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Anisotropy as a signature of transverse collective flow
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We show that anisotropies in transverse-momentum distributions provide an unambiguous signature
of transverse collective flow in ultrarelativistic nucleus-nucleus collisions. We define a measure of the
anisotropy from experimental observables. The anisotropy coming from collective effects is estimated
quantitatively using a hydrodynamical model, and compared to the anisotropy originating from finite
multiplicity fluctuations. We conclude that collective behavior could be seen in Pb-Pb collisions if a few
hundred particle momenta were measured in a central event.

PACS number(s): 25.75.+r, 12.38.Mh, 24.60.Ky, 47.75.+f

I. INTRODUCTION

It is a crucial issue in ultrarelativistic heavy-ion col-
lisions whether or not thermal equilibrium is achieved
during the collision. If thermalization occurs, collective
effects should play an important role in the subsequent
evolution of the system. They have been sought for in
transverse-momentum distributions, but no definite con-
clusion has been drawn so far. In this paper, we propose
a signature of transverse collective flow based on a global
event-by-event analysis. The same type of analysis has
been carried out to test hydrodynamic behavior at lower
energies [1]: from the measured final momenta, one con-
structs the kinetic-energy flow tensor or sphericity tensor.
The eigenvector associated with the largest eigenvalue of
this tensor corresponds to the direction of maximum en-
ergy flow, and its angle with the collision axis is called
the flow angle. A correlation is seen experimentally be-
tween the fiow angle and the multiplicity [2] (or,
equivalently, the impact parameter) which is interpreted
as coming from collective flow. In this article, we show
that a suitably modified sphericity tensor analysis is still
relevant at ultrarelativistic energies.

In Sec. II, we recall briefly the definition and the main
properties of the usual sphericity tensor. We then consid-
er the ultrarelativistic limit and show that only the trans-
verse components of the sphericity tensor must be taken
into account. From these transverse components, we
define an index a characterizing the anisotropy of
transverse-momentum distributions. We show that col-
lective flow gives rise to a nonvanishing value of this in-
dex a for peripheral collisions, and that the correlation of
a with impact parameter should thus provide a signature
of collective effects. In Sec. III, we give a general discus-
sion of finite multiplicity fluctuations which also produce
anisotropy, and thus may mask collective effects. The
three following sections are devoted to a quantitative
study of how much anisotropy we should expect if collec-
tive flow is present. For this purpose, we use a hydro-
dynamical model to describe the collision. This is briefly
described in Sec. IV, where we also show how to calcu-
late anisotropy from the results of hydrodynamics. A
crucial ingredient in hydrodynamics is the equation of

II. SPHERICITY TENSOR ANALYSIS
AT ULTRARELATIVISTIC ENERGIES

A. Situation at low energy

Let us recall the main features of the analysis per-
formed at lower energies [1]. From the measured mo-
menta p( v), v= 1, ... ,M in a given collision with multipli-
city M, one constructs the sphericity tensor defined in the
center-of-mass frame as

M
SJ

= g w(v)p;(v)pj(v),
v=1

(2.1)

where p; (i =1,2, 3) is the ith component of the momen-
tum, and w(v}=1/2m is a weight chosen in such a way
that S;; is the total kinetic energy in the nonrelativistic
limit. The coordinate system is taken such that z is the
collision axis. The tensor S;- contains six independent
quantities, which correspond to the three eigenvalues f

„

f2, f3 and to three Euler angles specifying the orienta-
tion of the three orthogonal eigenvectors. However, as
we are going to show, only three parameters are relevant
to the flow analysis, which are the flow angle OF and the
eigenvalue ratios f, /f 2 and f, /f 3.

state. That of hadronic matter is poorly known at tem-
peratures 100 & T &300 MeV, and we therefore consider
various parametrizations. First we study the simplest
case, namely, a massless, noninteracting pion gas (Sec. V}.
Using a two-dimensional hydrodynamical code, we com-
pute the anisotropy index a as a function of impact pa-
rameter for given colliding nuclei. We discuss the effects
of changing the parameters of the model (thermalization
time and decoupling temperature), and consider various
colliding systems. In Sec. VI, we use other equations of
state to study how our results are affected by a change in
the speed of sound, and to study the effect of a phase
transition from a quark-gluon plasma. Finally, in Sec.
VII, we discuss under what experimental conditions the
anisotropy coming from collective behavior can be disen-
tangled from that coming from finite multiplicity fluctua-
tions.
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For spherical nuclei, the colliding system is symmetric
under reflections with respect to the reaction plane
defined by the impact parameter and the collision axis. If
statistical fluctuations are neglected, i.e., in the limit of
an infinite multiplicity M, S," has the same symmetry.
Then the direction orthogonal to the reaction plane is an
eigenvector of S; . Thus, S;. has an eigenvector perpen-
dicular to the collision axis. This property allows, in fact,
the construction of the reaction plane from S;: it is
defined as the plane orthogonal to the eigenvector of S;.
which is perpendicular to the collision axis z. The con-
straint that one of the three eigenvectors of S; is perpen-
dicular to the z axis eliminates one of the angular degrees
of freedom. This constraint can written explicitly as

S)3S23(S„—S~2) —S)2(S)3 SQ3) —0 . (2.2)

Now, through a rotation about the collision axis z, we
can choose the x axis in such a way that (x,z ) is the reac-
tion plane (x is then the direction of impact parameter).
This eliminates one more irrelevant parameter, corre-
sponding to the azimuthal angle of the reaction plane.
Then there is only one relevant angle left. We denote by

fz the eigenvalue corresponding to the y axis, and label
the two other eigenvalues so that f, &f3. We then define

the flow angle OF as the angle between the collision axis
and the eigenvector associated with f3. 8F lies between 0
and ~/2, and the matrix of the sphericity tensor reads

f, cos 8F+f, sin 8~ 0 2(f, f, )sin8F —cos8F

0 0f2

2(f3 f, ) sin8F cos8~—0 f, sin 8F+f3 cos 8F

(2.3)

We are left with three relevant dimensionless parameters,
which are, for instance, the flow angle OF and the eigen-
value ratios f & Ifz and f ~ lf 3, various combinations of
which have been considered in the literature [3], such as

sphericity, flatness, etc.
We have neglected statistical fluctuations so far. Fluc-

tuations are irrelevant to the flow analysis, which is

essentially a macroscopic description, but they are
present in the experiment where a finite number of parti-
cles is seen. Thus, the particle distribution is not strictly

symmetric with respect to the reaction plane and none of
the eigenvectors of S; is strictly orthogonal to the col-
lision axis. Then, the definition of OF according to the
above discussion is ambiguous. For this reason, OF is

defined experimentally as the angle of the largest princi-
pal axis of S; with the co11ision axis. This is consistent
with the previous definition if f3 is the largest eigenvalue,
that is, iff2

&f3 (since we have chosen f, &f3 ), which is

a reasonable assumption: f2 &f3 would mean that the
maximum kinetic-energy flow is orthogonal to the reac-
tion plane, which seems very unlikely.

The correlation between 8z and the multiplicity (which

is itself correlated to the impact parameter) has been the
most studied one. At low energies, fluid dynamical mod-
eIs predict that Oz increases from 0 for peripheral col-
lisions to 90' for central collisions [3]. Note that for cen-

tral collisions azimuthal symmetry alone irnp1ies that ei-
ther f, =fz &f3 and 8F =0, or f, &f2=f3 and 8F =90'.
Thus, OF =90 simply means that most of the energy goes
into the transverse directions, while OF=0 would mean

that most of the energy remains in the longitudinal direc-
tion. Since OF may take only two values, it clearly does
not vary continuously with the sphericity tensor, and its
definition is ambiguous for a spherical event

(f, =f2
=f3 ) where the discontinuity occurs. However,

this discontinuity is smoothed off by finite multiplicity
fluctuations, which cause considerable deviations from
the fluid dynamical value for near-spherical events. It is
therefore questionable whether OF is the best quantity to
consider. However, the predicted increase of OF with the
multiplicity is indeed seen experimentally [2] (although it
does not reach 8F =90' due to fiuctuations, as expected),
indicating the presence of collective flow at low energies.

