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Method of effective charges and Brodsky-Lepage-Mackenzie criterion
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A renormalization-scheme-invariant method to improve the QCD perturbative series when the
Brodsky-Lepage-Mackenzie (BLM) criterion indicates large perturbative corrections is presented. The
method, which is a variant of the effective-charge scheme, is specific to QCD and relies on a new

renormalization-group equation describing the response of a physical quantity to a change in the BLM
next-to-leading-order coefficient r, . Two alternative methods are also discussed: one of them consists in

an improvement of the perturbative series for the effective charge P function, which also yields, as a by-

product, an improvement of the series for the perturbative infrared fixed point of QCD at f=33/2
flavors; the other represents an improvement of the perturbative series specific to the BLM choice of re-
normalization point.

PACS number(s): 12.38.Cy, 11.15.8t, 12.38.Bx

I. INTRODUCI'ION

2

r, =r', —Pc ln —d f
p

(1.2}

where Pc, the one-loop P-function coefficient, is linear in

f: Pc=gcc+13cif, and ri and d, are f independent.
BLM then propose to fix p by the condition

L =ln —d* =0
1

p
(1.3)

so that r~ =r] ~ They further suggest that the criterion
for convergence of perturbation theory in the considered
RS be that r f is "small" [it has been pointed out [4] that
r

&
is RS dependent, so that a particular definition of the

coupling must also be given; in practice, BLM suggest to
use the modified minimal subtraction (MS) scheme [5]]. I
have already commented on this criterion in Ref. [6], and
argued that large ~r',

~
does not necessarily prevent the

applicability of "renormalization-group- (RG-)improved"

The ambiguities arising from the arbitrariness [1] in
the choice of renormalization scheme (RS) are particular-
ly annoying in perturbative QCD, where the coupling
constant is usually not very small. They manifest them-
selves first at next-to-leading order as the "choice of re-
normalization point. " Some time ago, Brodsky, Lepage,
and Mackenzie (BLM) proposed [2] an interesting way to
fix this scale ambiguity, by making use of the specific
flavor dependence induced by fermion loops [3]. Their
procedure can be summarized as follows. Consider the
expansion of a physical quantity R (Q) (depending upon
an external scale Q) in powers of the coupling a =a(p) of
a given RS (p is the renormalization point}:

R =a(1+ria+rza +r3a +r4a + . . ) .

Restricting the discussion to schemes where r, is linear in

f (the number of fermion flavors), one can write

perturbation theory, as defined in Ref. [7], for the usually
considered number of flavors (f ~5). The argument of
Ref. [6] is based on the relation

Pz I3z—
(1.4)

Q =p(R)= —poR —p R —p R +dR —
2 3

— 4

Qz 1 2 (1.6)

Equation (1.6) follows from the RG invariance of R, and
gives an RS-invariant differential equation which controls
the Q dependence of R. Consequently, Pz is an RS-
invariant [8] (but process-dependent) quantity, which de-
pends only upon the definition of R. I stressed in Ref. [7]
that "RG-improved" perturbative QCD could be applied
whenever the expansion in Eq. (1.6) is "well behaved" (in

the usual sense of perturbation theory), in particular if
the three-loop contribution PzR is small compared to
the first two terms. Clearly, this condition depends on
the magnitude of Pz only for the considered number of
flavors f. There is no a priori reason that a large value of
~Pz ~, following from Eq. (1.4) for large ~r,

*
~, implies a

correspondingly large value of ~Pz~ for fWf '. This gen-

eral argument however also indicates that some problem
might arise for large ~r i ~

with the perturbative expansion
of P(R) at f= f', as well as away from f=f* if one as-
sumes that pz is weakly f dependent, i.e., pz(f) =pz. The
aim of the present paper (which is a revised and expanded

where the starred quantities refer to values of P„Pz, and

Pz for the number of flavors f=f*=—Pco/Pc, where Pc
vanishes (f ' =3312 in QCD); Pi and Pz are the two- and
three-loop P-function coefficients,

p z
=P(a) = —f3ca —P,a 13za +—, (1.5}

dQ

djM

and Pz is the three-loop effective charge [7] P-function
coeScient defined by
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version of Ref. [9]) is to supply a method to deal precisely
with these cases. Actually, I found three diferent ways
to improve perturbation theory for large ~pz ~. The first

method (Sec. VI A) represents an alternative implementa-
tion of the effective charge idea of Ref. [7]. It is based on
a new RG equation (Secs. II, IV, and V), which makes
some specific use of the general Stuckelberg-Peterman
RG (dealing with invariance under more general trans-
formations than change of renormalization point}. In the
course of this investigation, some interesting properties
related to the f dependence of the perturbative
coefficients Ir, ] were discovered (Sec. III), including a
new set of "universal" (i.e., process-independent) RS-
invariant quantities [related to the critical exponent for
the well-known infrared (IR) fixed point at f=f*]. The
second method (Sec. VI 8) leads to an improvement of
the perturbative series specific to the BLM choice of JM

[Eq. (1.3)]. The third alternative yields an improved per-
turbation theory for the effective p function itself, as well
as for the perturbative series of the IR fixed point, and is
described in Sec. VII. This last method is in fact simpler,
and to some extent more satisfactory, than the first two
above, so the interested reader may eventually want to
skip directly to this section. Concluding remarks are
presented in Sec. VIII. Some results on the perturbative
expansion of the IR fixed point at f~f ' are given in the
Appendix.

