "ionization point" at which the
gas does obey trivially the bootstrap condition. At such
a "critical" point the gas is composed of a single super-
massive black hole whose size is of the order of the Planck
volume.

For all models analyzed here we find that the micro-

canonical temperature is identical to the Hawking tem-
perature of the most massive black hole in the gas.

One motivation for the present work was the realiza-
tion that the thermodynamical interpretation of the sin-
gle black-hole event horizon leads to, in our judgment,
the inconsistent result of negative canonical specific heat.
We contend that the views presented here represent an
improvement in the understanding of black-hole phenom-
ena. In particular, at least viewed from the present sta-
tistical model, black-hole states can decay into or scatter
with other black-hole states. This lends support to a
completely quantum-coherent view of black-hole "evap-
oration. " Furthermore, arguments presented in Sec. V.
seem to indicate that Schwarzschild black-hole scattering
amplitudes may obey a duality symmetry very similar to
that of strings. One could then argue that black holes be-
long to a special class of string theories, as conjectured
by 't Hooft [6].

As an example of a physical application, the very early
Universe can be regarded as a black hole consisting of one
very massive black hole surrounded by countless massless
others; a typical equilibrium configuration, enclosed in a
small volume of the order of the Planck volume. It is
possible that such an inhomogeneous initial equilibrium
energy distribution gave rise to structures and thus to
galaxy formation. Such a suggestion was put forward
by Carlitz [ll] long ago in the context of hadronic mat-
ter where an inhomogeneous equilibrium distribution also
occurs.
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