B. Ultrarelativistic limit

Now, what happens at ultrarelativistic energies? Be-
cause of nuclear transparency, most of the available ener-

gy remains in the longitudinal direction: In the center-
of-mass frame, the typical transverse momenta are of the
order of a few hundred MeV, while the longitudinal mo-
menta can be of the same order of magnitude as the ini-
tial ones, that is a few GeV at CERN energies. Thus, the
energy flows principally in the longitudinal direction, and
one expects 8F~0 and f, ,f2 &&f3 as the incident ener-

gy increases, independently of whether or not there are
collective effects. In other terms, the nuclei do not
bounce off significantly, and thus 8~ and f3 become ir-

relevant parameters at ultrarelativistic energies.
However, transverse collective flow may occur in the

colliding system among the produced particles, and it
may affect the sphericity tensor. To see this, consider a
peripheral collision, such as schematically depicted in

Fig. 1, and consider the rnatter produced in the central
rapidity region. If the collision can be viewed as a super-
position of a large number of independent nucleon-
nucleon collisions, that is, if no collective behavior takes
place, the momentum distribution is isotropic in the
transverse plane. If, on the other hand, a thermal equilib-
rium is reached, the pressure gradient is directed mainly

along the direction of the impact parameter, and a collec-
tive flow develops in this direction according to the Euler
equation of fluid dynamics. This, in turn, reflects itself in

the transverse momenta which are also preferentially
oriented along the same line. Let us emphasize that this
anisotropy in momentum distributions need not be
present in the initial state of the collision, when the parti-
cles are formed. It is only the spatial distribution which
is initially anisotropic for nonzero impact parameter, and
this anisotropy is carried over to the momentum distribu-
tions through pressure gradient.

Now, let us see how this sidesplash of the reaction
products reflects itself in the sphericity tensor. Consider
the restriction of S," to the transverse plane (x,y) in the
limit 8F~0, f3~ ~. Equation (2.3) becomes
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FIG. 1. Peripheral collision viewed in the transverse plane. b
is the impact parameter. The shaded area corresponds to the
region where particles are created in the central rapidity region.
Outside this region is the vacuum.

S
f, +f,BzF 0

0 2.
(2.4)

The term f38F, which may be important, is the remnant
of the bounce off. From Eq. (2.3), one gets
f3

—-S33 =+M &to(v)p, (v). Thus, the main contribution
to fz comes from the fragmentation regions which corre-
spond to the highest values of ~p, ~

in the center-of-mass
frame. We shall hereafter restrict our study to the cen-
tral rapidity region where ~p, ~

is much smaller, and we
assume that fzBF is negligible in this case. Then
f (

—-S(t =g„tw(v)p„(v), fz =Szz =g„tw(v)py~(v},
and the sidesplash of the reaction products along the
direction of impact parameter x results in f, & fz. The
whole rapidity range may contribute to this effect. A nat-
ural measure of this anisotropy in transverse momenta is
the dimensionless observable a defined as

g w ( v) [p„(v)—p„(v) ]f i fz-
f +f M

g w(v)[p„(v) +py(v) ]

(2.5)

a=O for an isotropic distribution (f, =fz), whereas
a=1 if all momenta are directed along the impact line
(fz=0). The last equality in Eq. (2.5) holds only if x is
the direction of impact parameter. Alternatively, we can
use the following expression which is valid in any coordi-
nate system for the transverse plane:

1/2
4detSa= 1—
(trS )' (2.6)

This allows one to calculate a directly as a function of
the measured transverse sphericity tensor S;.. It appears
clearly in this form that a is the only observable we can
construct from S;. if we require it to be dimensionless and
invariant through rotations about the collision axis. The
ultrarelativistic case is thus simpler than the low-energy
case where three rotationally invariant and dimensionless
parameters must be considered. A collective How would
reveal itself through a nonzero value of a for peripheral

III. FINITE MULTIPLICITY FLUCTUATIONS

A. Jacobian-free analysis

With a finite number of particles M, one never obtains
an isotropic distribution, even if the particles are emitted
according to an isotropic emission probability. Even
worse, as we shall see, an isotropic emission probability
gives rise to a probability law for a which is not centered
at a=O as we would expect, but rather at a value
a-1/~M. Here we show how to get rid of this shift by
defining a corrected distribution for a, following the
analysis of Danielewicz and Gyulassy [7].

If correlations between particles are neglected, the cen-
tral limit theorem states that in the limit of large multi-
plicity M the probability law for S; is of Gaussian form
and strongly peaked around its mean value (S~ },with a
width varying like 1/v M. However, we are not interest-
ed in the distribution of S; but rather in the distribution
of a. In order to change variables, we need two other
quantities since S;- has three independent components.
We take, for instance, v = trS =+M Ipz. (v) and the an-
gle 0 between the I axis and the largest principal axis of
S~. Then, in terms of the variables (a, @,8), the expres-
sionofS is

1+a cos28
a sin28

a sin20
1 —a cos20 (3 1)

Transforming variables from S;. to a, 6, and 8 brings in a
Jacobian factor

collisions, while a=0 for central collisions, which are iso-
tropic in the transverse plane. So we must study the
correlation of a with the multiplicity (we recall that the
multiplicity is a fair measure of the impact parameter
[4]). We expect that a will be a decreasing function of
the multiplicity if collective transverse Bow occurs.

Finally, note that the weight w(v) = 1/2m
„

in Eq. (2.1)
is quite inappropriate at ultrarelativistic energies. First,
S,,- does not represent the kinetic energy any more.
Second, composite fragments for which this weight was
introduced represent a negligible fraction of the emitted
particles, especially in the central rapidity region. Third,
the transverse momenta of different types of particles
have comparable distributions (this is the observed mz.
scaling [5]}. Thus, we shall take w(v)=1, and the trans-
verse sphericity tensor is then simply defined as

M
S~J = g p, (v)p, (v) (2.7)

v= 1

with i,j=1,2. Since S; only involves the transverse mo-
menta, it is invariant under Lorentz boosts along the col-
lision axis. This is a nice property from a theoretical
point of view since the central rapidity region is expected
to enjoy the same property at high energies [6]. From the
experimental point of view, restricting ourselves to trans-
verse coordinates allows us to measure S; directly in the
laboratory frame for fixed-target experiments.
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~(S11 S12 S22 )
J(a, 8, 6') = =a@

a(~, 8, @}
(3.2)

The fact that this Jacobian is proportional to a expresses
that the probability to generate an isotropic event van-
ishes: therefore, the maximum of the probability distri-
bution is at aAO, even for an isotropic emission. In or-
der to define a clear signature for anisotropy, this distor-
tion must be eliminated. This can be done simply by di-
viding the probability distribution dP/da d 8d @ by the
Jacobian. Since 6 =+M 1pT(v), the central limit
theorem ensures that the fiuctuation of 6 around its aver-
age value Ã =M (p T ) is small. Therefore, we omit the
factor 8 in Eq. (3.2). Integrating over 8 and 6', we thus
define a corrected distribution for a:

dPcor 1 dP
da a da

(3.3)

where dP /da is the true distribution. While the true dis-
tribution always vanishes for a =0, we show in Appendix
A that the corrected distribution is maximal at a=0 if
the emission law is isotropic. More precisely, for an un-
correlated, isotropic emission law, the corrected distribu-
tion for a is Gaussian in the limit of large M:

dPcor Ma~ expda 5
(3.4)

where fi= (pT ) /(pT ) . Equation (3.4) is important:
first, it shows that statistical fluctuations for a are of or-
der 1/&M; second, it illustrates the usefulness of the
Jacobian correction (the uncorrected distribution would
reach its maximum at a =&5/2M ); third, it proves that
a peak at aWO in the corrected distributions can be safely
interpreted as due to some anisotropy in the emission
probability. Let us finally comment on the parameter 5,
through which the momentum distribution comes into
play: a quick calculation shows that 5=2 for a Gaussian
distribution, while 5= —,

' for an exponential distribution.
Since the width of the Gaussian in Eq. (3.4) is proportion-
al to &5, the finite multiplicity fiuctuations for a are
somewhat larger with an exponential pT distribution than
with a Gaussian pT distribution.

of the form

dP ~ exp
d pT(1) d pr(M) 2"tr(S S '), (3.5)

where S is the transverse sphericity tensor defined by
Eq. (2.7) and S is the average value of S; its coefficients
are given by S,"=M(p,.p. ). Choosing the coordinate

axes in such a way that S&2=0 and S&& &S22, one can
write S in the form

S= ( 6'/2)diag(1+ a, 1 —a) (3.6)

0-( detS )' ' exp 2"tr(S S ') . (3.7)

It is of Gaussian form for M »1 [7]. In terms of the
variables (a, 8, 6), Eq. (3.7) becomes, using Eqs. (3.1) and
(3.2},

( 1 2)(M —31/2@M —1

dad8db

M6 1 —aa cos28
X exp

1 —n
(3.8)

Integration over 6 yields immediately

dP ~ a(1 —a )' ' (1—aa cos28)™
dad0

(3.9)

In the case of an isotropic emission law, a=0. The in-

tegration over 8 is then trivial and the corrected distribu-
tion for a reads

[compare with Eq. (3.1)], where 6 =M(pr ) and

a=((p ) —
(p~ ))/((p„)+(p~) ) represents the anisot-

ropy associated with S, as defined by Eq. (2.5) or Eq.
(2.6), i.e., the anisotropy in the emission probability. The
probability distribution (3.5) can be written as a product
of one-particle probabilities using Eq. (2.7) and is there-
fore uncorrelated. The probability law for S can be cal-
culated from Eq. (3.5):

dp
dS ( ) dS )2 dS22

B. Explicit calculation
with a Gaussian parametrization

Cor ~(1—a )
2 (M —3)/2

da
(3.10)

We have shown that a peak at a%0 in the corrected
probability means that there is anisotropy in the emission
probability itself. We now study whether the converse
statement is true, that is, under what conditions the an-

isotropy in the emission probability results in a peak of
the corrected distribution at a&0. In this section, we
consider a very simple model where the emission is un-

correlated and the transverse-mornenturn distribution is
Gaussian. The distribution dP„,/da can then be calcu-
lated exactly for any M. More general results, which are
valid for an arbitrary momentum distribution but only in
the limit of large M, are derived in Appendix A.