II. A NEW RKNORMALIZATION-GROUP EQUATION

The first improvement method is based on a new RG
equation for R, motivated by the following observation
[6]. Equation (1.4) shows explicitly that, although r,' is
RS dependent [4] (through the P2/Pi term), it does con-
tain RS-invariant information (through the p2 /pi contri-
bution). In particular, the difference r', r', between the-
next-to-leading-order BLM coeIcients associated with
two physical quantities R and R is RS invariant [2]. It is
then natural to consider the change dR in R induced by a
small change dr; = —d(P2/P;) in r,' (with all RS-
dependent parameters kept fixed); note that dr', is RS in-

variant. To this change is associated a corresponding
"e ffe cti ve" p function B(R):

R =B(R)
dC

=b,R'+b, R'+b, R4+b, R'+b, R'+

to leading order dR /dc is defined as a derivative at fixed
L [Eq. (1.3}],and is thus a priori distinct from the p(R)
function of Eq. (1.6). Similarly, da/dc does not corre-
spond to a change of renormalization point, and is rather
connected to the more general Stuckelberg-Peterman RG
transformations.

To see why varying R at fixed L is a RS-invariant pro-
cedure, it is instructive to start from the solutions of the
RG equations (1.5) and (1.6):

Poin = f
2

Poln = f
p(x)

p(x)

(2.3)

(2.4)

where the first equality follows from the requirement that
the power series Eq. (1.1) be a solution of Eq. (2.5). It is
now useful to introduce for the RS-invariant quantity
poing /A (and its RS-dependent counterpart points, /A )

the analogue of the BLM decomposition of Eq. (1.2},
namely, one can write

Poin =Poln —c
Q2 Q2

(2.6)

and

2 2

(2.7)

where A' (A') are f-independent scales, which depend
only on the definition R (a}. One deduces

~2 2 ~2 2

+C C

where A (A} are scales, which play the role of boundary
conditions, and depend only on the definition of R (a)
[for instance, if a =a Ms, then A =

AMs (where MS
denotes modified minimal subtraction}]. Taking the
difFerence of Eqs. (2.3) and (2.4}, one gets the RG-
improved [7] relation for R =R (Q/p, ,a ):

g' p,
2 ii Po ~ Po

r, =P—o ln —ln = dx — dx
A' A' P(x) P(x)

'

(2.5}

(2.1)

where I defined c = —p2/p;. B(R) is expected to be an
RS-invariant (but process-dependent) object. A similar
quantity can be defined for the RS-dependent coupling a:

da =B(a)=boa +b, a +b2a +b3a +b4a +

(2.2)

so that

p4'2
ln =0*

2 1

2= —
Po ln —d; +rf

JM

(2.8)

(2.9)

where c=—pz/pi, and describes the change in a in-
duced by a change in the (RS-dependent) parameter c.
The precise definition of the derivative in Eqs. (2.1) and
(2.2) will be given in Sec. IV. I only note here that at next

2 2

L =ln —ln
p42 +42 (2.10)

Equation (2.10) shows that lng /A' is the "RS-
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invariant invariant part" of L, just as c is the RS-
invariant part of r

&
. Therefore, a variation of R with c at

fixed L (and fixed RS parameters) is simply a variation of
R at fixed lng /A, clearly a RS-invariant prescription.
To complete the definition of dR/dc and compute the
[b; I in Eq. (2.1}, it is necessary to exhibit the explicit c
dependence of the [r, ] which requires looking at their f
dependence around f=f '.

p3 =p3 +p3,a+p32a +p33a +p34a

and using the relation [7]

(3.10)

f~f*). The condition that the singular O(1/po) terms
on the right-hand side of Eq. (3.5) cancel at f=f ' then
gives Eq. (1.4). Similarly, putting

III. FLAVOR DEPENDENCE OF PERTURBATIVE
COEFFICIENTS AND A SET OF RS INVARIANTS

To emphasize the structure near f=f ', it is con-
venient to introduce the parameter a= —PolP1 (which
vanishes at f=f' ), and consider the r s as well as the

p s and the p s as polynomials in a. Since
a= —(poi/pi*)(f f ') is—linear in f, the a dependence
just reflects the f dependence of the various coefficients.
Equation (1.2) reads

SP1, 3» 2» I P P3-
r3 —r 1

+ r1 + ri +
2 Po 0 2 Po

I get
r3 I 3 +f3$CK+f 32(X +1 33(X

2 4 3

with

(3.11)

(3.12)

r, =r
1 +(P;L )a .

