Consequences of a neutrino magnetic moment in inelastic neutrino reactions

L. M. Sehgal

Institut für Theoretische Physik (E), Rheinisch-Westfälische Technische Hochschule, Aachen, Germany

A. Weber

I. Physikalisches Institut, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany

(Received 21 April 1992)

For any inelastic neutrino interaction $v+A \rightarrow v+X$, the presence of a neutrino magnetic moment adds to the normal cross section an amount that is calculable in terms of the virtual photon process $\gamma^*+A\rightarrow X$. In particular, there is a correction to the neutrino forward-scattering theorem expressible in terms of the neutrino magnetic moment and the photoproduction cross section $\gamma + A \rightarrow X$. There is an effect on the neutral current to charged current ratio at high energies. Effects also occur in the interaction of low-energy neutrinos with atoms; this is illustrated for the coherent process ν +atom $\rightarrow \nu$ +atom+ γ .

PACS number(s): 13.15.—f, 13.40.Fn, 14.60.Gh, 25.30.Pt

 22.2

It has been noted that an anomalously large neutrino magnetic moment [I] can have an impact on the elastic neutrino-electron scattering process $v+e \rightarrow v+e$ [2]. In particular, the differential cross section in the kinetic energy of the recoil electron obtains an additive correction

$$
\frac{d\sigma}{dT_e} = \left[\frac{d\sigma}{dT_e}\right]_{\text{normal}} + \pi r_e^2 \left[\frac{\mu_v}{\mu_B}\right]^2 \left[\frac{1}{T_e} - \frac{1}{E}\right], \quad (1)
$$

 ϵ

where $r_e = \alpha/m_e$, $\mu_v =$ neutrino magnetic moment, where $\mu_{\ell} = \alpha/m_e$, μ_{ν} heating inagnetic moment
 $\mu_B = e/(2m_e)$ is the Bohr magneton, and E is the incident neutrino energy.

The purpose of this Brief Report is to present a general result that gives the corresponding modification of the neutrino cross section for any inelastic process $v+A\rightarrow v+X$. Denoting by k, k', and p the momenta of the initial neutrino, final neutrino, and the target particle The initial neutrino, final neutrino, and the target particle

A, and introducing the variables $q = k - k'$, $Q^2 = -q^2$, $y = p \cdot q / p \cdot k = v / E$, and $x = Q^2 / 2p \cdot q$, the correction due to a neutrino magnetic moment is

$$
\left(\frac{d\sigma}{dQ^2dv}\right)_{v+A\to v+X}
$$
\n
$$
=\left(\frac{d\sigma}{dQ^2dv}\right)_{\text{normal}}
$$
\n
$$
+\frac{\mu_v^2}{4\pi^2}\frac{1}{\sqrt{v^2+Q^2}}\left\{\left[1-y-\frac{Q^2}{4E_v^2}\right]\sigma_T\right.\n+(1-\frac{1}{2}y)^2\sigma_L\right\}.
$$
\n(2)

Here σ_T and σ_L denote the transverse and longitudin cross sections for the virtual photon process $\gamma^* + A \rightarrow X$, which are measurable in the corresponding electroproduction reaction $e + A \rightarrow e + X$:

y large neutrino
\nct on the elastic
\ne
$$
\rightarrow v+e
$$
 [2]. In
\nthe kinetic en-
\nitive correction
\n
$$
\frac{1}{T_e} - \frac{1}{E} \bigg|, \quad (1)
$$
\n
$$
\frac{1}{T_e} - \frac{1}{E} \bigg|, \quad (2)
$$
\n
$$
\left[1 - y + \frac{1}{2}y^2 + \frac{Q^2}{4E^2} \right] \sigma_T
$$
\n
$$
= \frac{\alpha}{\pi} \frac{1}{Q^2} \frac{1}{\sqrt{v^2 + Q^2}} \left[\left[1 - y + \frac{1}{2}y^2 + \frac{Q^2}{4E^2} \right] \sigma_T \right]. \quad (3)
$$

The derivation of the result (2) is as follows. The squared matrix element that describes the reaction $v+A \rightarrow v+X$, induced by a neutrino magnetic moment μ_v , can be written as

$$
|\overline{M}|^2 = \frac{e^2\mu_v^2}{Q^4}N^{\mu\nu}J_{\mu\nu} ,
$$

where

$$
N^{\mu\nu} = \frac{1}{2} \sum_{\text{spins}} \left[\bar{u}(k') \sigma^{\mu \alpha} q_{\alpha} u(k) \right] \left[\bar{u}(k) \sigma^{\nu \beta} q_{\beta} u(k') \right]
$$

$$
= \frac{1}{2} \text{Tr} \left[k' \sigma^{\mu \alpha} k \sigma^{\nu \beta} \right] q_{\alpha} q_{\beta}
$$

$$
= 2k \cdot k' (k + k')_{\mu} (k + k')_{\nu}
$$

and

$$
J_{\mu\nu} = \frac{1}{2S_A + 1} \sum_{\text{spin } A} \langle A | J_{\mu}^{\text{em}} | X \rangle \langle X | J_{\nu}^{\text{em}} | A \rangle . \tag{4}
$$

The tensor $J_{\mu\nu}$ is identical to the tensor which describes the electroproduction process $e + A \rightarrow e + X$. Writing $J_{\mu\nu}$ in terms of σ_T and σ_L in the usual way [3] and contracting with the neutrino tensor $N^{\mu\nu}$, we obtain the result (2).