Following Danielewicz and Gyulassy [7] again, we take
a probability distribution for the M transverse momenta

In the limit of large M this becomes

dP„, Ma
cc expda 2

(3.11}

in agreement with Eq. (3.4) since 6=2 for a Gaussian pT
distribution.

Consider now the case when the emission law is not
isotropic; that is, when a&0. In the limit of large M, one
naturally expects that the corrected probability distribu-
tion has a well-defined peak at a=a. Since the statistical
fluctuations for a are of order 1/&M, one further ex-

pects this to be true if a » I /&M . Indeed, when

u » I/&M, the integral of Eq. (3.9) over 8 can be evalu-

ated using a saddle-point approximation, and one obtains
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(3.12)

Car ~(1—a )
2 (M —3)/2

da &1—a'a'
' (2M —2k —3)!! (2k —1)!!x T

(M —k —1)I k!

2
dPgop M a —a~ expda 1 —a

which is a Gaussian of width (1—a )/&M, centered at
a=a as ~ex ected. But let us now see what happens when
a-1/v'M. The integral of Eq. (3.9) over 8 can be done
analytically, which yields the following exact expression
for the corrected distribution:

are of order 1/&M. For the value a=0.2, which corre-
sponds to Fig. 2, condition (3.14) is satisfied only for
M) 45.

Equation (3.14) can be regarded as a condition for the
anisotropy to be observable experimentally. It may be
somewhat too pessimistic in the sense that the probability
distributions for a=O and aAO differ, even if both are
maximal at a=O. Equation (3.14) may also be too op-
timistic for two reasons: The first is that we have con-
sidered a Gaussian distribution and the discussion follow-
ing Eq. (3.4) shows that finite multiplicity effects are
larger for an exponential distribution (we recall that the
observed pT distributions are rather close to exponen-
tials). The generalization of Eq. (3.14) for an arbitrary
uncorrelated distribution is, in fact,

x
(1+aa) ' "(1—aa)" (3.13) a) &5/M (3.15)

2(M —3)
M(M+1)

a) 2
M ~ M

(3.14)

Equation (3.14) can be understood simply: there is a
maximum of the corrected probability distribution at
aAO if a is greater than the statistical fluctuations which

Figure 2 displays dP„,/da for a =0.2 and three different
values of M. The Gaussian defined by Eq. (3.12) is close
to the exact curve for M=200. On the other hand, if
M =40, dP„,/da does not look like a Gaussian centered
at a=a. Instead, it is maximal for a=0. This means
that no maximum at aAO reveals the anisotropy present
in the emission law if M=40; thus, the corrected distri-
bution (3.3) is not a panacea against finite multiplicity
effects. The condition under which the maximum lies at
a+0 can be derived simply by expanding Eq. (3.9) to or-
der a and then integrating over 8. One gets

1/2 ' 1/2

for large M. This is demonstrated in Appendix A. The
second reason why Eq. (3.14) may be too optimistic is
that we have totally neglected correlations, which de-
crease the number of independent sources and therefore
increase finite multiplicity fluctuations. However, we ex-
pect the general idea to be more or less model indepen-
dent: the anisotropy a present in the emission law can be
seen experimentally only if the number M of measured
momenta in a single event is at least of order 1/a .

IV. ANISOTROPY AND HYDRODYNAMICS

The question that naturally arises now is: What value
of a should we expect if collective effects are present? In
order to estimate this effect, we use a hydrodynamical
model [6,8—10] to describe the colliding system. One as-
sumes that the latter behaves as a perfect Quid during
some stage of its evolution. Its evolution is then ruled by
the equations of relativistic hydrodynamics. The time
when hydrodynamical behavior starts is the time at
which the system thermalizes; this initial time, which is
measured from the beginning of the collision, will be not-
ed to. Hydrodynamical expansion lasts until the mean
free path of the particles is of the order of the dimensions
of the system: one usually assumes that this happens
when the temperature decreases down to some decou-
pling temperature Td. particles are then emitted freely
along the isotherm o ( T= Td ), with their momentum dis-
tributions given by the state of the Quid at the considered
point [11]. a is then calculated from these momentum
distributions.

0.0 0.2 0.4 0.6 0.8 1.0

A. General formulas from particle distributions

The number of particles of a given type emitted in the
phase-space volume d p is obtained [11] by integration
over the decoupling isotherm o ( T= Td ):

dN = 1 p "1p(p )do„, (4.1)
FIG. 2. Solid lines: corrected probability distributions of a

calculated according to Eq. (3.13) with a=0.2 and M=40, 100,
or 200. The normalization has been chosen such that

I (dP„,/da)da= 1. Dashed line: Gaussian approximation
(3.12) for M =200.

Vp p Q

dp(p) =, exp
(2n )' Td

where d)u, (p ) is the invariant measure defined by
—1

d p
E (4.2)
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with c.=1 for bosons and c= —1 for fermions. In Eq.
(4.2), u" denotes the fluid four-velocity at the considered
point on the isotherm, Td is the decoupling temperature,
and vz is the degeneracy factor coming from spin and iso-
spin (vi, =3 for pions). In this section we assume that all
the emitted particles have the same mass and statistics,
but our results can be generalized straightforwardly by
summing over particle species. We also assume that the
central rapidity region is baryon-free, as expected in the
high-energy limit; otherwise a chemical potential associ-
ated with baryon-number conservation should be present
in Eq. (4.2). Note that E de, (p )d x is simply the number
of particles in the fluid volume d x and in the phase
space volume d p. With this notation, the sphericity ten-
sor (2.7) can be simply expressed as

S; =fp'p'dN= f do„fp'p'p" dp(p) , . (4.3)

We write S; instead of S;. to keep in mind that fluctua-
tions are neglected in hydrodynamics, and Eq. (4.3) is to
be understood as an average value. Equation (4.3) shows
that the sphericity tensor involves the third moments of
the momentum distribution. We thus define the third-
rank, completely symmetric tensor

S" = J p"p "p dA(p) . (4.4)

This quantity is calculated in Appendix B. The result is

S"'~= Au "u "ui' —C(g"'u~+g "i'u "+g "u")

with

A =(2«E » —m )n,
«E'» -m'C= n.

3

(4.5)

(4.6)

Thus, the determination of the sphericity tensor reduces
to the calculation of « E », which denotes the average
value of the energy squared E measured in the rest
frame of the fluid.

In the case of massless bosons, for instance, the only
energy scale is the temperature T and therefore
«E » ~ T . The numerical coefficient is calculated by
integrating directly over the particle distribution (4.2),
which yields

24((5)
vg T

0&C(—.
6

(4.8)

Now, if the x axis is taken along the direction of impact
parameter, the anisotropy defined by Eq. (2.5) reads

S„—S„&p,'& —&p„'&

S„+S„&p„'&+&p,'&
(4.9)

where g(5 }= 1.037. In the case of massless fermions with
zero chemical potential, A must be multiphed by —'„'.For
massive particles, «E » must be calculated numerically
using Eq. (4.2). A rough estimate is obtained by setting
« E » = « E » = (e/n ), e being the energy density.
This approximation underestimates «E ». The error,
however, vanishes in the nonrelativistic limit; it is maxi-
mal for massless particles where «E »=1.42«E»
(bosons) or « E » = 1.30« E » (fermions).

There is one point we would like to emphasize before
we go any further. In thermodynamics, an equation of
state is merely a relation between the entropy density s,
the temperature T, and, if any, the chemical potentials p,
associated with conserved quantities. In a hydrodynami-
cal model, however, we also need to interpret the equa-
tion of state in terms of its particle content at decoupling.
In doing this, we must make sure that thermodynamic
quantities deduced from Eq. (4.1) are consistent with the
equation of state, at least at the decoupling temperature.
More precisely, one must check that both the energy den-
sity e( Td ) and the pressure P( Td ) match on both sides of
the isotherm; otherwise energy and momentum are not
conserved at decoupling. For massless particles, for in-
stance, one obtains directly from Eq. (B2) that the equa-
tion of state must satisfy T"„=e—3P=O, as is well
known for blackbody radiation. Now, the calculation of
the sphericity tensor requires the knowledge of « E »,
n, and n, which are not simply related to thermodynamic
quantities. Therefore, if we make hydrodynamic calcula-
tions with an arbitrary equation of state, we cannot a
priori define the sphericity tensor as long as the particle
content of the equation of state is not explicit.