I further write

p, =pi+p;, a

(3.1)

(3.2)

2 p41
(3.13)

p21 p21
(p4L )

p4

and restrict the discussion to schemes where the r s are
polynomials in f and, hence, in a. Then

3P22 2P22 4 1 P32 P32

pi 2 p1
(3.14)

P2 P2 +P21 +P22 +P23

P2=P2'+P2'ia+Pz2a'+P23a'
(3.3)

3 22
—2»'2

(P*L )'— (P'L )
1 1

Pi P2 P2-
r2=ri+ r, +

0 0

from which I obtain

(3.5}

with

Pz =P'z +P'2) cx+PzzQ (3.6)

pir 1'+p2 »—
r2 = (Pi'L)+r', + lim-

a~0 0

(In general, O(f ) and, hence, O(a } terms may be
present [10,3] in p2 and p2, although they are absent in
p2Ms. ) Using the formula [7]

BR P(R)
Ba p(a)

one gets relations [7,11,12] between the r s, the p s, and
the p s. The first of these is

P23 2P23 4 1 P33 P33

p4 2 p4
(3.15)

(3.16)

where I used the condition that the singular O(1/po)
terms in Eq. (3.11) cancel at f =f', which gives [with
the help of Eq. (1.4)] the relation

Pi P3 P2'=Pi P3 —P2'—
Equation (3.17) shows that pip3 —

p2 is a "universal" RS
invariant [13]at f=f".

As the last example, I consider r~, which presents some
new features. One has [7,14]

13 Pl 6P2 3P2+ 3 P1r4=r1+ r1+ + r1
3 p 0 Po

(P*L)+r'—
1 1 1 g, (3.7}

2P3 —P3 3 Pi P2 P-
Po 2 Po Po

Pl 1 ~ P22 P22
21 1 p„, I (3.8}

1» P2 5»—4P2-
po po

1 P4
—

4

6 Po Po 3 Po

(3.18)

r* =( 1'L )— (3.9)

In Eq. (3.7), I used the regularity of r2 as a~O (i.e.,

The new feature here is the presence of the O(l/p02) dou-

ble poles. For simplicity, I only give the expression for
r4 =r4(a=O). Some algebra yields
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2P3 —P312P2 —6P2 —6P1,

1

—6P,*,+3P;, 3 Pii P31 P31 Pl 1

p' p'

P4i+ ,'P32— P„P2 P41+ ,P32-

3 pit PO PA

p
gl

P4
1 22

p4

3 pgr

1 Pl 1 P31 P31

6 Pl Pl
(3.19)

(P21 P21) Pl 1 P2 P2 g, ~4 13 11 ~3+3
PO

Pz I P21 ~ 1 P21 P21 5P21 4P21

should be a "universal" RS invariant, such that
I3(p;,p;k)=I3(p;, p;k) where

Pz P3
I2 —=— +

PA PO
(3.21)

is also a universal RS invariant [see Eq. (3.17}]. The re-
quirement that the r, 's be regular at f=f ' thus gen-

erates a set of invariants [I„}(n ~ 2), where I„ is a po-
lynomical of degree n in Pz/P; (whose coefficients de-

pend on the a =0 derivatives p;k ).
The existence of these invariants may be understood

from another viewpoint: one can check (see the Appen-
dix) that they are related to the expansion coefficients

[co; } in powers of a of the critical exponent

= +a)oa + co)a +co2a +co3a +

(3.22)

(well known to be a universal RS-invariant quantity},
where a ' is the nontrivial IR fixed point [15]of p(a },

P(a') =0, (3.23)

and is also perturbatively calculable as a power series in a
as a~0 (i.e., f~f*), thanks to the vanishing of pp at

f=f': a*=a+0(a ). One finds

Pl

CO2 =I2+
~o

603 =6I3—
o

Cc)p

pg 2

pal

po

PO

pgt

PO

(3.24)

where I used the conditions that the O(1/pp) double

Poles and the O(1/Pp) single Poles in Eq. (3.18) cancel at

f=f'. The cancellation of the double poles follows au-

tomatically from Eqs. (1.4} and (3.17). That of the single

poles gives a new constraint, namely, the quantity

pz 1 pli pz 1 pzi Pz

3 P; P;

1 P31 1 Pl 1 1 P4
(3.20)

I further note an interesting property of the r s at
L =0: they are polynomial in r', with a similar structure

as the one following from Eq. (3.4) [see Eqs. (3.5), (3.11},
and (3.18)], but with the p-function coefficients p, /pp,

