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Close black-hole binary systems
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When the amount of gravitational radiation is small, a binary system of two orbiting black holes
evolves in a quasistationary manner. This system can be approximated by a linear combination of
geometries each of which has standing waves at spatial infinity; however, the combination has purely
outgoing radiation. A variational principle, for the geometries with standing waves, provides informa-
tion about the binding energy, the stability of orbits, and the amplitude and frequency of gravitational
radiation. For holes of equal mass starting at a large separation, approximately 3% of the initial mass is
emitted as gravitational radiation before the evolution becomes so rapid that the quasistationary approx-
imation fails.

PACS number(s): 97.60.Lf, 04.30.+x, 95.30.Sf

I. INTRODUCTION

Two black holes orbiting each other lose energy and
angular momentum to gravitational radiation. The full
set of Einstein equations for this system is currently
amenable to neither analytical nor numerical solution.
However, under rather specific and different cir-
cumstances, the post-Newtonian and test particle pertur-
bation approximations are two effective approaches to
studying this system. The post-Newtonian approxima-
tion allows comparable mass black holes as long as the
speeds and gravitational fields are smail; the test particle
approximation allows for strong gravitational fields and
fast speeds as long as one hole is much smaller than the
other. An important condition which makes tractable
each of these rather different approaches is that the
effects of radiation reaction are small so that at the level
of the approximation the dynamics conserve energy and
angular momentum, and the holes move along geodesics.
For both approaches the binding energy of the system as
a function of separation yields important information
about the cumulative effects of the emission of gravita-
tional radiation.

In this paper we make the fundamental approximation
that the amplitude of gravitational radiation is small
enough that the time scale for the secular effect of radia-
tion reaction is much longer than the dynamical time
scale, co& &&co& in the notation introduced below. This is
true throughout most of the lifetime of a binary black-
hole system. Furthermore, this approximation is less res-
trictive than either the post-Newtonian or test particle
approximation and encompasses both of these as special
cases.

The general solution to the Einstein equations for or-
biting black holes contains a mix of incoming and outgo-
ing gravitational radiation with each hole reacting to the
radiation as well as the gravitational attraction of the

companion. Those solutions which are physically reason-
able, and most interesting, have no incoming radiation-
the holes are in quasielliptical orbits which decay while
the outgoing radiation carries away energy and angular

momentum. But with the nonlinearity and complexity of
the Einstein equations, these physically interesting solu-
tions are currently impossible to examine.

However, when the evolution from radiation reaction
is slow, there is a useful approach which does not involve
the direct solution to the Einstein equations with outgo-
ing wave boundary conditions. Instead, periodic solu-
tions which have standing gravitational waves are com-
bined to form approximate solutions with outgoing wave
trains and all of the features of interest. These periodic
solutions are much more easily analyzed.

In Sec. II we review the 3+1 view of general relativity
and Thorne's [1]description of the local wave zone.

In Sec. III we categorize different types of binary
black-hole geometries: (i) resonant geometries, (ii) those
driven at frequencies slightly off resonance, and (iii) linear
combinations of these which form approximate solutions
of the Einstein equations with outgoing wave trains.
Each resonant solution is seen to be the first term in a
power-series expansion of an approximate solution with

outgoing waves. Thus a slowly evolving geometry, in
close to the black holes and at any given instant, is ap-
proxirnately one of the resonant solutions. And outgoing
waves in the local wave zone have an amplitude depen-
dent upon the geometry at the retarded time. Also, the
error in the approximate solution is analyzed.

In Sec. IV the resonant and other periodic geometries
are studied in more detail along with a summary of a
method developed by Abbott and Deser [2], which gives
meaning to the differences in mass and angular momen-
tum of geometries which are asymptotically similar but
not asymptotically Hat. This a11ows us to define the con-
cepts of "effective mass, " the mass not counting the con-
tribution from the radiation, and "effective angular
momentum" for geometries which are periodic with

standing waves in the local wave zone. Also, a variation-
al principle for the effective mass, of a geometry which is

time independent in a rotating frame of reference (a spe-
cial case of periodic), is developed and shown to be able
to provide accurate estimates of the relationships between
the effective mass, effective angular momentum, angular

46 2318 (~)1992 The American Physical Society



CLOSE BLACK-HOLE BINARY SYSTEMS 2319

velocity, and amplitude and phase of gravitational radia-
tion.

In Sec. V a first application of the variational principle
is described. A rough cut at a trial geometry yields esti-
mates of the effective mass and angular momentum of
black holes in binary system. The binding energy of these
solutions gives an estimate of the total amount of energy
lost by the system as it evolved to its current state, which
is an upper limit to the energy emitted in gravitational
waves.

In the Appendix we illustrate these same techniques
with a straightforward example of a mass moving in one
dimension under the influence of a nonlinear restoring
force and connected to a string down which transverse
waves are radiated. Much of our intuition about the
black-hole problem was developed from this toy problem.
And the organization and discussion of Secs. III and IV
follow the Appendix very closely.

II. BACKGROUND AND MOTIVATION

A. Initial-value formalism

and dynamics of general relativity

York [3] presents a careful, pedagogical treatment of
the initial-value formalism and the dynamics of general
relativity. We limit ourselves to the vacuum case and use
the notation at Arnowitt, Deser, and Misner [4]. A four-
dimensional spacetime with a metric g,b may be foliated
into constant t, spacelike hypersurfaces, with a unit nor-

I

mal vector n' and a metric y,b ..

dS —
grab dX dX

1/2 ab
)
—0 (3)

The time translation vector t'd/dx' =(Nn'—+N')BIdx'
points in the direction of increasing t with all spatial
coordinates held fixed. The extrinsic curvature E'" is re-
lated to ~' by

~ab
~
I/2(~ab ~ah~ )

so that

&1)'ab =2N)' '"(1rab ,'rab—&—)+&N)'ab .

(4)

The dynamical part of the Einstein equations gives the
derivative of m':

N—dt +y,b(dx'+N'dt)(dx +N dt) .

The quantity X is the lapse function, and X' is the shift
vector. The three-dimensional metric y,b has a deriva-
tive operator D, and Ricci tensor R,b.

The constraint equations on a given hypersurface are
restrictions from the Einstein equations upon y, b and
m', which is the momentum conjugate to y,b. These are
the Hamiltonian constraint

R +y '(
21 n n—,b

n—' ) =0,
and the momentum constraint

~ab N~ 1/2(R ab 1~abR )+ 1N~
—1/2~ah(~cd~ 1~2) pN)/

—1/2(~acth 1~~ah)

+~ 1/2(DaD bN ~abDcD N )+~1/2D (1
—1/2~abNc) ~acD Nb ~bcD Na

B. Local wave zone

Some of the spacetimes with which we are concerned
contain gravitational standing waves far from the holes
and are not asymptotically fat. This adds complications
to our analysis, which are reduced by the use of the con-
cept of the "local wave zone" introduced by Thorne [1].
The local wave zone is the region in which both waves
are weak ripples on a background spacetime and also the
effect of the background curvature on the propagation of
the waves is negligible.

From Thorne's definition the inner edge of the local
wave zone, rr, is that location where r is small enough
that one of the following effects becomes important: (i)
the waves become a near-zone field, r & A, (A, is the ap-
proximate wavelength of the radiation); (ii) the spacetime
curvature from the source is significant, r =M (M is the
Schwarzschild radius of the source); or (iii) the back-
ground curvature significantly distorts the wave fronts of
the radiation and backscatters the waves, (r /M)'/ & iL.