However, one easily obtains upper and lower bounds
on the anisotropy which do not require the knowledge of
the particle content. Indeed, from Eq. (4.6) one gets

C=A/6,
(4.7)

Using Eqs. (4.3)—(4.5}, this becomes

A(Td) f (u„—u )u" der„+2C(Td)f (u" do., u~doy)—
A(Td }f (u„+u )u" dcr„+2C(Td)f (u" do„+u"der„+u~do )

(4.10)

We have used the fact that « E » and thus A and C are
functions of the temperature only (since we have assumed
that the baryon chemical potential is zero), and therefore
factor out on the isotherm cr (T=Td ). The variation of
a with C is clearly monotonous (in all the cases studied in
the following sections, K decreases with increasing C).

Thus, the upper and lower bounds on C in Eq. (4.8) give
upper and lower bounds on o;. Of course, this is interest-
ing only if the upper bound and the lower bounds are
close to each other. This is the case when the fluid is ul-
trarelativistic, in the sense that u »1. Indeed, in this
case the term proportional to C in Eq. (4.5) is of order
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(u ) times the term proportional to A and can there-
fore be neglected. Thus, in the limit u »1, the upper
and lower limit on a coincide, and a is given by Eq. (4.10)
in which we set C=O. This value is independent of the
particle content of the equation of state. Note that, in
the ultrarelativistic limit, the product u T is constant on
the trajectory of a fluid element [12]. Thus, the difference
between the upper and lower bound on cz, which is of or-
der (u ), varies with the decoupling temperature like
Td. For small Td, the value of a depends little on the
particle content of the equation of state. This result will
be used in Sec. VI C.

B. A simple example

where single angular brackets denote average quantities
measured in the laboratory frame. In the nonrelativistic
limit T «m, we expect that thermal motion and collec-
tive motion give additive contributions to the energy.
Indeed, using «E » =m and «p /2m » =3T/2
(Boltzmann statistics), the last equation reduces to

&p„'&=mT+m'u',

&p,'& =
& p,'& =mT,

(4.12)

as expected. In the ultrarelativistic limit T »m, on the
other hand, Eq. (4.7) can be used and one gets for mass-
less bosons, using n = [g(3)/H]vi, T,

&p,'&=&p„'&+&p'&= - T'(1+3 ') .
8E'(5)

g(3)
(4.13)

This result differs from Eq. (5.9) of Ref. [13] by
3u ~—', u . Note that, in contrast with the nonrelativistic
case, thermal and collective motions are not decoupled in
Eq. (4.13).

Let us now calculate the anisotropy. Thanks to the
y~ —y symmetry, S;1 is diagonal and Eq. (4.9) can be
used. Using Eq. (4.11), one gets a general expression for
a, which reduces to

Q

u +2T/m
in the nonrelativistic limit and to

(4.14)

Q

u +1/3 (4.15}

in the ultrarelativistic limit T»m. It is clear on this
very simple example that anisotropy measures the rela-
tive importance of collective motion and thermal motion:

As an illustration, let us consider the case of a fiuid in
uniform motion along the x axis with four-velocity
u"=(V 1+u,u, 0,0). This collective motion clearly in-
troduces some anisotropy in the transverse plane (x,y ).
From Eqs. (4.4) —(4.6), one gets

S" «E »™+(2«Ez»
~g0 3

(4.11}
&py'& = &p,'& = S220 « E2 » m 2

a=0 if there is no collective motion, while a~1 for large
Q.

Finally, let us calculate the upper and lower bounds on
a derived from Eq. (4.8). The limit C=0 corresponds in
this case to &p & =0 [using Eq. (4.4)] which gives a= I.
In the limit C= 3/6, on the other hand, a is given by
Eq. (4.15}. As we said in the discussion following Eq.
(4.10), the two limits coincide only in the limit u ))1.

C. Our hydrodynamical model

A hydrodynamical model is entirely specified by the
equation of state, the initial conditions, the initial (or
thermalization) time to, and the decoupling temperature
Td. The initial time to and the decoupling temperature
Td are subject to large uncertainties. Therefore, we do
not specify their values here; instead, we shall allow them
to vary in the numerical calculations presented in the
next section, so as to study the effect of changing these
parameters. The model we use, which is described in de-
tail in [10], makes two general assumptions. The first is
that the central rapidity region is baryonless. Then there
is a priori no conserved quantity, and thermodynamic
quantities are functions of one thermodynamic parameter
only, for instance, the temperature T; the equation of
state is entirely determined by the behavior of the entro-
py density s as a function of T. Several parametrizations
will be used in Secs. V and VI. The second assumption is
that the central rapidity is invariant under Lorentz boosts
in the longitudinal direction, and that the longitudinal
fluid velocity satisfies Bjorken's scaling law [6]: v, =z lt.
This allows one to get rid of the longitudinal direction z
in the numerical calculations. The equations of hydro-
dynamics are then solved numerically using the two-
dimensional code described in [12].

Let us now briefiy discuss our initial conditions. Ac-
cording to our hypotheses, they are longitudinally boost
invariant so we only need to specify them in the trans-
verse plane. Since the nucleon-nucleon collisions that
create matter in the central rapidity region have no pre-
ferred direction in the transverse plane, the initial trans-
verse velocity of the fiuid must be zero. Furthermore,
since there is only one thermodynamic parameter in our
equation of state, the initial conditions are entirely
specified by, for instance, the initial entropy density. %'e
assume that the entropy density at a point in the trans-
verse plane is proportional to the density of participant
nucleons at that point. The latter quantity is calculated
in the framework of the Glauber model using a standard
parametrization of the nuclear density, as in [14]:

p(r)=po/[1+ exp[(r —c)/g]], (4.16)

dN~
d2

=T (r) 1 — 1—

where c =1.08A ' fm is the half-density radius, (=0.55
fm is proportional to the skin thickness, and po is a nor-
malization constant. Let T„and Tz denote the profile
functions of the target and projectile nuclei, respectively
[T(r)=fp(V r +z )dz]. The density of participants at
a point r in the transverse plane is then given by [15]

8
o;„Tz(r b)—

8 (4.17)
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D. Spatial anisotropy

The initial repartition of the entropy density is clearly
anisotropic in the transverse plane for a peripheral col-
lision, as can be seen in Fig. 1. As we explained in Sec.
II B, this anisotropy initially present in the spatial distri-
butions is at the origin of the anisotropy in momentum
distributions. It is therefore interesting to define a mea-
sure of this spatial anisotropy. For this purpose, consider
the region in the (x,y) plane where the initial entropy
density is at least equal to half its maximum value. If L,
is the size of this region in the x direction (direction of
impact parameter) and L~ its size in the orthogonal direc-
tion y (L )L„),a natural measure of the spatial anisot-

ropy a, is

Ly
—L„

L +L (4.18)

a, can then be computed as a function of impact parame-
ter for a given colliding system, or equivalently, as a func-
tion of the number of participating nucleons. The result
is displayed in Fig. 3. As expected, a, is an increasing
function of impact parameter and thus a decreasing func-
tion of the number of participants N, and it vanishes for
central collisions as a consequence of isotropy. The de-
crease of a, for very peripheral collisions is an effect of
the skin thickness of the nuclei, g, which enters the pa-
rametrization of the nuclear density in Eq. (4.16). Since g
is approximately the same for all nuclei, this effect is
more important for smaller nuclei such as S, where g is
larger compared to the size of the nucleus than for a
heavy nucleus. Note that the decrease of a, with N is ap-
proximately linear for the three colliding systems con-
sidered here. The maximum value of a, is about 0.3 for a
Pb-Pb collision, and somewhat smaller for the two other
systems. Thus, a, tends to increase with size of target
and/or projectile.

We expect that the anisotropy in transverse momenta,

for the target nucleus, and a similar formula with A and
8 exchanged for the projectile nucleus. In Eq. (4.17), b is
the impact parameter and cr,„=33mb is the total inelas-
tic nucleon-nucleon cross section The initial entropy
density is then taken proportional to the total density of
participants: so ~ dN& /d r+dN&/d r. The propor-
tionality constant is chosen in such a way that the final
multiplicity corresponds to the experimental value. At
CERN energies, the multiplicity per unit rapidity and per
participant is approximately 2. This is the value we take
in the numerical calculations presented in the following
sections. At energies to be reached at the BNL Relativis-
tic Heavy Ion Collider (RHIC) and CERN Large Hadron
Collider (LHO), the multiplicity per participant will be
larger. The effect of a change in the bombarding energy
will be studied in Sec. V D. We recall that the multiplici-
ty per unit rapidity and the transverse energy per unit ra-
pidity are both proportional, to a good approximation, to
the number of participants. In the following sections, we
shall consider any of these quantities as a measure of the
impact parameter.