Pz/Pp, P3/Pp, and P4/Pp rePlaced, resPectively, by

pzi+ pzza+ p23a'b=—,b=—
1 pg

& 2 PO

P31+P32 +P33 +P34
b =—

3 pk

(3.25)

and (for a =0)
P41

b41.=p=
p 4l

1 P32 P22 P2

and with the similar replacements for the p function
coefficients. This fact suggests a possible RG improve-
ment of the series for R (L =0, f=f '), useful for large
1r', 1, based upon these alternative p functions. These
coefficients turn out to be those of a function B(a)
[different from B(a)] whose definition will be clarified at
the end of Sec. VI. Starting at 4 loops, the new
coefficients appear to depend on pz Ipl (pz Ipl ), which
may cause a Problem for large Pz IP; (Pz /Pl ) (this may
not be a severe one, however, due to the high order in the
perturbation expansion where this feature appears). In
any case, these relations do suggest that the one-loop
BLM coefficient r', (as well as Pz IP14 and Pz IP;) be Put
on a different footing from the a derivatives p;k and p,'k.
In particular, they show the genuine RS-invariant infor-
mation contained in rz consists in the value of the deriva-
tive Pz; IP;, whereas Pz IP1 should be looked uPon as an
essentially one-loop quantity (related to r', ); furthermore,
they suggest a large value of r,' (Pz IP; ) does not neces-
sarily imply correspondingly large values of the P,'.k/P;
coefficients.

IV. HIGHER-ORDER COEFFICIENTS
OF THK 8(E) FUNCTION

To compute the b s in Eq. (2.1) I make the definition
of dR /dc further precise by making the natural assump-
tion that the derivatives dr,. /dc are to be taken with the a
derivatives p,'k kept fixed; i.e., one performs an f
independent variation of the p s. I show below that this
prescription ensures interesting properties of B(R); in
particular, it guarantees a smooth a —+0 limit of the b s,



2232 G. GRUNBERG

the d/dc variation being "neutral" with respect to a
dependence. Since r*, =c —c, I thus get, from Eqs. (3.1)

and (3.7)—(3.9),

dr
1 =1,

Gc

p4

pQ
2

p4
+I2, (4.7)

where I considered p3/p*, to be a function of pz /p*, [see

Eq. (3.21)],

dr 2 p,",
=2r1 — +2(P, L )a

dc P*,

and, from Eqs. (3.13)—(3.16),

dr3 ~ ~2 p1, ~ 3pz, —2pz,= —2(p1L)+3r', —5 r1—

(4.1)

d(P3/P1 ) Pz

dc P,
*

Following the same steps as above, one gets

(4.8)

since I2 is a universal RS invariant, which should be kept
fixed as c is varied, so that I used

b (a=O)=—
3 pg 3 p4

(4.9)

3 z3
—

2p23+ 3(P1L) — a (4.2)

Then Eq. (1.1) yields

dr,
2

dr2
3

dr 3 4B(R)= a+ a+ a+
dc dc dc

(4 3)

(4.4)

and

On the other hand, reexpanding Eq. (2.1) in powers of a

using Eq. (1.1), and comparing with Eq. (4.3), I obtain

b=1 b=—
0 ~ 1

1

which is again independent of c. Note that, at the
difference of b; (a=O) for i ~2, b3 (a=O) is not equal to
the value —p3, /p*, naively expected from the structure of
r3 (L =0) [see Eq. (3.25) and the remarks at the end of
Sec. III]. In Sec. V, I shall derive the full b3 for aAO, as
well as b4, by a different, easier method.

It is also straightforward to express the b s in terms of
the more familiar derivatives of p; around f =0. For in-

stance, putting

p1 p1o+p1 1f—pz pzo+ p21f +pz—zf'+ pz3f

and

bz =bzo+ bz1f +bzz f

b =—
2

P21+Pzz~+P23~'
(4.5)

one has

(4.10)

I note the following.
(i) bo and b1 are universal RS invariants, independent

of the definition of R (I shall therefore suppress the over-
bar).

(ii) The b s are independent of L, as well as of the p;
and p;» RS-dependent parameters, as expected from the
RS invariance of B(R).

(iii) More remarkably, the b s (i ~ 2) are also indepen-
dent of c=—pz/p;. This feature (which persists for
i ~4), crucial for the RG improvement for large c (see
Sec. VI), will be explained in Sec. V, and related to a
fourth observation.