The magnetic-moment-induced term in Eq. (2) has the feature that it does not vanish in the limit $Q^2=0$. This has implications for neutrino scattering in the forward direction. The normal neutrino cross section for forward scattering is given by Adler's PCAC (partially conserved

46

46 BRIEF REPORTS 2253

axial-vector current) theorem [4]:

$$
\left[\frac{d\sigma}{dQ^2dv}\right]_{\text{normal, }Q^2=0} = \frac{G^2}{2\pi^2} \frac{1}{\nu} (1-\gamma) f_{\pi^0}^2 \sigma_{\pi^0}(v) . \tag{5a}
$$

Here $\sigma_{n0}(\nu)$ is the cross section for $\pi^{0} + A \rightarrow X$ at pion energy $E_{\pi} = v$, and $f_{\pi^0} = 93$ MeV. This theorem applies to semileptonic processes, i.e., when A and X are hadronic systems. In cases where the process $v + A \rightarrow v + X$ is governed by the purely leptonic weak interaction, the equivalent result is formally obtained [5,6] by replacing the π^0 by a (hypothetical) axion and f_{π^0} by v [the axionlepton interaction being defined by $(m_1/v) a^0 \overline{I} \gamma_5 I$:

$$
\left[\frac{d\sigma}{dQ^2dv}\right]_{\text{normal, }Q^2=0} = \frac{G^2}{2\pi^2} \frac{1}{\nu} (1-y)v^2 \sigma_{a^{0}}(\nu) . \tag{5b}
$$

Our general result (2) states that, in the presence of a neutrino magnetic moment, the forward-scattering theorem [in the form (Sa) or (5b)] receives a correction given by

$$
\left[\frac{d\sigma}{dQ^2d\nu}\right]_{\text{magnetic, }Q^2=0} = \frac{\mu_v^2}{4\pi^2} \frac{1}{\nu} (1-y)\sigma_\gamma(\nu) ,\qquad (6)
$$

 $\sigma_{\gamma}(v)$ being the cross section of the photoproduction process $\gamma + A \rightarrow X$ at energy $E_{\gamma} = v$.

In inclusive neutrino-nucleon scattering $v+N\rightarrow v$ + anything at high energy, the normal and magneticmoment-induced cross sections are [7]

$$
\left(\frac{d\sigma}{dx\,dy}\right)_{\text{normal}} = \frac{G^2ME}{\pi} [g_L^2 \{q(x) + \overline{q}(1-y)^2\} + g_R^2 \{\overline{q}(x) + q(x)(1-y)^2\}] ,
$$

$$
+ g_R^2 \{\overline{q}(x) + q(x)(1-y)^2\}],
$$

$$
\left(\frac{d\sigma}{dx\,dy}\right)_{\text{magnetic}} = \frac{\mu_v^2 \alpha}{Q^2} ME (1-y) \frac{\xi}{\xi} [q(x) + \overline{q}(x)] . \tag{7}
$$

Thus the correction relative to the norma1 neutrino cross section is of order $\mu_v^2 \alpha \pi / G^2 Q^2$. In the limit $Q^2 \rightarrow 0$, the ratio of the magnetic and normal terms is determined by section is of order $\mu_r \mu \pi / \sigma \gamma$. In the limit $Q \rightarrow 0$, the
ratio of the magnetic and normal terms is determined by
Eqs. (5a) and (6) to be $(\mu_r^2/G^2 f_{\pi^0}^2)(\sigma_{\gamma N}/\sigma_{\pi N})$. The correction to the neutral current cross section given in Eq. (7}implies that the neutral current to charged current ratios R_v and $R_{\overline{v}}$ receive corrections proportional to μ_v^2 . A cursory examination of the semileptonic neutrino data suggests an upper limit for the magnetic moment of v_u of about $10^{-8}\mu_B$. This is weaker than the limit derived from $v_{\mu} + e \rightarrow v_{\mu} + e$ [8].

Reactions that are especially sensitive to the effects of a neutrino magnetic moment are low-energy neutrino interactions with atomic electrons. These include the neutrino-induced photoeffect $(v+A \rightarrow v+e^- + A^+)$, coherent radiative scattering $(\nu + A \rightarrow \nu + A + \gamma)$, and incoherent Compton scattering ($v+A \rightarrow v+A^*+\gamma$). In all of these cases, the presence of a neutrino magnetic moment leads to an enhancement of the cross section which can be calculated using Eq. (2). As an example, we consider the coherent radiative process