1 0

0.4

0.2

0.0 '

0.0 0.2 0.4 0
N/N

O. B 1.0

FIG. 3. Spatial anisotropy for various colliding systems. a„
defined by Eq. (4.18), is plotted against the number of participat-
ing nucleons, scaled to its maximum value (reached for a central
collision) N,„.Short dashes: lead-lead collision (N,„=395).
Long dashes: sulfur-sulfur collision (N,„=51).Solid line:
sulfur-tungsten collision (N,„=121).

a, will be comparable to the spatial anisotropy a, . How-
ever, while a, only involves the initial conditions, other
parameters come into play in the determination of a,
which are the parameters of hydrodynamics: initial time,
decoupling temperature, and equation of state. In Secs.
V and VI, we study their inAuence on a.

V. MASSLESS PION GAS

The simplest equation of state one can think of is that
of blackbody radiation, which corresponds here to taking
only pions into account, and neglect their mass and in-
teractions. The entropy density s is then

(5.1)

where v&=3 is the pion degeneracy factor. Such an
equation of state considerably overestimates the tempera-
ture for a given density, as is shown [12,14] by a discus-
sion of the average transverse momentum (pr ). Howev-

er, we use it as a reference case because it does not con-
tain any dimensional parameter: thus, the only tempera-
ture scale in the problem is the initial temperature.

A. Variation of a with the multiplicity

Using Eq. (5.1), we computed the anisotropy a defined

by Eq. (4.9) as a function of the number of participants.
We take the values to=1 fm/c for the initial time and
Td=150 MeV/c for the decoupling temperature and
postpone the discussion concerning these parameters un-
til the following sections. The result is displayed in Fig. 4
for a Pb-Pb collision. a is very close to the spatial anisot-
ropy a, displayed in Fig. 3, which shows that the anisot-
ropy in the final momenta is tightly related to the spatia1
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argument is the following: at a small time ~ after
thermalization, the fluid velocity is proportional to ~ ac-
cording to the relativistic Euler equation
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FIG. 4. Lead-lead collision and equation of state of a mass-
less pion gas. Solid lines: anisotropy a as a function of the
number of participating nucleons N. The impact parameter b is
also shown on the horizontal scale. The decoupling tempera-
ture is Td=150 MeV. The initial time is to=2 fm/c for the
lower curve and to=1 fm/c for the upper curve. Dashed line:
linear approximation, Eq. (5.2).

where w =4P is the enthalpy density and Ro is a typical
transverse size. Thus, the transverse velocity is, in any
case, small at times much smaller than Ro. Therefore, if
one changes the thermalization time from to«Rp to
to «Rp one expects that any observable associated with
transverse collective fiow (and, in particular, the anisotro-

py a) undergoes a relative change of order
(to t —o)/R 0«1, which can be neglected in a first ap-
proximation. The hypothesis that to «Ro thus allows
one to get rid of the uncertainty on to. However, it is not
satisfied for very peripheral collisions where the trans-
verse dimensions are smaller, and where the thermaliza-
tion time could also be bigger since the density is lower.

The results of numerical calculations carried out with
two different values of to are displayed in Fig. 4. As ex-
pected, the difference between the two curves is negligible
except for small multiplicities, which correspond to very
peripheral collisions where to-RO.

C. Influence of the decoupling temperature

anisotropy in the initial conditions. The only difference is
for very peripheral collisions with b &12 fm where the
decrease of a is more important than that of a, . We shall
comment on this later in this section. The variation of a
with N is almost linear, so that the formula

a=a,„(1 N/N, „)— (5.2)

with a,„=0.33 and N,„=395(value of N for a central
collision) reproduces the numerical results remarkably
well down to N =N,„/10.

B. Influence of the initial time

The initial time to fixes the beginning of hydrodynami-
cal expansion. One expects this time to be of the order of
1 fm/c, which is the order of magnitude of the time it
takes the nuclei to cross each other, and also the typical
scale for the formation of particles. However, it is
diScult to estimate this time accurately. Even the con-
cept of initial time is itself a simplification: since the ini-
tial density is not homogeneous, different parts of the sys-
tern can thermalize at different times. Thus, it is neces-
sary to study how a modification of to affects the anisot-
«py.

In fact, it is easy to show [10] that the transverse col-
lective flow is not much affected by a change of the
thermalization time to as long as the latter remains much
smaller than the transverse size Ro of the system, which
is as large as 7 fm/c for a central lead-lead collision. The

T~s —To ( r0 /R 0 ) (5.4)

and one expects the anisotropy to vary slowly with Td if
Td & Tea.

Concerning the impact-parameter dependence, two
effects must be considered: First, Td (which is the temper-
ature at which the mean free path equals the dimension
of the system) is larger for a smaller system, and thus in-

While to fixes the time when hydrodynamic expansion
starts, the decoupling temperature tells us when it stops.
One usually assumes that Td is of the order of the pion
mass, but its precise value remains uncertain. The small-
er Td, the longer hydrodynamics lasts. Since collective
flow creates anisotropy, one naturally expects a to in-
crease with decreasing Td.. if Td is as big as the initial
temperature To, the system decouples as soon as it
thermalizes and since the initial distribution is isotropic
in the transverse plane, a is zero; in the limit Td ~0, on
the other hand, a reaches its maximum value. (This is, in
fact, not always true, but we shall come back to this point
in Sec. VI A. ) The question which arises is whether there
is a typical scale for Td, under which the variations of a
can be neglected. In fact, once the transverse expansion
has fully developed, one intuitively expects a to increase
only slowly with time. The time it takes for the trans-
verse expansion to develop is of the order of the trans-
verse size Ro of the system. The typical temperature at
this time, which we refer to as the effective temperature
T,~, can be estimated simply: since longitudinal expan-
sion dominates for to & Ro, the entropy density decreases
like [6] 1/t. Using Eq. (5.1), the temperature at t =Ro is
then approximately given by
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FIG. 5. Same as Fig. 4 with three different values of the

decoupling temperature Td.

creases with impact parameter. However, this variation
is small [10j and we neglect it. The second effect is that
for peripheral collisions the system is colder and smaller.
It thus has a smaller effective temperature T,z. When

T,ff becomes as low as the decoupling temperature Td,
the variation of a with Td is strong: the system freezes
before transverse expansion has time to develop. This
effect accounts for the observed decrease of a for very
peripheral collisions. In other terms, we expect that in-
creasing Td has qualitatively the same effect as increasing
to: it affects mostly peripheral collision with a transverse
size R 0

—to in the latter case or Td ——T,ff in the former.
Numerical results are displayed in Fig. 5 for a lead-lead

collision. The effective temperature is of the order of 275
MeV for a central collision with this equation of state;
i.e., it is much higher than the decoupling temperatures.
As expected, the influence of Td on a is rather weak ex-

cept for very peripheral collisions which have smaller
effective temperatures. The results we have obtained so
far show that, although to and Td are to some extent free
parameters, they do not influence the anisotropy much.

D. Other colliding systems

First, let us discuss the effect of changing the bombard-
ing energy. This has a priori two effects. First, the inelas-
tic nucleon-nucleon cross section o.;„usedto calculate the
number of participants in Eq. (4.17) varies with the beam
energy. However, this dependence is weak, and it has lit-
tle influence on the number of participants. Second, the
multiplicity per participant increases with the beam ener-

gy. As a consequence, the initial entropy density is multi-
plied by an overall factor, and so is the initial tempera-
ture To. Now, there is no temperature scale in the equa-
tion of state Eq. (5.1); thus, the only temperatures in the
problem are the initial temperature To and the decou-
pling temperature Td. The anisotropy a, which is a di-
mensionless quantity, can depend only on Td/To. Thus,

FIG. 6. Comparison between various colliding systems. a is

plotted against the number of participating nucleons scaled to
its maximum value N,„,as in Fig. 4. The decoupling tempera-
ture is Td =150 MeV and the initial time to =fm/c for the three
curves.

a change in the initial temperature amounts to a change
in the decoupling temperature, which has minor effects as
discussed in Sec. VC. Hence, the results of this section
are, to a good approximation, independent of the bom-
barding energy.

Now, we would like to discuss how a is sensitive to the
size of the nuclei. First, note that the equations of hydro-
dynamics are scale invariant. Therefore, a change of
scale in the initial conditions merely results in a change
of scale (space and time) in the flow, which does not
change the value of o.. Then there are only two ways a
can depend on the size of the nuclei. The first way is
through to or Td, whose dependence on the size may be
nontrivial, but these are small effects, as we showed ear-
lier in Secs. V 8 and V C. The second way is through the
shape of the initial density profile. We know from Sec.
IV D that this shape induces a dependence of the spatial
anisotropy a, on the target and projectile sizes. We
therefore expect the same qualitative dependence for the
anisotropy in momenta, a. Numerical results are
displayed in Fig. 6, where this prediction can be verified:
the curves are similar to those in Fig. 3, and a, like the
spatial anisotropy a„increases with size of target and/or
projectile. However, the dependence is somewhat
stronger for a, which is smaller by a factor of almost 2 in
a S-S colhsion than in a Pb-Pb collision.