(iv) The b s are indeed regular as a~O. Furthermore,
bo and b1 are independent of n, whereas b2 is a quadratic
polynomical in a (hence does not contain f terms, con-
trary to pz). Finally, let us derive b3 (a=O). From Eq.
(3.19) I get

p 1+pzzf" +p23f'"
b2o =

7

P22+ P23f — P23
21 p

' 22 p
For completeness, I also note the relations

"z "zo+"z1f+"zzf 2

with

42
r20IL=0 r1 +b1r, +b20 b20

r21l I 0
=b21

—b2,

r22IL =0 b22 b22

(4.11)

(4.12)

(4.13)

(4.14)

dr4

dc
—2r1 +3

ply

—13 r* +Pl 1

1

Pz Pz—6 +4 (P*L )+4r *
P1' P1

1

—12P21+6P2, P'
r1

p4 p4\ 2

which show in Particular that bz, and bzz and, hence, Pzz
and pz3, follow from the (easier to compute) fermionic

Part of rz, whereas bzo and, hence, Pz, , dePend essentially

on the gluonic part of r2.

V. INTEGRAL REPRESENTATIGN GF 8(R )

31 P31 Pl 1 21 P21 1 P22 Some interesting properties of B(R) can be understood
from an integral representation I now derive. I shall sim-
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d dR
dc d lng

=d =aP(R, c)= 8(R,c)+ a
dc

' BR
'

Bc
(5.1)

whereas differentiating Eq. (2.1) with respect to lng
gives

d dR dBp
d lng dc dR

(5.2)

Assuming one can interchange the double derivatives, I
deduce the equation

plify the notation in the following and drop all overbars,
so that p(R)~p(R), B(R)~B(R), c~c, etc., since no
reference will be made in this section to another effective

coupling than R itself. I start with a differential equation
for 8(R,c). Diff'erentiating both sides of Eq. (1.6) with
respect to c, I get, using Eq. (2.1),

Peterman RG, obtained by varying one by one the
higher-order coefficients of the p function. In the present
case, however, the derivative (ap/ac)(x, c) involves

changing simultaneously all higher-order coefficients of
the p function: we already know [cf. Eqs. (4.7) and (3.20)]
that p~/p1 and p4/p; must be considered to be func-

tions of pz/p;—:—c; the same statement holds for all

higher order p s, and expresses the condition that the
critical exponent co(a) be the same for any value of c. To
determine B(R,c} from Eq. (5.4), it remains to compute
ap/ac. Since c is varied at fixed a derivatives, ap/ac is

independent of a (i.e., as mentioned earlier, one performs
an f-independent variation of p), and we have

ap; , ap; , ap; , ap; ,
ac ac ac ac ac

Clearly, —aPz /ac =P1; hence,

B(R,c )+ = P(R, c ),ap ap dB
ac dR

whose solution, when PoAO, is

8(R c)=P(R,c) f dx ' +C
[p(x, c) ]

(5.3) ap, , a(p3 p1)
=p1x 1— X

ac ac

a(p5 /p1 )

c

a(p4/p1 )

ac

(5.5}

where C is an integration constant, determined below to
be equal to —1/po from the condition that 8(R,c)=R ~

for R~O. I thus get

Expanding Eq. (5.4) in powers of R, one finds the first two
terms depend only upon the leading 0(x ) contribution
to ap/ac in Eq. (5.5). I get

B(R,c)=R + R +0(R );
8(R ) =P(R ) f [p(x, c)]~ pp

(5.4)
hence, b0 = 1 as required, and also

Equation (5.4) may also be obtained from the solution Eq.
(2.3) of the standard RG equation for R, by
differentiating both sides with respect to c, taking into ac-
count Eq. (2.6). This representation for 8(R,c) is analo-
gous to the ones derived in Ref. [8] for alternative RG
functions corresponding to the "full" Stuckelberg-

I

1 p
(5.6)

which agrees with Eq. (4.4). The higher order b, 's (i & 2)
depend upon the derivatives a(P;/P1 )/ac (i ~3). One

gets, from Eqs. (5.4}and (5.5)

BR =R+ R+ +
Po Po Po 2 ac

P4 P1 1 P1 1 a(Pf/P1 ) Pz

P P 6 P~ 2 ac P,

=R +biR +b~R +b3R +b4R +

6+ e ~ ~

R 4+ P3 Pl 1 P2 + 1 Pl a(P3 /Pl ) a(P4 /P1 )

Pp Pp 3 Pp 2 Pp ac ac

1 a(p /p ) p, 1 a(p /p )

2 3 ac P, 4 ac

(5.7)

It appears from Eq. (5.7) that the b, 's may contain. 1/po
singularities in the limit pp~O (i.e., a~O). Remarkably,
they turn out to cancel if the correct definition of
a(P,*. /P1 )/ac is used. Indeed, using Eq. (4.8), Eq. (5.7)
gives

(5.8)

which agrees with Eq. (4.5). The coefficient b~ depends
upon a(p4/p1)/ac, which can be obtained from Eq.
(3.20):

p4

p4

p4

p Ilc

1

2

hence, since Iz
a(p,'/p;)

Bc

1 P» Pf
2 p1 p1 p1

in variants,

—3I~
pO

P31 1 Pl I
Iq+3Iq ',

p1 2 p1
and Iz are universal RS

pQ p4 pal

P11 PZ

p4

p4

(5.9)

(5.10)
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P31+ 3P22 P32+ 3P23
b =— a-

P4 P4
a a

Pl

where in the last step I used Eq. (4.7). Equation (5.7)
then yields

and fixes b4..