Hence

For our purposes Thorne's definition of the outer edge
of the local wave zone, r0, is the location where r is big
enough that a significant phase shift across the local wave
zone has been produced either (i) by the M/r gravitation-
al field of the source, (nM/1, ) ln(r/rt ) is no longer &(n,
or (ii) by the energy in the waves themselves,
(rrLr IA, ) ln(r!rt) is no longer (&m, where L is the small
dimensionless luminosity of the radiation averaged over
the time it has taken for the radiation to reach the local
wave zone. Hence

ro = rt X min [ exP( A IPM ), exP( A IyLro )], (8)

where P and y are suitably large numbers.
Finally, we require that the large numbers a, p, and y

be chosen so that the thickness of the local wave zone is
many times the wavelength of the radiation:

ro rr

There is a local wave zone only as long as L is small
enough. If Lro )M, then it follows from Eq. (8) that

rt=aX max[A, , M, (MA, )'/ ],
where a is some suitably large number.

Lro Lro(ro rt)—
ln(ro Irr )

I~
(10)



2320 JAMES KENT BLACKBURN AND STEVEN DETWEILER

Hence a limit on L is that

h, l, (r, B,p, t ) = g h b(r, 8, $)e

nJlm

where

X "T
ab

TTSlm n
( I )

m TJSI —m

(12)

(13)

The coordinates r, 8, and P are spherical coordinates on
the flat background, the T,b' are the pure spin S tensor
harmonics [I], and the index J runs over electric- and
magnetic-type parity, l =2 to ac and m = —l to l. Hence-
forth we let q represent a generic index for the set of J, I,
and m with spin S=2. For real h, b the gravitational
wave amplitudes satisfy

L«
ro(ro rI —)

The great utility of the local wave zone is that the
gravitational waves can be treated as perturbations of the
metric which propagate on a flat background. The trans-
verse, traceless part of the metric, h,b, represents the
gravitational radiation. When h, b is composed of a set
of discrete Fourier components, it can be decomposed [1)
as

ists a time coordinate t with which the metric can be
decomposed into a discrete set of Fourier components
such as

(16)

where

(17)

These are the geometries which contain a steady stream
of gravitational waves coming in from infinity which bal-
ances the waves going out from the source.

Given one periodic solution, there is a family of similar
solutions with the same masses for the holes and the same
spin and orbital angular momenta, but with the Fourier
components being driven with radiation of different
phases. Of all the periodic solutions, some are special
and correspond to the resonances of the system; these are
identified by the nature of the family of periodic solu-
tions. We focus on the radiation in a particular com-
ponent, i.e., a choice of n and q. Let the frequency of a
resonance be co„z and the corresponding phase be Ã";
also, let the frequency and phase of a similar solution be

Q„q and B„q(Q„q ). Then the signature of a resonance is a
zero of A„'", considered an analytic function of 0„,at a
complex frequency Nnqp+I'conqI close to the real axis.
And the smaller the magnitude of N qI/Nnqp is, then the
sharper the resonance is. In other words,

A'"njl m
=( —1) AnItm ~

and similarly for A„'"'; also, for standing waves,

i8 —i8'
in g e q and gout
nq nq nq nq )

for some complex amplitude Anq and real phase 8nq.

(14)
A„'"(0„):—A„(Q„)e

l
.pres

nq(elnqR (+nq ~nqR nqi )
~nqI

where B„q(Q„)is given by

(18)

III. BINARY BLACK-HOLE GEOMETRIES

We are interested in solutions to the Einstein equations
which represent two black holes whose orbits decay slow-

ly under the influence of gravitational radiation reaction.
Accordingly, we focus on spacetimes which may be foli-
ated into a family of three-dimensional hypersurfaces
which have the following properties. (i) A hypersurface
4 has three distinct spatial infinities; quantities associated
with a region extending toward each spatial infinity are
labeled with an index i, which is 0 for the region exterior
to the two black holes and 1 and 2 for the regions inside
each of the two holes. (ii) In each of the regions, there
exists a local wave zone. (iii) The outgoing luminosity of
the gravitational radiation is small in the local wave zone.
(iv) Finally, the four-geometry is not necessarily asymp-
totically flat as it might contain standing gravitational
waves at these spatial infinities.

(0 )
—Ã"= tan

nq ~nqa

~nqI
(19)

It is useful to consider the independent variable to be the
phase, 8„,, rather than the frequency; then,

A q(8 q) iA (8 q)e "q[ tan(8
q Ã» ) i] . (20)

In the toy problem of the Appendix, we use perturba-
tion analysis and find good approximations to this family
of periodic solutions. But we have not been successful at
applying similar methods to the binary black-hole prob-
lem, and we have no analysis that reveals the cir-
cumstances under which resonant solutions might exist.
Nonetheless, on physical grounds we believe that for
every state of a slowly evolving black-hale binary system,
there is a nearby resonant solution and corresponding
family of periodic solutions. And in Sec. IV B we discuss
a variational technique for examining this family.

A. Periodic solutions

The physically reasonable geometries with outgoing ra-
diation are described below in terms of the standing-wave
geometries which are periodic in the sense that there ex-

B. Outgoing wave packets

Let g,'b' be a resonant solution and g, (8„b) be a partic-
ular member of its family with the further dependence
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g.~—=f g.,(a„,) W(a„, )da„, ,

where W(8„) is a weighting function normalized so that

8' 8„d8-„=1.

(21)

(22)

To construct an outgoing wave packet, we choose

upon spacetime coordinates understood. A linear com-
bination of the g,b(8„q ) creates an approximate solution
to the Einstein equations and a generic wave packet:

nq ~nq ~—nq +~—nq

for n & 0, and a weighting function such that

d tan8

( tan 8+1)
(23)

In the local wave zone, the gravitational radiation in the
nq component is obtained via contour integration (just as
in the Appendix) of the nq component of the transverse,
traceless part of Eq. (21); if co„ t )0, then, with the substi-
tutions from Eqs. (12) and (20),

—A„q(co„qtt ) exP[(iso„qz +co„qt )(t+r)+i 8'„'q ]Tqb if t & r,—
T

h„q b(r, t)= 0 if r&t &r—,
—A„q(co„qz ) exP[(ice„qz co„qt—)(t r)+iÃ'q]—Tqb if t & r .

(24)

In other words, at early times a wave comes in from
infinity; an incoming, trailing wave front is at r = —t; the
wave front rejects off the black holes at t =0 and thereaf-
ter is an outgoing, leading wave front at r=t, behind
which is an outgoing wave. This wave packet is a physi-
cally reasonable, outgoing wave behind the wave front,
r & t If co qr & 0 then the evaluation and interpretation
of the contour integral is slightly different; however, a re-
gion of spacetime which contains purely outgoing radia-
tion is still obtained.

The weighting function of&q. (23) may not fall off fast
enough at either high or low frequencies to provide well-
behaved solutions to the Einstein equations. For gravita-
tional perturbations of a nonrotating neutron star in the
Regge-Wheeler gauge, Price and Thorne [5] needed a
general modification of W(8) to obtain well-behaved
solutions. They cut off the weighting function more rap-
idly at both ends and demonstrated that the effect on the
superposition is only in the form of short-lived transients
near the wave front. We are not interested in the details
of the wave front and can use their technique to make
W(8) fall off away from the resonance as rapidly as need-
ed to ensure well-behaved geometries.