Finally, let us mention that we have only discussed
spherical nuclei, for simplicity. But if the collision in-
volves one or two deformed nuclei such as U, some an-
isotropy is present even for very central collisions. For a
given multiplicity, the values of a will be spread over a
whole interval according to the orientations of the nuclei
relative to the collision axis and relative to each other.

VI. OTHER EQUATIONS OF STATE

As we already mentioned in the Introduction, the
equation of state is a crucial ingredient in hydrodynam-
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ics. In this section, we study its influence on a. Howev-
er, we proceed indirectly. First, we recall the conditions
under which a scaling solution develops in the hydro-
dynamic expansion. This will provide us with a deeper
understanding of how initial conditions affect the hydro-
dynamic flow, and hence how anisotropy appears, since
we have shown that the anisotropy in momentum distri-
butions originates from the initial spatial anisotropy.

A. Scaling solutions in hydrodynamics

1.0

0.8—

0.4—

I I I I I I I I

The study of scaling solutions in relativistic hydro-
dynamics was pioneered by Landau [8]. Here we define a
scaling solution as a flow where the fluid velocity satisfies
v=x/t: the expansion is homogeneous and isotropic,
much like the expansion of the Universe. Landau showed
that for a one-dimensional expansion a scaling solution
always develops at long times. His study was generalized
later by Cooper, Frye, and Schonberg in three dimensions
[16]. They find that a scaling solution may appear in
three dimensions only if the equation of state satisfies
c, & —,'. This result can be easily generalized to an arbi-

trary number of dimensions D where this condition be-
comes

Q Q
I I

0 100 200
N

300 400

FIG. 7. Effect of the longitudinal expansion. Dashed line:
same as the solid line in Fig. 4 (regular longitudinal expansion,
scaling regime). Solid line: no longitudinal expansion.

(2D —1)c, (1 . (6.1)

B. EfFect of the longitudinal expansion

This is a necessary condition for the scaling solution to
exist, but it is not clear whether it is sufiicient, i.e., wheth-
er a scaling solution is always reached asymptotically
when condition (6.1) is satisfied. However, we retain the
qualitative idea that a scaling solution is favored by a
smaller number of dimensions D and a smaller speed of
sound.

Why is this discussion relevant to our study? We are
dealing with a three-dimensional expansion: in our mod-
el, the longitudinal expansion satisfies the scaling relation
u, =z/t by construction according to Bjorken's scenario,
but the transverse velocity can satisfy the scaling relation
only asymptotically since it is initially zero. Now, the
scaling solution is isotropic. As such, it does not keep the
memory of the initial conditions which are not necessari-
ly isotropic. Thus, a is zero if a scaling solution devel-
ops, and we expect that the effects which favor the appar-
ition of a scaling solution (lower number of dimensions or
lower velocity of sound} tend to decrease the anisotropy.
We calculated numerically a as a function of the decou-
pling temperature Td with a very low value of the speed
of sound, c, =

—,'„which satisfies Eq. (6.1) in three dimen-
sions. We checked that when Td decreases (i.e., when the
time of hydrodynamical expansion increases), a first in-
creases (remember that a =0 if Td is greater than the ini-
tial temperature), passes through a maximum, and then
decreases, as expected if a scaling solution develops.
However, this decrease is very slow and it is therefore
hard to check whether a~0 for vanishing Tz (i.e., for
infinite time).

ropy comes from the transverse collective expansion.
However, the previous argument shows that lowering the
dimension D favors the apparition of a scaling solution,
and thus a should be smaller without the longitudinal ex-
pansion (D =2}than with Bjorken scenario (D =3). We
performed two series of calculations: one with regular
longitudinal expansion, according to Bjorken s scenario,
and one with no longitudinal expansion. Numerical re-
sults are shown in Fig. 7 where one sees that the qualita-
tive effect is correct: although a still remains quite large
in the two-dimensional case, it is smaller by about 15%
than in the three-dimensional case.

This result is interesting not only because it confirms
the relation between scaling solutions and anisotropy, but
also in itself: indeed, it is not clear whether Bjorken s
scenario gives a reliable description of current experi-
ments, where nuclear stopping is still large. Thus, it is in-
teresting to consider the influence of the longitudinal ex-
pansion. Bjorken's scaling solution u, =z/r corresponds
to the fastest possible longitudinal expansion; Landau's
model, which assumes that the initial fluid velocity is ini-
tially zero everywhere, would give a slower longitudinal
expansion even if a scaling solution eventually develops.
Therefore, assuming no longitudinal expansion at all
gives a value of a which is at most 15%%uo lower than with
the maximum longitudinal expansion.

C. Varying the speed of sound

Here, we want to study how a depends on the speed of
sound c„which plays a crucial role in all hydrodynamic
phenomena. For this purpose, we consider a parametriz-
ation of the hadronic equation of state proposed by
Shuryak [17]:

It might be thought naively that longitudinal expan-
sion has hardly any effect on the anisotropy since anisot-

s(T)=—,T =100 MeV .
1

(6.2)
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The speed of sound in Eq. (6.2) is constant, its value being
c, =d( lnT)/d( lns)= —,', which is smaller than the ideal
massless gas value c, =

—,'. This equation of state is prob-
ably closer to reality than Eq. (5.1), although it is still a
crude approximation.

Note that, unlike Eq. (5.1), Eq. (6.2) involves a temper-
ature scale T&. However, we are going to show that the
anisotropy cannot depend much on T, . First, note that
the equations of hydrodynamics do not involve the tem-
perature but only the energy density e and the pressure P.
Now, the relation between e and P is P =a/5 since the
speed of sound is constant, and it does not involve T, .
Thus, the only temperatures in the problem are the initial
temperature To and the decoupling temperature Td, as in
Sec. V, and a may only depend on the dimensionless ratio
Td /Tp ~ However, To depends on T, . Indeed, what is
given initially is the entropy density, which we calculate
independently of the equation of state (Sec. IV C). Then,
according to Eq. (6.2), the initial temperature To is pro-
portional to T, for a given entropy density. Thus, the
only effect of changing T, is a scaling of the temperature
of the system proportionally to T] ~ If we express the
anisotropy a as a function of T& and the decoupling tem-

perature Td, all other quantities being held fixed, then

a(A, TI, Td)=~(T„X ' 'T„). (6.3)

This means that a change in T, amounts to a change in

the decoupling temperature, which has minor effects on a
as we discussed in Sec. V C.

According to Eq. (6.1) and the discussion of Sec. VI A,
we expect that lowering the speed of sound c, has the
same effect as lowering the number of dimensions D.
That is, we expect a to decrease with decreasing c, . Nu-
merical results with c, =

—,
' and c, =

—,
' are displayed in

Fig. 8. Since we did not want to express Eq. (6.2) explic-
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FIG. 9. Effect of quark-gluon-plasma formation. Dashed
line: same as Fig. 4 (no phase transition). Solid line: 6rst-order
phase transition at T= T, .

itly in terms of particles, we only calculated the upper
and lower bounds on a derived in Sec. IVB. One sees
that the predicted behavior is correct; i.e., a is somewhat
smaller with a smaller speed of sound.

D. Efect of quark-gluon-plasma formation

In order to study the influence of a phase transition
coming from the possible formation of a quark-gluon
plasma, we use a bag-model equation of state for the
high-temperature phase, keeping Eq. (5.1) for the low-

temperature phase:

2~'s(T)= T {vh[1—9(T T, )]+v I8(—T T, )], (64—)
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FIG. 8. Results of the calculation carried out with Eq. {6.2)

for a lead-lead collision, with to=1 fm/c and Td =100 MeV.
The two solid lines give the upper and lower bound on a, calcu-
lated from Eq. (4.10) with C( Td ) =0 (upper curve) aud

C( Td )= A ( Td )!3 (lower curve), which correspond to the

bounds on C in Eq. (4.8). The dashed line shows, for sake of
comparison, the value of K for a massless pion gas, as in Fig. 5.

where T, is the critical temperature and v &=37 is the
number of effective degrees of freedom for a massless
quark-gluon plasma with two flavors.

It is well known that a phase transition slows down the
transverse expansion [18], and thus we expect a to be
smaller if the system undergoes a phase transition. This
effect can be seen clearly in Fig. 9. It is stronger for the
1ower critical temperature, where a longer time is spent in

the high-temperature phase.
Let us summarize the results obtained in this section:

the anisotropy is favored by a strong longitudinal expan-
sion, as in Bjorken s scenario, or by a high value of the
velocity of sound c, . However, suppressing the longitudi-
nal expansion or lowering c, implies a decrease of a
which does not exceed 25%%uo. On the other hand, a strong
first-order phase transition from a quark-gluon plasma
may reduce a by a factor of 2 if the critical temperature
is of the order of 150 MeV.