41 1 P32 1 P22 Pl 1 1 P23

Pl 2 Pl 6 Pl Pl 6 Pl

(5.11)

1) P5 /Pl P4 Pl 1 P3 2 P22 P31

ac P; P; P', 3 P; P;
(5.12)

[b3 (a =0) agrees with Eq. (4.9)].
The calculation of b4 requires knowledge of

B(P& /P,")/Bc. This is very cumbersome to obtain directly
(one needs to compute r3 and the invariant I4). Howev-

er, as argued in Sec. IV, I expect the b s to be regular in

the a~O limit, and therefore I conjecture the correct
value of B(P;. /Pl ) IBc is always such that the 1/P~ singu-

larities in the b s cancel. I have checked that this re-
quirement correctly reproduces both B(P;/Pl )/Bc and b;

for i ~ 3, starting from Eq. (5.7). For i =4, it determines

P42 + — +- a
Pl 2 Pl 6 Pl Pl

P43
1

P34 2 P44 3 P45a' — a'- a4 . (5.13)

I note that b3 and b4 are, respectively, at most cubic and
quartic polynomials in a (hence in f), even if P3 and P4
contain, respectively, f and f terms. Furthermore, one
finds that b3 and b4 are independent of c, as the lower or-
ders b s Th. e b s start holoeuer to depend upon cfori ~5
(contrary to the statement in Ref. [9]), unless the P, 's are
linear in f. This feature appears to be a consequence of
the regular behavior of the b s in the Pc~0 limit.
Indeed Eqs. (5.4) and (5.5) give

Pl P2
g(R, c)= —R2 1+ R+ R +

Pp Po

~(P."+2/Pl)
BcR Pl n~ 1

dx
Po Pl P2]+ x+ x +

Po Po

(5.14)

Inspection of Eq. (5.14) [see also Eq. (5.7)] shows a neces-
sary condition to have cancellation of the 1/Po singulari-
ties in the b s is to assume the quantities (Pl IPo)
[a(P„'IP1 )/Bc] depend linearly upon the ratios P,"/Po,
since among the potentially singular terms in Eq. (5.14),
those which involve the P s appear only through these
ratios. Such terms should cancel against each other in
the b s, which will therefore be independent of the P s

(and in particular of c), unless they are multiplied by
some sufficiently large power of a which makes them
finite as a~O. In the latter case, the P s will appear in
the b s multiplied by some P;k derivative (k ~ 2). Expli-
cit calculation, as well as a general argument (omitted
here for brevity), indicate such c-dependent terms do
occur in the b s for i ~ 5 (unless the P function is linear
in f).

For completeness, I mention that a representation
similar to Eq. (5.14) also holds at PO=O (i.e., a=0), but
with a different integration constant:

~ „(R ) P„(R ) y
&

d
(BP"IBc )(x,c)

[P*(x,)]'
(5.15)

where the asterisk refers as usual to a=O quantities, and
I left the lower limit of integration and, hence, the in-
tegration constant, undetermined since the integral is
now singular as R ~0. Noting that aP*/ac =aPIBc, and
is given in Eq. (5.5) and using P*(x,c)= —Pl x
—P2x —P3x +. . . , one can expand Eq. (5.15) in

powers of R. One gets

8 "(R,c)=R 1+ +D R
P Ilc

P*' P* P"

~ P4/Pl
Bc

(5.16)

VI. RENORMALIZATION-GROUP-IMPROVED
PERTURBATION THEORY FOR LARGE I r, I

In this section, two different methods for improving

the QCD perturbative series for large Lr; ~
are presented.

The first one, which makes use of the B(R) function, is a

completely RS-invariant alternative to the standard
method of effective charges, and is not tied to any pecu-

where D is the integration constant. Comparing with Eq.
(4.4) yields D = —(P2 +P;, ) /Pl. The expression Eq. (4.8)

for B(P3/Pl )/Bc was used implicitly in Eq. (5.16) to
prevent the appearance of nonanalytic lnR terms which
would otherwise be expected from Eq. (5.15) and the gen-
eral expansion Eq. (5.5). Note also comparison of O(R )

terms in Eqs. (5.7) and (5.16) allows one to determine
both B(P3/Pl )/Bc [by the condition the O(1/Po) singu-
larities cancel] and B(P4/P1 )/Bc (from the remaining
finite contribution), without having to compute the
O(R ) term.
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liar choice of p. The second method is simpler, but is
tied to the BLM choice of p Eq. (1.3}, i.e., is designed to
improve specifically the perturbative series at L =0: it
can be seen as a RG improvement of the BLM scheme.