To create a truly realistic approximation over a time
sufficient to have substantial radiation-reaction effects, it
is further necessary to consider a sequence of the wave-
packet solutions, each of which evolves into the next.
These solutions may be glued together smoothly so that
the orbits of the holes are slowly but substantially
modified and that at a given time t the radiation in the
wave zone at r corresponds to that which was emitted at
a retarded time t —r. However, we see below that the
resonant solutions contain interesting information about
frequencies and amplitude of radiation with errors pro-
portional to col/co~. Hence there seems little to be
gained from the actual full construction of the dynamical
solutions via wave packets.

C. Analysis of error in the wave packet

/co„„/qr 'dn„,
W (25)

And, except in the wave zone, a Taylor-series expansion
of g~b ( fl „q ) yields

dg, b(Q„)

I~.,tl~ 'dn„,
(26)

Of course, the Einstein equations are not linear, hence,
the linear combination of the metrics g,b(8), which
creates g,b, is not an exact solution, but rather a candi-
date for an approximate solution. When the effects of ra-
diation reaction are small, the difference between two of
these metrics is proportional to col/co& and satisfies the
perturbed Einstein equations. This led us initially to be-
lieve that the linear combination in the wave packet
would also satisfy the perturbed Einstein equations with a
resultant error proportional to (cotlm„) . However, the
error analysis in the Appendix shows that in general the
contribution from the metrics far from resonance (large
tan8) makes the resultant error in the wave packet pro-
portional to col/co+. It follows that the damping of the
radiation in the wave packet of Eq. (24) is of the same
size as the expected error. Equation (24) does not, there-
fore, correctly show the effects of radiation reaction. We
found this result so surprising that it substantially held
up publication of this paper.

The resonant solution is easier to obtain than the other
members of the family and alone provides a useful ap-
proximation to realistic, outgoing solutions. Reexpress-
ing the wave packet as an integral over frequency rather
than over phase, we obtain, from Eq. (23),
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for small (0„—co„z ). Thus g,'b' is the zeroth-order term
in an expansion of g,b, and the other terms in the Taylor
series contribute higher powers of the small quantity
cu„ I. And with the assumption of the linearization stabil-
ity of the Einstein equations, g,'b' is the zeroth-order term
in an expansion of the physically realistic solution of the
Einstein equations which has only outgoing radiation.

At any given time, the evolving black-hole system is
well approximated by a particular resonant solution, as
long as ~pql &&N pqp The system then progresses
through a sequence of resonant solutions at a rate deter-
mined by the amplitude of the gravitational waves.

IV. GEOMETRIES WITH STANDING WAVES
IN THE LOCAL WAVE ZONE

Now that we recognize the utility of the standing-wave
solutions, we focus on just those which are time indepen-
dent as viewed from a rotating frame of reference (a spe-
cial case of periodicity) so that c3Idt =Nn 'r}ldx '
+N'r}Idx' is a Killing vector. These approximate the
slowly evolving black-hole systems when the orbits are
slowly decaying circles.

A. Conserved quantities
in nonasymytotically Hat geometries

M,,b =O(r '), D,Mb, =O(r ),
P ab O(r

—1)

N N, =O(r '), N' —N, '=O(r '), —
(28)

for large r in the local wave zone, in a coordinate system

The standing-wave geometries are not asymptotically
flat, but they are asymptotically regular. In the local
wave zones associated with each of the three spatial
infinities, the gravitational waves can be treated in the
short-wave approximation [6] with an eff'ective stress ten-
sor which mimics that of a null (traceless) fiuid with equal
amounts of flow in and out. The effective energy density

p, falls off as r . And our assumption that the luminosi-

ty is small is equivalent to 4mr p; being small. But this
density gives a divergent total mass and keeps the
geometry from being asymptotically flat.

Such a geometry has no well-defined concept of mass
or angular momentum. But Abbott and Deser [2] have a
general method for comparing two geometries which are
asymptotically similar but not necessarily asymptotically
flat. To apply their methods to a standing-wave
geometry, we introduce a new auxiliary manifold, for
each local wave zone, which is similar asymptotically to
the original and foliated into constant t hypersurfaces
with a mapping from 1 to 4, . But the spatial hypersur-
face S; is topologically R and contains neither black
holes nor stress energy. And, importantly, the differences
between the geometries on 4 and 4, ,

ab
Miab 7 ab V Iab & ~i V Miab

p ab — ab ab
I 7

must satisfy the restrictions

which is close to Cartesian. Also, X,- =n, , a constant, and

N, '=0, c3Ic3$, in the local wave zone, where 0, In, is the
angular speed of the rotating frame of reference in which
the geometries are time independent and P, is a local axi-
al coordinate which runs from 0 to 2~. These imply that
the amplitude and phase of the gravitational radiation in
the local wave zone of the auxiliary manifold match those
of the original.

The Abbott-Deser method shows that a Killing vector
common to both geometries has associated with it a
quantity which depends upon the difference of the
metrics and is conserved if the Einstein equations are
satisfied and a particular flux integral vanishes sufficiently
rapidly at infinity. For the special case that Nn'8/Bx'
asymptotically approaches a Killing vector, the con-
served quantity is the Killing energy:

16an m = XD M'"—y'"M

—(M, '"—y'"M; )D, N ]d Xb,

with the evaluation done in the local wave zone. The re-
strictions of Eq. (28) are enough to guarantee that m; is

invariant under an infinitesimal gauge transformation as
can be shown with a process similar to that used by York
[7] for asymptotically ffat geometries. Again, m, , the
"effective" mass, should be thought of as the mass
difference of the two geometries.

A similar technique, when N'BIBx'=0;8/BP; asyrnp-
totically approaches a Killing vector, leads to the angular
momentum difference for the geometries:

$6~@.J.= — 2N P. "

+ ( 2N a~bc

Nb~ac�

)M ]~
—1/2d y

(30)

That J, is also invariant under an infinitesimal coordinate
transformation follows from the invariance of m, and the
fact that, for the geometries which are invariant when
viewed from a rotating frame of reference,
c}Ic3t=(Nn'+N')c}Ic3x' is an exact Killing vector with
invariant, conserved quantity 16vr(n;m;+0;J, ). In as
formal a manner as possible, m; and J; are the mass and

angular momentum of the radiating black-hole system
with the divergent contribution from the standing waves
subtracted off.

General questions of the existence and uniqueness of
this auxiliary manifold with a metric are difficult to
answer. However, at least in the limit of small ampli-
tude, the standing gravitational waves satisfy the linear-
ized Einstein equations throughout the auxiliary mani-

fold. And the amplitude and phase in the local wave

zone should, assuming the linearization stability of
Einstein's equations, uniquely specify the auxiliary
metric.

B. Variational principle

The vacuum Einstein equations for an asymptotically
flat geometry can be derived from Hamilton's principle.
However, standing waves extending to spatial infinity not
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only complicate the analysis of the conserved quantities,
requiring the method of Abbott and Deser, but also give
a divergent contribution to the Hamiltonian and compli-
cate the traditional method for dealing with boundary
terms described by, say, Regge and Teitelboim [8]. A
similar difficulty is encountered in the toy problem in the
Appendix and in a variational principle for the phase
shift in a one-dimensional potential scattering where the
wave function is not quadratically square integrable [9].
In the toy problem and in wave mechanics, the difficulty
is surmounted by the introduction of an auxiliary field
which satisfies a simplified wave equation and by the use

I

of a Hamiltonian for the combined system which is the
difference of the Hamiltonia of the two fields. The varia-
tions of the original and auxiliary fields are independent
except for a boundary condition which requires that the
auxiliary field approaches the original field sufficiently
rapidly at large r.