VII. DISCUSSION

Now we come back to the finite multiplicity fluctua-
tions discussed in Sec. III in order to discuss under
which conditions they may mask the anisotropy coming
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from collective effects. Our goal is to define the optimal
experimental conditions to detect collective effects.
Equation (3.15) gives a general form of the condition un-
der which the anisotropy a in the emission probability
can be seen as a maximum in the probability distribution
of the observed a. Let us now see what this condition be-
comes in the frame of a hydrodynamical model.

First of all, 5 depends on the shape of the momentum
distribution. The determination of 5 must eventually
come from the experiment itself, but it is, however, in-
structive to evaluate it in a hydrodynamical model. We
show in Appendix B that, for a fluid composed of mass-
less bosons, 5 is always comprised between 3.38 and 4.06.
Thus, it is higher than with a Gaussian (5=2}or even
with an exponential (5=—", ) pr distribution. If the parti-
cles are massive, then 5 is smaller provided that the
chemical potential is zero. Thus, we may write in any
case 5 (4.06. Note, however, that hard progresses
enhance significantly the high-pT tail and might therefore
produce a higher value of 5.

Now, for a given experiment (given nuclei, given bom-
barding energy), we have shown that the anisotropy ex-
pected on the basis of a hydrodynamical model varies
linearly with the number of participants according to Eq.
(5.2), except for very peripheral collisions. Since the ob-
served multiplicity is, to a good approximation, propor-
tional to the number of participants, we may write Eq.
(5.2) in the form

Ma =amax
max

(7.1)

where a is the anisotropy from hydrodynamics for an ob-
served multiplicity M, M,x is the observed multiplicity
for a central collision, and a,x depends mainly on the
equation of state and the nuclei involved in the collision.
Note that the observed multiplicity M depends on the
detector used in the experiment (efficiency, coverage in
rapidity, type of particles measured, etc.). Comparing
with Eq. (3.15), one finds that the condition for the an-
isotropy to be detected at a given multiplicity M can be
written

M
Mmax

' 1/2
M

Mma. 2
Mmaxamax

1/2

(7.2)

Mmax
M „,= 3

(7.3)

Inserting this value into Eq. (7.2), one obtains the cri-
terion for anisotropy to be detected at M M pt ..

275 1

4 (7.4)
amax

This condition is depicted graphically in Fig. 10. It is
satisfied neither for central collisions (M close to M,„)
where the anisotropy is too small, nor for very peripheral
collisions (M ((M,„)where finite multiplicity fiuctua-
tions are too high. In fact, the optimal multiplicity M,pt
to detect the anisotropy is obtained by maximizing the
left-hand side of Eq. (7.2), which yields
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FIG. 10. Solid line: left-hand side of Eq. (7.2). Dashed line:
right-hand side of the same equation for a,„=0.25,
M,„=500,5=2. Dash-dotted line: optimal value of the mul-
tiplicity M,~„defined by Eq. (7.3). The arrows indicate the in-
terval of M over which Eq. (7.2) is satisfied, i.e., anisotropy can
be seen experimentally.

Choosing 5=2 as in Eq. (3.14) and the value a,„=0.25
obtained for a lead-lead collision and a physically reason-
able speed of sound c, = I/&5, the criterion Eq. (7.4} be-
comes M,„)216. If 5 is larger, the required M,

„

should be enlarged by the same factor. By measuring all
charged particles within one rapidity unit in a central
lead-lead collision at 160 GeV per nucleon in the labora-
tory frame [energy reached at the CERN Super Proton
Synchrotron (SPS)], one expects M,„=600so that the
anisotropy should be seen easily if present. On the other
hand, for a sulfur-sulfur collision, we have seen in Sec.
V D that a ax is smaller by a factor of 2, so that the lower
bound on the multiplicity is four times larger than for a
lead-lead collision according to Eq. (7.4). But since the
multiplicity scales approximately like the number of par-
ticipants, it is about eight times lower for a central
sulfur-sulfur than for a central lead-lead collision. Thus,
it is very unlikely that collective effects can be seen in col-
lisions involving light nuclei.

Figure 11 displays a comparison between corrected
probability distributions dP„,/da calculated with an iso-
tropic emission law (dashed curve) or with the value of
anisotropy given by hydrodynamics (solid curves). We
assume that the detector is such that M,x =500 particle
momenta are measured in a central collision. Finite mul-
tiplicity effects are calculated using a Gaussian parame-
trization as in Sec. IIIB. For the three first curves (a),
(b), and (c), M lies within the interval defined in Fig. 10,
where collective effects result in a peak of the corrected
probability at a&0, which is clearly seen in the figure.
On the other hand, curve (d) corresponds to a more cen-
tral collision. a is too low and collective effects do not
change much the probability distribution of aa Note that
we have used a Gaussian parametrization of the momen-
tum distribution, and the "isotropic" distributions
(dashed curves) could be broader if a more realistic pa-
rametrization were considered.

To conclude, let us mention that we have only con-
sidered the fluctuations coming from uncorrelated mo-
menta. However, one knows that correlations are present
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theorem ensures that, for a large number of particles M,
the probability law of the sphericity tensor (2.7) is Gauss-
ian. S, . has three independent parameters which we rear-
range in a vector S, (i = 1,2, 3) by defining
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(A 1)

~here we have used the pararnetrization introduced in
Eq. (3.1). Then the most general Gaussian distribution
for S is of the form

0 I I I I I I I I I I I I I I I

0.0 O. P, 0.4 0.6 0.8 1.
0 I I I i I I I I I I I I

0 0.0 0.2 0.4 0.6 0.8 1.0
~ exp[ —('S —'S )T '(S S)/2]—, (A2)

FIG. 11. Predictions for the probability distribution of a in a
lead-lead collision, with various values of the impact parameter.
We assume that the detector is such that M,„=500particles
are measured in a central collision. Then, to each value of the
impact parameter corresponds a multiplicity M. We assume
that the transverse-momentum distribution is Gaussian. The
solid lines give the corrected probability when collective effects
are present, calculated according to Eq. (3.13) with a given by
Eq. (7.1) (we take a,„=0.25 as in Fig. 10). Dash-dotted lines

indicate the value a=a. The dashed lines give the corrected
probability when there are no collective effects, calculated ac-
cording to Eq. (3.10).

which are of various physical origin. Bose-Einstein
correlations first, which always exist between identical
particles, should be taken into account. Jet production
also implies the emission of several particles with their
momenta preferentially aligned along the jet direction.
This could be a strong effect, possibly masking the anisot-

ropy coming from hydrodynamical behavior. A more so-
phisticated treatment should include all these efFects.
However, anisotropy seems to be a rather promising sig-
nature of collective effects in ultrarelativistic heavy-ion
reactions. It could be measured experimentally, and also
in event generators including rescattering, and compared
to the predictions of hydrodynamics.
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where S= (S ) is the average value of S and T is the 3 X 3
covariance matrix defined by

T,, =(SS, ) SS, . — (A3)

S,=Pa,
S3 =0,

(A4)

where 6 =M(pr ), and a=((p„)—(p& ) )/((p„)
+ (p ) ) clearly represents the anisotropy in the emission

probability. Let us now define dimensionless, scaled
quantities X, X, and B by S=8X, S=6X, and
T=M 'PB. X depends only on a and 8; as to B, it is
independent of M since both T and 8 are proportional to
M. Using Eq. (3.2), one can rewrite Eq. (A2) as

dP 2

dad8d@
M 6 rX rX
2

xe'=x —x (A5)

For large M, the exponential is strongly peaked at
@=6('XB 'X)/('XB 'X). Therefore, the factor 6 in
front of the exponential can be dropped, and the integral
over @ is Gaussian:

dp a M ('XB 'X)
CC expda d 8 Q&XB—~X 2

Since the emission is uncorrelated, T," is proportional to
the number of particles, M. The coordinate axes can al-
ways be chosen in such a way that (p„p~)=0 and
(p~ ) ) (p ) (for spherical nuclei, x is the direction of im-

pact parameter). Then S can be expressed as

S, =D,

APPENDIX A: FLUCTUATIONS WITH AN

ARBITRARY UNCORRELATED DISTRIBUTION

Let us assume that the particles are emitted according
to an uncorrelated distribution. Then the central limit

The exponent in Eq. (A6) is maximal for X=X. There-
fore, the probability distribution is peaked at X=X and
we may write X=X+A, where A is a small quantity. Ex-
panding the exponent in Eq. (A6) to second order in A,
one gets
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M ('xe-'A)' —('re-'X)('Ae-'A)
dadO 2

xaexp 'xe-'r
1 dP Ma~ expa da 5

(A12)

dP M (a cos28 —a)~ a exp
B22—2Bisa+ Bi ia

(a sin28)8„ (AS)

In order to integrate this expression over 8, approxima-
tions must be made.