A. RS-invariant method

The RG equation (2.1}yields a new method to improve
@CD perturbation theory, especially suitable to deal with
those cases where the standard method of effective
charges [7] might fail because of a large value of ~r',

~
or

~Pz ~. Since the b, 's are independent of Pz for i ~4, per-
turbation theory could still be useful for the 8(R,c ) func-
tion even then. In particular, Eq. (5.8) shows that the
magnitude of b2 is a measure of the deviation of pz from
its f=f ' value, which could remain small even for large

IP21 and I821.
It is instructive to consider first the special case where

the B and B functions do not depend explicitly on c and c
to all orders. Then the solution of Eqs. (2.1) and (2.2} is
straightforward:

c+5= f'
8(x)

c+5= f'
(6.1)

(6.2)

where 5 and 5 are integration "constants" (which howev-
er depend, respectively, on p and Q}. An improved per-
turbation theory may be based, similarly to the standard
case (which makes use of the P and P functions [cf. Eqs.
(2.3)—(2.5)]), on the relation obtained by subtracting Eq.
(6.2} from Eq. (6.1):

f n dx f + dx

8(x) 8(x) '

where b =5—5. Note that for R ~0, Eq. (6.1) gives

(6.3)

1c+5=——+
R

11
lnR +

1

(6.4)

so that R~O+ for c~—~, i.e., for Pz/P;~+ ~,
which indicates the domain of validity of this improved
perturbation theory includes the case of large and nega
tive c, i.e., of large and negative r', (which typically
occurs for the process Y~hadrons, see Ref. [2]).

However, a complication arises here with respect to
the standard case; namely the "constant" 5, although ex-
plicitly independent of c, is a function l3 (a, c,I.} (comput-
able as a power series in a: b, =b,o+ b, la + ) such
that db, /dc =M, /Bc+8(a)M, IBa =0. This feature
reflects the fact that R =R (a, r l, c ) does not depend on c
and c solely through their difference r*, . Consequently, an
improved perturbation theory based on Eq. (6.3) will still
depend on the choice of the RS coupling a, through the
expansion of the 5 term. A different, completely RS-
invariant approach is preferable, which consists in focus-
ing on the Q dependence of 5. Furthermore, this ap-
proach also applies to the general case where B(R,c) does
depend explicitly on c in high orders. For this purpose, it
is useful to keep defining a function 5(Q,c) through Eq.

(6.1), but with 8(x) replaced by 8(x,c): i.e. (I drop all
overbars since all quantities refer exclusively to R },

5(g, c)—:—c+f x
8(x,c)

(6.5)

Note that 5(Q, c), being no more an integration constant,
does depend on c now. Differentiating both sides of Eq.
(6.5) with respect to Q gives

d5 P(R,c ):——Pl (P —a),
d lng2 B(R,c)

(6.6)

where I defined an auxiliary effective charge p(R, c)
through the relation

dR

d lng
=P(R,c)—= P,"—(p a)B—(R,c) .

p can be computed as a power series in R:

p=R(1+plR+p2R + ) .

One finds

(6.7)

(6.8)

&z
Pl=p, + p,

13' P'

=C+ C
pO

= —c+
P gl

l 11 l 2+l ll 2 l 22++i 23++ +-
Pl Pl 3 Pl

2
i 11 ~21 2 l22a l23
p4 p4r 3 pgr

(6.9)

(6.10}

where Eq. (4.7) has been used in the last step. It is con-
venient to determine 5 as a function of p, the Q depen-
dence of p itself following from its associated RG equa-
tion:

dp
d lng

=P(p, c )—:—Pl (p —a)g(p, c ) . (6.1 1)

=—Pl (P —a);

hence,

1

g(p, c )
(6.13)

The motivation for introducing the g function is that it
does not depend on c if the B function does not. Indeed,
in this case 5(Q, c) in Eq. (6.5) does not depend on c either
(it is a genuine integration constant), and Eq. (6.6) implies
the total derivative dp/dc =dp/dc+8(R)dpldR =0. It
then follows from Eq. (6.11) or (6.13) that g(p, c) also
does not depend on c.

Furthermore, in the general case where the b s do de-
pend on c for i ~ 5, it can be shown that the P s also de-

Equation (6.11) introduces the auxiliary function P(p, c)
which can be computed as a power series in p (see below}:

p(p c ) lt'rp +pip + lt'2p + ' ' '

Then Eq. (6.6) gives
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s=ic+ I'
lt(x, c)

(6.14)

The integration constant K is determined by eliminating
5 between Eqs. (6.5) and (6.14). One gets

p d~ R dx
P(x, c) 8 (x, c)

(6.15)

pend on c only for i ~ 5, which makes the use of perturba-
tion theory for the g function very reasonable, even at
large ~c~. Integration of Eq. (6.13) yields 5 as a function
ofp:

In general, however, p&u and does depend upon the
definition of R (an alternative improvement procedure
making use of the coupling a is described in Sec. VIS
below).