In general relativity for geometries with standing
waves, the auxiliary geometry is just that which is intro-
duced by the method of Abbott and Deser to define the
effective mass and angular momentum. Thus we are led
to define

N R+ ( '~'—~-,~"—) +2N'D, (y-'"~b ) y'"d'x1

+ g f N, R;+ ( 'n n—;,bn— )+.2N D;b(y 'n. )y. ' d x;
1

+ ga [ND (Mo y Mo) (Mo y Mo)D N]dXb (3 I)

The quantity H is a functional of the lapse, shift, metric, and its canonical momentum on the hypersurface 4, as well as
these same quantities on each auxiliary hypersurface et; corresponding to each local wave zone of S. These quantities
and their variations are restricted only by the limiting conditions (28). In particular, H is well defined whether or not
the Einstein equations are satisfied. The volume integral over 4 extends out to r =R;, which is in the local wave zone.
The integrals over the S; are bounded both at R; and at a sphere of small radius r; to avoid problems with regularity at
the origin. The exact location of the inner boundary does not inhuence our analysis.

Note that when the constraint equations (2) and (3) and conditions (28) are satisfied exactly, then the volume integrals
vanish and the value of H is 16m.noma.

The variation of H under arbitrary independent variations of 1V,N', y,&, m' and N, y;,b, m, restricted only by the
limiting conditions (28) results in

f (5N~y1/2+5Na~ yl/2+5y Pob 5 abg )d3

+ g f (5N JV;y' '+5N'JV y' '+5y P '
5m '"0 )d'x—

—g fa [ND, (5y' y' 5y) (5y—' y' 5y)D—,N]dX—b

+ g f g [N, D,, (5y, ' y'"5y, ) (5y—,
' —y' .5y., )D—,,N,. ]dX. ,.b

—g f„[2N.5~"+2N'~"5y. , Nb~"5y —]y-'"d X,

+ g f„[2N;,5n "+2N m; '5y;„N; m.;"5y,„]y—

+ g f„[N;D;,(5y y' 5y; } (5y—,
' —y' 5.y; —)D,,N, ]dX,.b

+ g f„[2N;,5m+2N m; '5'y;„N; vr;"5y;„]y —' dX;b
l

+5)~ [ND, (M0' y' Mo) —(Mo—' —y' Mo)D, N]dXb . (32)

The capital script symbols appearing in the volume in-
tegrals in the first line are parts of the vacuum Einstein
equations. In particular, IV=0 is the Hamiltonian con-
straint (2); JV, =0 is the momentum constraint (3), and
X,y, b

=0,b and X,~' =P' are the dynamical equations
(5) and (6). The numerous surface integrals come from

the integrations by parts and correspond directly to terms
in the analysis of Regge and Teitelboim [8]. Note that
the sum of the three surface terms at R; on 4 (such as the
first, summed, surface integral) comes from its three spa-
tial infinities, and the surface terms at 8; on the three S';
(such as the second, summed, surface integral} come from
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the single spatial infinity of each 4, .
We now describe the meaning of each surface integral

in turn. The first two and last surface integrals together
yield

—16vr(n, 5m&+n25mz+no5mo)+16vr5(nomo), (33)

from Eq. (29). Similarly, the third and fourth surface
terms combine to yield 16'+,0,5J, from Eq. (30).

The surface terms at the inner boundary at r; on 4; are
rather more difficult to handle. On 4; the geometry has
no source of curvature but the gravitational waves. The
dimensionless luminosity is small at the boundary at R;
by assumption; hence, it will be small throughout the in-
terior of 1, from the conservation of energy. It follows
that the metric y;,& only deviates slightly from a Hat
metric f,b and that the deviation approximately satisfies
the linearized Einstein equations out to the outer limit of
the local wave zone —the general solutions to this are
given in the Lorentz gauge by Thorne [1]. It is useful to

hiab yiab fab

2= g —A; cos[m 0; r /n, +8, ]T~b,
r

(34)

with an arbitrary variation of y;,b and ~ being deter-
mined by the independent variations of A; and 8; . The
surface terms at r; can now be much simplified. In fact,
the only part which contributes comes from I „5y,"in
the first term of the fifth surface integral. With the sub-
stitution from Eq. (34) we obtain, for the terms at r, ,

equate the arbitrary variations in y,,b and ~ at r, ,
which is in the near zone, to corresponding variations in
the local wave zone which would be obtained if the
linearized field equations for y,,b and vr were solved ex-
actly. Then the arbitrary variations are described in
terms of wave amplitudes and phases and are easier to in-
terpret. At r=r, on 4, , the variation of the auxiliary
metric is derived from

Bh,
,' n; 5h '—dX'= —2 g m 0; A;* sin8;~5( A;~ cos8;~ )

Bx
q

= —g [A, 5(m
~ A;~~ sin8;~cos8;~) —

~ A;~~ mQ;58;~], (35)

with 8, =mar;/n;+8 .
With simplifications of the surface terms, Eq. (32) becomes

16vrno5mo = —f (5NJVy'~ +5N'JV, y' +5y,b'P' 5vr' Q, b )d—x

+ g f (5N, W, y'"+5N, 'Ã,.y'"+5y...V,
'—5~,"C,.„)d' ,x

—16nn&5m& —16mnz5mz+ +16m0;5j;+ g ~A;z~ mQ;M;z,
i, q

(36)

where the "modified, effective" angular momentum is

j, —=J, — pm~A, ~ sindhi cos6~ .
1

16' (37)

Note that the difference between J; and j; is of the order
of the angular momentum content in one wavelength of
radiation, that the coefficient of M,~/2m. , 2'~ A;~~ mQ;,
is 16mn; times the average energy in one wavelength of
radiation, and that typically n, and n2 are negative un-

less, perhaps, the holes are extremely close to each other.
From Eq. (36) we see that Eq. (31) yields a variational

principle for mo. Pick values of the parameters m, , m2,
jo, j], j2 l90q 8/q and 82q for all q. Consider mo, as
defined in Eq. (31), as a functional of N,¹,y,b, m' and

X;,N, y;,b, m . Now allow small, arbitrary, variations
of these fields which leave the parameters unchanged and
are restricted by Eq. (28). Then mo is an extremum if and
only if both the constraint and dynamical Einstein equa-
tions are satisfied, with t being a Killing vector, on 4
and 4, inside the region bounded at R;.

An important use of this variational principle is to find
an approximate value of mo. Given a set of fields which

are within 5 of an exact solution to the Einstein equations
with t' a Killing vector, Eq. (31) gives an approximation
to mo which is accurate to order 5 . Also, by considering
values of mo, found from the variational principle, for
slightly different values of m„m2y j' and 8;q we can
even find the coefficients n;, 0;, and

~ A;& ~
m Q; to accu-

racy O(5 ). For example,

n r
= normo/A—m, +O(5 ),

where 5 means let m, change and use the variational
principle with all of the other parameters held constant.

Further consideration of the radiation term is neces-
sary. A full solution to the Einstein equations can prob-
ably be found for each choice of the parameter 6, not
too far from 8',."(cf. the analysis of the Appendix). With
the other parameters held fixed, 0,. is considered a func-
tion of the 8, . Thus each choice of the 8;q corresponds
to a specific orbital frequency. Now, in general, the solu-
tion corresponds to the radiation driving the system at a
frequency off resonance, 0,- is not near the natural orbital
frequency of the system, and the amplitude of the radia-
tion is large. However, for some special choice of the 8, ,
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the frequency is the natural orbital frequency of the sys-
tem, and the amplitude of the radiation is small. A
minimum in A; mQ;, with the same functional depen-
dence on 8; as seen in Eq. (20), identifies that solution
which corresponds to the resonance of the slowly evolv-
ing system we wish to model.