$$
\nu + A \to \nu + A + \gamma \tag{8}
$$

where the atom A recoils without excitation or ionization. This reaction is a significant energy-loss mechanism for neutrinos whose wavelength is comparable to atomic dimensions $(E \sim R_{at}^{-1})$. The normal weak cross section for the process involves the vector coupling constant C_V of the neutrinos with electrons, which has the value or the neutrinos with electrons, which has the value
 $\frac{1}{2}+2\sin^2\theta_w$ for v_e and $-\frac{1}{2}+2\sin^2\theta_w$ for v_μ or v_τ . The differential cross section (neglecting the longitudinal term) is [6]

$$
\begin{aligned}\n\left[\frac{d\sigma(v+A\to v+A+\gamma)}{dQ^2dv} \right]_{\text{normal}} \\
&= \frac{G^2}{2\pi^2} \frac{Q^2}{\sqrt{Q^2+v^2}} \left\{ 1-y + \frac{1}{2}y^2 + \frac{Q^2}{4E^2} \right\} \\
&\times \frac{C_V^2}{4\pi\alpha} \sigma(\gamma^*A\to \gamma A) ,\n\end{aligned} \tag{9a}
$$

where $\sigma(\gamma^* A \rightarrow \gamma A)$ is the Rayleigh scattering cross section for a transverse virtual photon of mass q^2 . If the neutrino possesses a magnetic moment, there is a correction to the above result given by

$$
\left[\frac{d\sigma(v+A\to v+A+\gamma)}{dQ^2dv}\right]_{\text{magnetic}}
$$

=\frac{\mu_v^2}{4\pi^2} \frac{1}{\sqrt{Q^2+v^2}} \left\{1-y-\frac{Q^2}{4E^2}\right\} \sigma(\gamma^*A\to\gamma A) . \tag{9b}

For a quantitative comparison, we have integrated the cross sections (9a) and (9b) over the variables Q^2 and v. The Rayleigh cross section $\gamma^* A \rightarrow \gamma A$ was calculated using a realistic atomic form factor, with allowance for the virtuality of the initial photon [6]. The resulting cross

$$
\nu + \mathrm{Fe} \rightarrow \nu + \mathrm{Fe} + \gamma
$$

FIG. 1. Cross section of $v_e + Fe \rightarrow v_e + Fe + \gamma$ in units of $\sigma(v_e + e \rightarrow v_e + e)$.

section for radiative v_e scattering off Fe atoms is shown in Fig. 1. We observe that the contribution from a neutrino magnetic moment $\mu_{ve} = 10^{-12} \mu_B$ exceeds the normal cross section for $E_v \lesssim 10$ keV.

In the case of v_{μ} or v_{τ} scattering, the weak vector cou-In the case of v_{μ} or v_{τ} scattering, the weak vector coupling $C_V = -\frac{1}{2} + 2 \sin^2 \Theta_w = -0.04$ is strongly suppressed compared to that of v_e . Thus the contribution from a neutrino magnetic moment has an enhanced importance in the coherent scattering of v_u and v_τ from atomic electrons.

For high-energy neutrinos ($E_v \gg 100$ keV) the dom-

- [1] M. B. Voloshin, M. I. Vysotskii, and L. B. Okun, Zh. Eksp. Teor. Fiz. 91, 754 (1986) [Sov. Phys. JETP 64, 446 (1986)].
- [2] A. V. Kyuldjien, Nucl. Phys. B243, 387 (1984); A. O. Barut, Z. Z. Aydin, and I. H. Duru, Phys. Rev. D 26, 1794 (1982).
- [3] See, e.g., F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics (Wiley, New York, 1984).
- [4] S. L. Adler, Phys. Rev. 135, B963 (1964).
- [5] L. M. Sehgal, Phys. Rev. D 38, 2750 (1988).

inant contribution to coherent radiative scattering is from scattering on the nucleus, $v+\mathcal{N}\rightarrow v+\mathcal{N}+\gamma$. The standard model calculation of this process was given in Ref. [9]. The magnetic-moment correction may be obtained from Eq. (9b) by inserting the Compton cross section $\sigma(\gamma^*\mathcal{N}\rightarrow\gamma\mathcal{N})$. In the intermediate energy domain $E_v \sim 100$ keV, there will be interference of nuclear scattering with scattering from the electron cloud. (For the case of *elastic* neutrino scattering from atoms, such interference effects were studied in Ref. [10].)

- [6] A. Weber and L. M. Sehgal, Nucl. Phys. B359, 262 (1991).
- [7] Here g_L^2 and g_R^2 are neutral current couplings given by Here g_L^2 and g_R^2 are neutral current couplings given by $g_L^2 = \frac{1}{2} - \sin^2{\Theta_w} + \frac{5}{9} \sin^4{\Theta_w}$, $g_R^2 = \frac{5}{9} \sin^4{\Theta_w}$, and g, \overline{q} are related to quark distributions by $q(x)=x[u(x)+d(x)]$, $\overline{q}(x) = x [\overline{u}(x) + \overline{d}(x)].$ [For \overline{v} scattering, interchange g_L and g_R in Eq. (7).]
- [8] See, e.g., D. A. Krakauer et al., Phys. Lett. B 252, 177 (1990).
- [9] D. Rein and L. M. Sehgal, Phys. Lett. 104B, 394 (1981).
- [10]L. M. Sehgal and M. Wanninger, Phys. Lett. B 178, 313 (1986).