First, consider the case when a &(1. Then we assume
that the covariance matrix T has approximately the same
form as for an isotropic distribution. Note that this is
not true, in general, since even an anisotropic emission
probability can give rise to a=O (imagine, for instance,
that the particle momenta are directed with probability —,

along the x axis and with probability —, along the y axis).
However, this is of little relevance to our problem since
a=0 for central collisions only, and the emission proba-
bility is isotropic for central collisions. For an isotropic
distribution, one easily verifies that T is diagonal using
Eq. (A3). Introducing the dimensionless parameter

5= &p,'&/& p,'&', (A9)

the elements of the scaled covariance matrix e are given
by

B„=5—1,
8 =e =5/2 . (A 10)

Inserting these values in Eq. (A7) and keeping only terms
of order a, one gets

~ a exp — (a —2aa cos28}dP M 2

dadO
(A 1 1)

If the emission probability is strictly isotropic (a=O},
then dP/da d 8 is independent of the angle 8 as expected,
and the probability distribution for a is simply

(A7}

We have dropped the factor 1/+'XB 'X in front of the
exponential since X=X. Note that, since 8 is a posi-
tive symmetric matrix, the numerator in Eq. (A7) is nega-
tive for AAO, which proves that the exponential is indeed
maximal for A=O. Equation (A7) is quite general. Its
right-hand side depends on a and 8 through
A=(0, acos28 —a, asin28), and it must be integrated
over the angle 8 in order to get the probability distribu-
tion for a. Before doing this, we make a few

simplifications. For spherical nuclei, we know that the
colliding system is symmetric with respect to the reaction
plane. We therefore expect the emission probability to be
symmetric under p„~—p„.This implies

e„=&s,s, &/M &p,'&'=2&p„'p,+p„p,'&/& p,'&'=0

and similarly, 8@3=0. After some algebra, Eq. (A7) then
becomes

This shows that the corrected probability distribution
defined by Eq. (3.3} is always a Gaussian peaked at a =0
if the emission probability is isotropic. It depends on the

pr distribution only through its width +5/2M, which in-

volves the parameter 5 defined by Eq. (A9). If a+0 (but
still a ((1),integration of Eq. (Al 1) over 8 yields

1 dP Ma 2Maa~ expada 5 5
(A13)

where Io is the modified Bessel function of order 0. With
the Gaussian parametrization of the momentum distribu-
tion used in Sec. III 8, we have checked numerically that
Eq. (A13) with 5=2 (which is the appropriate value for
an isotropic Gaussian distribution) fits quite well the
curves displayed in Fig. 2, which are obtained from the
exact result Eq. (3.13). Finally, let us derive the condi-
tion under which the corrected distribution defined by
Eq. (3.3) has a maximum at aAO. This is done most sim-

ply by expanding Eq. (Al 1) to order a2 and then integrat-
ing over 8, which gives the condition

a& &5/M (A14)

in agreement with Eq. (3.14) for a Gaussian inomentum
distribution. This means that the anisotropy in the emis-
sion law, a, results in a peak of the corrected probability
distribution only if it is at least as the finite multiplicity
fluctuations for a, which are of order v'5/M according
to Eq. (A12). Note that if a))&5/M, the probability
law of a, Eq. (A13), is simply a Gaussian peaked at a =a:

1 dP M(a —a)~ expa da 5
(A15)

5,= &p4&/&py'&',

5,=&p„'p,'&/&p„'&&p,'& .

(A17)

Then the matrix elements of e can be expressed as a
function of a and the 5;, and Eq. (A16) becomes

Let us now study the case of a more strongly anisotrop-
ic distribution, where a is of order unity. Since M ))1,
this implies a &)1/&M, which means that anisotropy in
the emission probability is much larger than statistical
fluctuations. Then the integral over 8 in Eq. (A7) can be
done using the saddle-point method (the matrix elements
of e are of order unity}, which gives

1 dP M (a —a)~ expa da 2 Bz2 —2eiza+B»a

which is a Gaussian centered at a=a, as expected. Let
us introduce three dimensionless parameters 5&, 52, and
53.

5, = & p„'&/&p„'&',
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1 dP ~ expa da
2M a —a

5, +52 253

2

(A18)

For a weakly anisotropic distribution (a «1),
8, =52 —-35/2, 53 =f1/2, and one recovers Eq. (A15). For
the Gaussian parametrization considered in Sec. IIIB,
5, =52= 3, 53= 1, and one recovers Eq. (3.12).

In summary, the results we have obtained allow to cal-
culate the probability distribution of a in any case pro-
vided M ))1. If a « 1, Eq. (A13)~ives the result, while
Eq. (A18}must be used if a))1/i/M. If both conditions
hold, that is, if I/&M «a«1, both Eqs. (A18) and
(A13) reduce to Eq. (A15).

S"" '= fp"p "p p p'dp(p) .

Lorentz invariance allows one to write

(87)

S" I' '= A 'u "u u ~u u '
—B'[u "u "u~g '+permutations (10 terms)]

+C'[u "g"I'g '+permutations (15 terms)] .

(88)

Higher-order moments can be calculated in a similar
way. We now consider the fifth-order moments, which
are required to calculate the parameter 5 defined in Eq.
(A9). We define

APPENDIX B: MOMENTS
OF THE MOMENTUM DISTRIBUTION

S" ~ = A u "u "u ~ C(g ""u~—+g '~u "+g»u ), (83)

where A and C are Lorentz scalars. Now, contraction of
any two indices in Eqs. (4.4) and (83) yields immediately,
using Eq. (Bl),

S1",=m nu"=(A —6C)u", (84)

which provides a relation between the two unknown
coefficients A and C in Eq. (83). Thus, only one
coefFicient of S" f' must be calculated in order to deter-
mine the whole tensor. It is clear from Eqs. (81) and
(4.4) that S /nu is the average value of E in the fiuid,
where E is the energy of a particle. In the rest frame of
the fiuidthis , becomes, using Eq. (83),

S~= ((E2))n = A —3C, (85)

where the double angular brackets denote average values
measured in the rest frame of the fluid. Thus, ((E )) can
be expressed as a function of thermodynamic quantities
only. Equations (84) and (85) give

A =(2((E )) —m )n,
«E'» —m'C= n.

3

The moments of the momentum distribution Eq. (4.2)
can be simply related to hydrodynamic quantities.
Indeed, the first moment of the distribution is simply the
particle number current:

fp"dp(p)=nu", (Bl)

where n is the particle number density measured in the
rest frame of the Quid. The second moment is the famil-
iar energy-momentum tensor

fp "p"de(p ) = T""=wu "u" Pg"", — (82)

where P is the pressure, w =a+P is the enthalpy density,
and g""=diag(1, —1, —1, —1) is the metric tensor.

Let us now calculate the third-order moment of the
distribution S" ~ defined by Eq. (4.4). Since u" is the only
four-vector at our disposal, Lorentz invariance ensures
that S" f' is of the form

Contracting over two indices in Eqs. (87) and (88) yields,
using Eq. (4.4),

S""f' =m S" f'

=( A' —10B')u "u "u1'

—(B'—8C')(g""ui'+g "1'u "+g»u") . (89)

Using Eqs. (83) and (86), one gets two relations between
A', B', and C':

A' —10B'=m (2((E )) —m )n,
B' —8C' =m ( ((E )) —m )n /3 .

(8 lo)

A third equation is obtained by writing Eq. (88) in the
rest frame of the Quid:

A' —10B'+15C'=n((E )) . (811)

((E4)) 360$(7) T4
g(3 )

(813)

Let us now calculate the parameter 5 defined in Eq.
(A9) for a fiuid in uniform motion along the x axis, with
four-velocity u "—=(+I+u, u, 0,0). The y —+ —y symme-
try allows one to write

&p,') = &p.')+ &p,'&+2&p„'p,'&

—(S11110+S22220+ 2S 11220)/( 0) (814)

Using Eqs. (88) and (812), this becomes, for massless par-
ticles,

=(10 +8
15

(815)

Note that, for a fluid at rest, the distribution is isotropic

Equations (810) and (811)can be solved, which gives the
following expressions for A', 8', and C':

A'=(16((E )) —16m ((E ))+3m4}n/3,

B ' = ( 8 ((E )) —1 1 m ((E )) +3m )n /15, (812)

C'=(((E )) —2m ((E ))+m )n/15 .

Once again, only one new coefficien ((E )) must be cal-
culated in order to determine the whole tensor. For
massless bosons, direct integration over the particle dis-
tribution yields



46 ANISOTROPY AS A SIGNATURE OF TRANSVERSE. . . 245

and one gets directly (pT) =( sin 8)((E )) =
—,', ((E )),

in agreement with Eq. (B15). 5 can now be calculated for
massless bosons using Eqs. (4.13), (B15),and (B13):

3g(7)g(3) 10tt +8u +1
g(5) (3u + 1)

It is minimal for u =0 and maximal for u =
—,
' so that, for

any value of u,

3.38&5&4.06 (B17)

for massless bosons. For massless fermions, these bounds
must be multiplied by —,",. Since Eq. (B17) is valid for all

values of the fluid velocity, it can be used to estimate the
finite multiplicity fluctuations in a hydrodynamic model.
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