V. NUMERICAL RESULTS

The variational principle has now been successfully
used to find estimates of the effective mass of a close
binary system of black holes in this quasistationary ap-
proximation. For this first application, we consider only
nonrotating black holes, so that j;=jr=0. In accor-
dance with the variational principle, we fix the masses m

&

and m z and the modified angular momentum jo, and then
consider different trial geometries while looking for an
extremum of mo.

A choice of trial geometry is the specification of N, X,
y,&, and n' on S and 1;. The trial geometry which we
use is rather unsophisticated thus far, but it satisfies three
important criteria. (i) In the limit that the holes are far
apart, but move with any speed, the trial geometry
reduces to two independent, boosted black holes. (ii) In
the limit that the holes are slowly moving, but at any sep-
aration, the trial geometry reduces to the two-wormhole
solution of the initial-value equations analyzed by Brill
and Lindquist [10]. (iii) The auxiliary metrics are all fiat,
and at each infinity the trial geometry contains no gravi-
tational waves and approaches as quickly as possible an
asymptotically Hat solution to the Einstein equations.
Requirements (i) and (ii) are suScient to force the results
of the variational principle to match the Newtonian limit
[11]. Requirement (iii) simplifies our numerical analysis
at the expense of information about the gravitational-
wave amplitude from the variational principle.

At a large distance from the system, the geometry has
the quadrupole structure of two point masses M

&
and Mz

separated by a distance S. These masses are determined
by the asymptotic behavior of the trial geometry outside
the holes and differ from m, and mz, which are deter-
mined in the local wave zones inside the holes. The
quadrupole structure is used to define S, which is the only
parameter varied, while we look for the extremum of mo.
This procedure is closely analogous to that of finding the
circular orbits of Newtonian gravity or of a test particle
orbiting a black hole. In these cases the Hamiltonian is
considered a function of the angular momentum and the
radius of the orbit and is called the effective potential.
The circular orbit for a given angular momentum is lo-
cated at an extremum of the Hamiltonian, and the ex-
treme value itself is the energy of the orbit.

Figure 1 illustrates the application of the variational
principle for mz =0.01m, . A comparison of these results
with the known circular orbits of a test particle,
m& «m&, around a Schwarzschild black hole provides
an important test of the trial geometry. In this test parti-
cle limit, S is the radius of the orbit in isotropic coordi-
nates. If our trial geometry exactly solved the constraint
equations, then the ordinate would be the standard
effective potential [12,13] for geodesics near a black hole.
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FIG. 1. EfFective potential (mp —m&)/m& vs S for fixed an-
gular momentum and with mz =0.01m &. The minimum in each
curve is marked by a dot and is at the radius of the circular or-
bit for the appropriate value of jp. The known analytic position
of the orbit of a test particle moving on a circular geodesic is
represented by the dashed line. Curves are given, from bottom
to top, for jp /Nl

&
Nl p 3.5, 3.85, 4.0, 4.2, 4.4, 4.6, and 5.0.

For the innermost stable orbit which we find, the angular
momentum is jo =3.85m

&
m z, the binding energy is

0.0435m&, and S=8.0m, . For this amount of jo our
numbers should be compared with the analytic values of
0.0417m& and S=9.6m&. Our estimate of the mass-
angular momentum relationship is quite good (5%), but
the trial geometry, and in particular S, is not well known
(20%), as we would expect for a variational calculation.
The analytic values for the innermost stable orbit are
jo=3.46m&mz, S=4.97m&, and the binding energy is
0.0572m&,' hence, we miss the innermost stable orbit by
10% in jo.

Another test of our analysis is the post-Newtonian lim-
it of two equal-mass black holes. For jo=7m&, the
Newtonian value of the binding energy of a circular orbit
is 0.00496m &, the post-Newtonian [14] value is
0.00532m„and we find 0.00536m&. We show 1%
agreement with the post-Newtonian value when the
Newtonian approximation is good to only 7%. Figure 2
illustrates mo(j) for equal-mass black holes. When the
holes are very far apart, the total mass is 2m &. In the ab-
sence of other dissipative effects, gravitational radiation
must carry away mass energy 2m, —mo for the system to
evolve to a given separation. This amount can be read off
Fig. 2.

From the trial geometry we can calculate the quadru-
pole moment and its time derivatives. The resultant di-
mensionless luminosity of gravitational radiation,

MiM~I = QS 1 2

5 M(+M~
(39)

is plotted in Fig. 3. This expression for the luminosity is
formally similar to that for a Newtonian system [14];
however, we obtain 0 from the trial geometry rather
than from Kepler's laws and the M; differ from the m; as
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black holes and fixed angular momentum. The dots are at the
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m 2 =0.85, 1.0, 1.3, 1.6, 2.0, 2.2, 2.4, 2.6, 2.7
and 3.0. Also included is a curve for 0.70, which has no
minimum and no circular orbit. The dashed line represents a
Newtonian analysis.
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FIG. 3. Approximate luminosity L of gravitational radiation
as a function of the separation of equal-mass black holes as cal-
culated in Eq. (39).

mentioned above. This is the true quadrupole luminosity
of our trial geometry and is not found from the variation-
al principle. We use it as an indicator of the validity of
our assumption of the small effects of gravitational radia-
tion over dynamical time scales. In particular, from Sec.
III C, we expect the error from the creation of the outgo-
ing wave packet to be proportional to col/co+ for the
quadrupole radiation or L /(2Q XEz ) where E~ is the
binding energy of the system. Equation (39) and the
Newtonian values for the dynamics gives an approximate
error of —', (2M /S )

~ .
An approximate picture of the stages of evolution of

the equal-mass black-hole binary system emerges from an
analysis of Fig. 2. The minimum of each curve pinpoints

mo(jo) and reveals S, with less accuracy, for each stable
orbital configuration. Radiation reaction drives the
binary along the sequence of minima at a rate which can
be estimated from a comparison of Fig. 3 with the bind-
ing energy derived from Fig. 2. When the holes are far
apart, Newtonian physics determines the dynamics, and
the dissipative effects of gravitational radiation are well
approximated by the quadrupole moment formalism.
When S=23m &, jo m 0. The angular momentum is
small enough that a rotating black hole could form with
these amounts of mass and angular momentum and be a
member of the Kerr sequence. The quadrupole normal-
mode frequency for a Schwarzschild black hole [12,15] is
0.38m 0

'. The frequency of the radiation matches this
when S=7.5m& and jo 2 ~ 7m ] L =SX10, and
mo=1. 94m&, and at this separation co~/co& =0.06 from
the previous paragraph. Our analysis appears firm up un-
til this separation. We conclude, using the conservation
of energy, that 3%%uo of the initial mass of the holes is emit-
ted in the form of gravitational radiation before this orbit
is reached and with a frequency less than the quadrupole
normal-mode frequency of the final black hole.

At S=3.5m &, mo =1.86m &, and so the binding energy
is 7% of the energy at infinite separation, and the dimen-
sionless luminosity is about 0.1, at which point the ap-
proxirnation of small luminosity clearly fails.

The innermost stable orbit which we find has
S=1.2m&, j0=0.85m &, and the binding energy equals
0.35m, . However, for such a close orbit, the approxi-
mate luminosity is greater than unity, and our analysis is
without foundation. For comparison, two holes at a mo-
ment of time symmetry [10] are encompassed by a single
apparent horizon when S ~0.79m0=1. 5m, . For our tri-
al geometry, the actual location of the apparent horizon
has not been found.

VI. CONCLUSIONS

Almost none of this approach to the binary black-hole
problem is original. However, the juxtaposition of the
many diverse ideas is. There remain weak points in our
analysis. These include the existence of the family of
standing-wave solutions which corresponds to the system
being driven slightly off resonance, the uniqueness of the

geometry on the auxiliary manifold, the necessity of Eq.
(28) for the invariance of the effective mass and angular
momentum, and an incomplete understanding of the role
that the Abbott-Deser conserved quantities play in the
Hamiltonian treatment of the standing-wave geometries.
The foremost difFiculty is, perhaps, the dependence of our
approach upon the existence of the local wave zone,
which ultimately restricts the gravitational-wave lumi-
nosity as in Eq. (11)—we are currently working on this
problem and expect to be able to remove this restriction.

In a paper in preparation, we will describe a similar ap-
proach for nonvacuum geometries and a variational prin-
ciple for all geometries which are periodic, including
quasielliptic orbits. In the future we plan to apply more
sophisticated trial geometries to the variational principle,
which will lead to firm predictions of radiation arnpli-
tudes.
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APPENDIX

Much of the analysis of the main body of this paper is
derived from techniques developed in nuclear scattering
theory. For pedagogical reasons it is useful to illustrate
all of these techniques with an example involving just
classical physics. We focus on a single mass M, which
moves in one dimension, but is attached to a light string
which stretches off to infinity in a direction perpendicular
to the motion of M. For simplicity, let the string have a
small constant density p and a tension T, with p/'r= 1 so
that the motion of the mass is weakly damped by trans-
verse waves traveling down the string at the speed of
light.

The mass M is constrained to move along the x axis
with a displacement X(t) from the origin and under the
influence of a restoring force F(X) in the x direction.
The displacement of the string from the z axis is a dis-
tance g(z, t). The momenta conjugate to X and g are P
and p, respectively. The dynamical equations for this sys-
tem are

1. Damped oscillations

This dynamical system is simple enough that a rather
straightforward analysis is successful. The dynamical
equations (Al) and (A2) reduce to

(A4}

where

f(X)=F(X)/M— . (A5)

The general outgoing wave on the string is

(=((r z), —

so that

(A6)

dX
dt

(A7)

from the boundary condition (A3). Hence the dynamical
equation is just

and shown to approximate a solution with an outgoing
wave front. And in Sec. 4 a variational principle for a
generic periodic solution is derived. Thus, in the appen-
dix, we reveal how a much more complicated nonlinear
system coupled to weak radiation might be studied —the
variational principle provides an analysis of the generic
periodic solutions, and an appropriate linear combination
of these approximates the physically interesting situation
with an outgoing wave packet.

X=P/M, P =F(X)+T (Al)
d X f(X) dX
dt

(A8)

and

~ = a'

with the boundary condition that

(A2) X(t ) =Xo(t )+eX, (t)+ e Xq( t )+ ' '

into Eq. (A8) and separate off each power of e,

(A9)

Now we substitute a formal perturbation expansion for
X(t ),

0=X . (A3)

The general solution to these equations represents a
mix of incoming and outgoing radiation on the string
with the motion of M responding to the reaction forces of
the radiation as well as the force F(X). Those solutions
which are physically reasonable, and most interesting,
have no incoming radiation —the mass undergoes
damped oscillations about the origin, while the outgoing
radiation carries away energy.

In this appendix we examine the details of how the ra-
diation reaction slowly drives the evolution in a quasista-
tionary fashion from one nearly equilibrium configuration
to another. In Sec. 1 of this appendix, we consider a for-
mal perturbation expansion of X(t) in powers of the
small parameter e=—T/M; this system is simple enough
that we explicitly see how outgoing radiation damps the
motion of the mass. In Sec. 2 we examine the periodic
solutions to the dynamical equations which contain
standing waves in the radiation. In Sec. 3 a specific linear
combination of these periodic solutions is constructed

d Xo —f(XO) =0;
dt2

d Xi g dXO

dX xo(t) ' dt

(A 10)

(Al 1)

d X2

dt
df 1 d f dX,

X = —— X)—
dX x,(t) 2 dt x,(t)

(A12)

The solutions of Eq. (A10) are periodic, and we assume
that these can be found (perhaps through numerical
means} for the restoring force f(X} at hand. Let a
specific periodic solution of this equation be

1 co

Xo( t ) = g x„e (A13)

where n runs from —00 to +Dc and cu„=neo, . For Xo to
be real, it is necessary that x „=x„*.

Equation (Al 1) for X& is a linear, inhomogeneous
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I CO

X&(t ) = g ice„x„e (A14)

differential equation. Its general solution requires two
solutions of its homogeneous form —the equation for a
perturbation of the oscillator with no string attached.
And two independent solutions are X, ( t ) and X2( t ),
where X,(t ) is the difference between Xo(t) and a similar
solution to Eq. (A10) shifted slightly in phase but with
the same energy:

X) ( t ) = —3 (t ) X) +B(t )X~+CX, +DX~,

where

(A16)

A(t)= f Xz dt= f X2 giar x e dt,
0 0

g&g2
—

g&g2
—1. And the general solution to the inhomo-

geneous equation (A 1 1) is

and the difference between Xo(t) and a solution with
slightly different energy, but the same initial phase, gives

den, i co 1 dxn i ct)

Xz(t)—: pico„x„e " + g e
coi dE

n

(A15)

where d~, /dE and dxn/dE are assumed to be known
from an analysis of the undamped problem.

The Wronskian of these two solutions is constant,

(A17)

dX0
mB(t)=f X, dt= f X, pico x e dt,

0 dt 0

and where C and D are arbitrary constants.
These integrals are elementary, and one solution is

1 i m~nxmxn
X,(t)=

n, m~.

mxm dxn /dE i(~ —~ )1 . iu. f
e leo x e

Q7 CO
J J

n m

+
n, mXn n m

l co co x xn i(m —m )t dxj ice t
e " g e

J

602 X*X —ltCO X

J m j
(A19)

(A20)

This expression can be recombined with Xo(t ) to form an approximation to X(t ) which is accurate through order e:
r

dx dE i 2
d~n dEX(t)= g x„+ea„+t exp i(co„+bco„)t+ t — +O(e ) .

dE dt " " 2 dE dt

i'
The constants a„are the constant coefficients of e " in
the first two terms of Eq. (A19) and cause a conservative
change in the dynamics which does not grow in time;
also,

which yields

X,(t)= g (p„+tv„+t'A,„+t'0„)e.(A23)

dE
~mXmXm

dt
(A21)

is the rate at which energy is lost from the oscillator
through the radiative damping and cause the secular
effect of slowly evolving the system from one quasiequili-
briurn configuration to the next. A constant-frequency
shift caused by the damping is b, co„, which is O(e) and
found from the part of the third sum over m in Eq. (A19),
which is linear in t.

Expression (A20) nicely captures all of the features of
the radiation reaction with a remainder of O(e ). How-
ever, this approximation is not uniformly valid and the
remainder grows with t. Consideration of Eq. (A12) re-
veals the size of the error involved. The homogeneous
form of Eq. (A12) is the same as that of (All), and the
source on the right-hand side is of the generic form

Thus, by stopping the original expansion at e, we ignore
terms which grow as e t . And it is easy to see that if the

approximation is stopped before e~, then we ignore terms
which grow as e~t'~+". Thus the approximation of Eq.
(A20) is accurate only as long as t ((e

2. Standing-wave solutions

((t)=g,(t }+eg,(t)+ (A24)

The simple identification of the outgoing waves leading
to Eq. (A8) is not possible for a system slightly more com-
plicated, say, when T is a function of z. Then it is in-

teresting to look at those periodic solutions which have
standing waves in the radiation.

The formal perturbation expansion differs only slightly
from that of Sec. 1. The displacement of the string is ex-
panded as

g (a„+tf3„+t }„)e (A22} so that the coefficients of e~ in the boundary condition
(A3) give
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(A25)

Now g(z, r ) is generally a mix of incoming and outgoing
radiation, and the phase of the radiation, 8„, can be
specified arbitrarily at the zeroth order in e. Thus, for a
periodic solution, g is a function of 8„, and we consider
the decomposition

go(8„, z, t)= g A„(e " "+e " ")e ", (A26)

where the boundary condition (A25) implies that

d X, df Bgo(z, t)
X)=

dX x() Bz z=0

= g —2'„A„sint„e

lN t—co„x„tand„e

Furthermore, if the amplitudes of the incoming and out-
going radiation are the same, then 8„ is a real number.

Now the e' part of Eq. (A4) is

x„=A„(e "+e ")=22„cos8'„.

Also, go(8„,z, t ) is a real function, and so

A „=A„* and

(A27)

(A28)

(A29)

This is a linear, inhomogeneous differential equation
for X& similar to that studied above —in fact, it becomes
the one studied above if tan8„=i. One solution is

de, i tan8*a) co„x*xn
X, (8„,t)=

co] dE (Qj Qj )

i tan8' co x" dx„ ldE
e " icoxe

N CO
J J

n m J

n, mXn

tandem ~m ~nXmXn i(N —N )t dXJ' iN t
n m

~n m dE

m

i tan@* t' des, dXm
co x*x + tan8* tao x*

2N)

fN
icoJX e

J

dXJ iN .t
t gi tan—8*co x'x g e (A30)

The boundary condition (A25) gives

dco)
g [ —,'ice (tan8 —tan8' )x x']

2'& dE

dxm
+eQ —,'co tang x

dE
dxm—tan8* x *

+e g —co ( tan8 —tan8* )x x*
m

dXn
(A31)

fN
The constants b„come from the constant coefficients of e " in the first two terms on the right-hand side of Eq. (A30).
The combination of go(z, t ) and g&(z, t ) is split into ingoing and outgoing parts as
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ice„(t+z)
g(8„,z, t)= g —,'e " i (tan8„i—)(x„+eb„+ . . )

X exp
e(t+z) co„dco,

g co ( tan8 —tan8* )x x*
4' ) dE

dXm dXm+ ,'i —e(t+ z )co„+co tan8 x —tan8* x *
dE dE

dx„+ ,'E(t+—z) g ico ( tan8 —tan8* )x x'
x„dE

ice„(t+z) .—g —,'e " i( tan8„+i)(x„+eb„+ ) e xp[(t+z)~(t —z)] . (A32)

This procedure could be continued at higher orders of e. At order p, X is found from an inhomogeneous equation,
which is the e part of Eq. (A4), with a source involving X i, g i, and the phase 8„,where the boundary condition at
z =0 determines g, in terms ofX, and the phases. It is clear that, for any choice of the 8„, there is a solution to
this system of equations which is similar to the resonant solution (8„=0)initially (t =0). For small e and t, the above
equations show how the exact, periodic, nonresonant solution slowly evolves away from the resonant solution. Thus the
phase 8„ is the natural quantity which distinguishes a resonant solution to the dynamical equations 8„=0from a non-

resonant one.
For the special case that 8„=—8 „,with 8„being real, the first and third sums in the exponent of solution (A32)

drop out. What remains is

dXm Xm
((6„z,t)= g —,'i( tan8„i)(x„+E—b„+ )exp. ico„(t+z) 1+—,'@geo tan8

dE

dXmXm

,'i( t a—n8„+i)(x„+eb„+ ) exp ~ ico„(t—z) 1+—,'eg co tan8
dE

(A33)

which is strictly periodic and represents the standing-
wave solution, which is accurate through first order in e.

For a system more complicated than this one, we
might not be able to find the approximation for g(8„,z, t )

similar to Eq. (A32) and the resonances might occur at
8„%0. In that case the variational techniques discussed
below, or perhaps a direct numerical approach, might
still provide g(8„,z, t) and allow for the identification of
a resonance. We would expect that the amplitude of the
incoming and outgoing parts of g(8„,z, t) would still be
proportional to tan(8„—8„z) i and tan(8„—8„~—)+i,
respectively, where 8„z is the phase at resonance.

The important role of the phases is discussed again
below from the point of view of the variational principle.

3. Outgoing wave packets

For a linear problem, such as the Schrodinger equa-
tion, it is common to construct an outgoing wave packet
by a linear superposition of the standing-wave solutions.
The system we consider here is nonlinear. However, the
wave equation and the boundary condition (A3) are linear
and the perturbation analysis in powers of e reduces our
consideration of the motion of the mass to a linear
analysis. Hence we can take linear combinations of the
periodic solutions as long as we include a careful analysis
of the error.

We construct a generic wave packet for g as

g~(z, t ) = f Pd„,z, t ) W(8„)d8„,—n/2
(A34)

where W(8„) is a weighting function normalized so that

W(8„)d8„=1 . (A35)

To construct an outgoing wave packet, we let
L9=8„=—8 „,for n )0, change the variable of integra-
tion to tan6 and choose W(8) so that

g~(z, t)= f ((B,z, t)
m.( tan 8+ I)

(A36)

This integration can be done as a contour integral, and
each term in the sum over n in Eq. (A33) should be con-
sidered separately. We assume that the system is stable
in the sense that

dXm Xm

g /co„/
"™(0,
dE

so that the oscillations get smaller when the system loses

energy. Then, for the region of spacetime behind the out-

going wave front, where t —z )0, the contour is closed in
the upper half of the complex tan8 plane for n )0 and in
the lower half plane for n (0. For the outgoing terms in
the sum over n, the contour integral picks up a regular
singularity at tan8„=i, and the wave packet takes the
form
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g~(z, t)= g (x„+Eh„+ . )

Xexp .ice„(t—z)

l dXm Xm
X 1+ eg—co

(A37}

Note that this differs at order e from the damped oscilla-
tion (A20) found by direct methods.

It is important to analyze carefully the error in this ap-
proximate solution to the dynamical equations. The
wave packet is created by taking a linear combination of
approximations to the dynamical equations, each of
which has an error of order e . The only nonlinearity in
this system is in the restoring force F(X} In f.act, the
straight substitution of Eq. (A37) for g~(z, t) into Eq.
(A4), with use of the boundary condition (A3) at z =0,
shows that the amount by which g~(z, t) fails to satisfy
the dynamical equation is

~
X(8 )

d tan8

n( tan 8+1}

—f" f(X(8,t))
m( tan 8+1)

(A38)

For nonlinear F(X), this error is of order e The qua.nti-
ties X~(t ) and X(8, t ) differ only by order e, and it might
seem that a Taylor-series expansion of f(X) leads to an
error of order e; but the approximation is not uniformly
valid in tan8 and the integral samples X(8,t) for large
tan8, which causes the error to be of order e. This ex-
plains why the damping of the oscillation as implied by
Eq. (A37) is in error and differs from that of Eq. (A20).
Thus the wave packet of Eq. (A36) correctly approxi-
mates the oscillations with outgoing radiation, but with
the error of order e, the effects of radiation reaction are
not seen.

Under some circumstances the weighting function of
Eq. (A36) may not fall off fast enough at large phase
shifts to provide well-behaved solutions to the dynamical
equations. Price and Thorne [5] describe a general
modification of 8'(8}, cutting off the weighting function
more rapidly, and demonstrate that the effect on the su-
perposition is only in the form of short-lived transients
near the wave front. We are not interested in the details
of the wave front and can use their technique to make
W(8) fall off away from the resonance as rapidly as need-
ed.

ing wave solutions to the dynamical equations. Now, for
these periodic solutions, we demonstrate a variational
principle for the most interesting of the physical quanti-
ties which describe the dynamics of the system: the am-
plitude, phase, and frequency of the radiation and the to-
tal energy of the system. With a good approximation to a
periodic solution of the dynamical equations, the varia-
tional principle yields a better approximation to these in-
teresting physical quantities.

Morse and Feshback [9] give a variational principle for
the phase shift of the scattering amplitude for the
Schrodinger equation with a one-dimensional potential.
When the application of such a variational principle was
in vogue, the phase-shift information was used to deter-
mine the energy and width of resonances in a manner
similar to ours. We use a modest variation of their varia-
tional principle.

We are interested in solutions which have standing
waves at infinity and assume that all of the dynamical
variables are periodic in time with a fundamental fre-
quency Q.

The Hamiltonian of the system plays a fundamental
role in the variational principle. But the integral of the
Hamiltonian density of a string diverges at infinity. To
avoid this divergence we must consider the difference be-
tween the Hamiltonian and another integral which
diverges in the same way. Accordingly, we introduce a
new dynamical variable g, (z, t ) and its conjugate momen-
tum p, (z, t ), whose dynamics are governed by

Q2g

g, =p, /p and p, =T
BZ2

(A39)

and satisfy the boundary conditions

g~(z, t)~g(z, t) and p, (z, t)~p(z, t) as z~~ (A40)

sufficiently rapidly that

p2 00 ()
2

H= +U(X)+ f" P + ,'T-
2M 0 2p Bz

0 2P 2 BZ
(A41)

is finite. And H is a functional of X, P, g, p, g&, and p&,
where these dynamical variables are periodic functions of
the dimensionless phase Qt. Then the average of H over
a full period is

4. Variational principle

(H)= f H(t)dt . (A42)

So far, in this appendix, we have revealed the utility of
the periodic solutions for an understanding of the outgo-

Now the variation of ( H ) under arbitrary, indepen-
dent variations of the dynamical variables, which respect
the periodicity and boundary conditions, is
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5(H ) = f 5H(t )dt
2& 0

f 5P —X +5PX 5X—P+5X +P —T
2m 0 M BX az

+f 5p(p /p —g)+5pg —5(P —5( T
z

—p d

+f" —5p, (p, /p —
g, ) —5p, g, +NA+5g, T, —p, dz+Tg,

a'g, ag,

Bz a
dt, (A43)

where we have used the boundary conditions (A3) and
(A40).

A number of simplifications of this expression can be
made. Note that

y ( A ineinQz+ A oute innz) incot (A45)

with

(A46)

f (5PX 5XP)—dt = f 5PX (P5—X—)+5XP dt
0 0 dt

= f (5PX+5XP)dt
0

=5f PXdt . (A44)
0

The terms involving the pairs p, g and p „gi can be treat-
ed similarly. The boundary term at z =0 which involves

g, simplifies if we represent g, at the boundary by

I

g, (z, Qt), and p, (z, QT) which satisfy the boundary condi
tions (A3) and (A40), which are periodic in Qt with period
2ir and which have the chosen values of 8„and S from
Eqs. (A46) and (A48). The quantity (,H ) in Eq. (A42) is
stationary with respect to small variations of the functions
if and only if the functions satisfy the dynamical equations
(Al), (A2), and (A39). Thus an approximate solution to
the dynamical equations which is accurate to O(5) will
provide an estimate of (H ) which is accurate to O(5 )

for a true solution to the dynamical equations.
%hen the dynamical variables satisfy the dynamical

equations, the value of ( H ) is what we call the
"effective" energy of the system in the main body of this
paper, which is the total energy without the contribution
from the radiation. It can be shown easily, from the time
derivative of Eq. (A41), averaged over a few cycles, and a
process similar to that leading to Eq. (A49), that (,H ) de-
creases appropriately when outgoing radiation carries en-

ergy away from the rest of the system. In fact, the energy
in one wavelength of the radiation is

Then the quantities A„and 8„describe g, at z =0 and
are to be varied independently. The boundary term be-
comes

2
z+ tI. p

z 2P BZ

so that, from

dz, (A50)

=T +2n Q [5( A „sin8„cos8„)—A „58„]. (A47)

Finally, we define S by

it follows that

E& = T4mn 0A„, (A52)

S=f PX+ f (pg —p, g, )dz dt

+ T g 4m.n A „sin8„cos8„. (A48)

With all these simplifications, Eq. (A43) becomes

5(H) = f (dyn. eqn. ]dt
277 0

+ 5S — T +4irnA„M„,
277 21T

(A49)

where "(dyn. eqn. ]"represents terms which vanish if and
only if the dynamical equations are satisfied.

Equation (A49) justifies the following variational prin-
ciple: Choose values of S and each of the zl„and consider
the class of functions X(Qt ), P( At ), g(z, At ), p(z, Qt ),

which is just the coeScient of M„/2ir in Eq. (A49).
Although 0 and t appear separately above, in fact the

previous dozen equations could have been written entire-
ly in terms of the dimensionless phase Qt of the oscilla-
tion. Thus it is not necessary to know 0 before applying
the variational principle. In fact, all of the variables in
the variational principle should be thought of as func-
tions of the phase, and then 0 can be found by applica-
tion of the variational principle.

This variational principle can be used to find not only
the effective energy of the system, as described above, but
also the frequency, amplitude, and phase of radiation.
Given trial functions accurate to O(5), the variational
principle already yields the relationship between (H ), S,
and the il„accurate to O(5 ) because the latter quantities
had to be specified before (H ) could be found. To find

0, then, repeat the process with a slightly different value
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of S, S+b,S, to find (H)+b, (H). From Eq. (A49) it
follows that

0=2rrh(H ) ib,S (A53)

is an accurate estimate of 0 with an error of O(5 ). In a
similar manner, a small change in one of the P„yields an
estimate of T4m.n 0A„and, therefore, of the amplitude of
radiation with an error of O(5 ). Thus the variational
principle can be used to map out the amplitude and phase
of the radiation as functions of frequency for the periodic
solutions. And this information can be used to construct
accurate approximations to the outgoing wave packets as

described above.
In this example the two integrals in H in Eq. (A41)

cancel each other exactly when the dynamical equations
and boundary conditions are satisfied. For a more com-
plicated problem, p might be a function of z, but with a
nice limit for large z. Then we might choose to let the
auxiliary string have just a constant p„which would be
the limiting value of p. The formal use of the variational
principle would be unchanged, but the integrals would
not cancel exactly, and the interpretation of the value of
(H) as the effective energy of the system would be
clouded.
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