An improved perturbation theory follows from Eq.
(6.16). The resulting p(R, c) function may be inserted
into Eq. (6.7) [this yields an improvement of the P(R, c)
series], or, equivalently (but more conveniently), one can
use Eq. (6.16) together with Eq. (6.11) to get the Q depen-
dence of R. As an example, consider the two-loop ap-
proximation to Eq. (6.16), where g(x) =B(x)=x
—P*„/P;x . One gets

Requiring the series Eq. (6.8) to be a solution of Eq.
(6.15), one finds —c —K=P1 and, hence, K= —p11/p1,
which leads to an improved" relation between p and R:

P*+P*
p4 R P 13' 1/p P; /—P"

(6.23)

~11 p dX f11 'dX

p", f(x,c) " 8 (x,c)

whereas Eq. (6.11) gives
(6.16)

dp
130P' —131P'+—&11P'

d lnThe g s in Eq. (6.12) can be computed from the relation
(6.24)

Bp g(p, c )

BR 8(R,c)
(6.17)

Integration of Eq. (6.24) yields, neglecting the 0(p )

term,

b, P2 b2-
P2 pi+

b PI+ (6.18)

which follows either from the ratio of Eqs. (6.7) and
(6.11), or by varying p with R in Eq. (6.16) at fixed c. Ex-
panding both sides of Eq. (6.17) in powers of R, one finds
$0=b0=1, g, =b, = —p»/p1, and the analogues of Eqs.
(3.5) and (3.11),namely,

Q' 1 1(11 1 1
P0ln =p, Ms+ —— ln —+

P ~0 }0 P 10
(6.25)

where I used for definiteness AMs as the reference QCD
scale parameter, and p&

—
s is the coeScient in the series:

p=aMs(1+p1MsaMs+ ), with aMs=aMs(p=Q). It
is given by

(6.19)

from which one determines

5 b1 2 3/2 —2b2 1 f3 b3-
p3=p)+ — p)+ p)+—

2 bo 60 2 60

p, =p +r, —(p=Q)—
P' p*—

2, MS + 11 +p d~
pe pe 0 1 MS

1 1

(6.26}

I2+
pg 2

1 P22u+~23u

3 p4
(6.20)

and (for simplicity, I quote only the u =0 value)

I 11 ~11 1 ~22
3 a=0 3 pg pg 2 (6.21)

Note that $2 and f3 are indeed independent of c. It is also
interesting that $2~ 0 coincides with co2/030, the 0(u )

critical exponent coefftcient [Eq. (3.24)]. Furthermore, al-
though g3~ 0 is not a universal RS invariant (because of
the —,'p22/p1 term), its RS-invariant part coincides with
co3 /co0. These features follow from Eq. (6.1 1), which
shows that P vanishes for p =u, so that the IR fixed point
is p" —=u (without higher-order corrections) and gives
co(u)=OP/Bp~ = —P;P(p=u). In the peculiar case
where the P s are linear in f, one finds that f(p) does not
depend explicitly on a, and coincides with the critical ex-
ponent function —

p1 (p) =co(p). The corresponding cou-
pling p is then identical to the uniuersal coupling cz,

defined by [see Eq. (6.11}]

where r, Ms is the coeff1cient r, of Eq. (1.1) for a =aMs,
and d1Ms is the corresponding parameter of Eq. (1.2).
Equations (6.23) and (6.25) relate R to AMs. Note the

present method is a completely RS-invariant one, and is
not tied to any peculiar choice of the RS coupling a. It is
also worth pointing out that, in the 2-loop approxima-
tion, the coupling p is universal (and coincides with u).
One can then eliminate p between Eq. (6.23) and its coun-
terpart where R ~aMs and pz ~pz Ms, i.e., one gets an

improved relation between R and aMs (at L =0):

1 1r*—=———+ ln1,Ms a R ps
1

1/a —p11/p1
(6.27)

where a =aMs (L =0). One can then relate aMs to AMs

in the standard way [Eq. (2.4)], with pMs(x) truncated at
2-loop [the resulting value of AMs will slightly differ from

the one obtained from the first procedure, if one does not
use the "improved" form of pMs(x)].

As an application, consider the process Y~hadrons.
The quantity of interest is the ratio

de =(u —u)a1(u) =19(u) .
d lnQ

(6.22)

2 t 1/3
81e1, I

g (Y~hadrons }

10(~ —9) I (Y~p, +p )
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where I is the gluonic width of the Y. One finds [2]

l~ s
R =a—(M ) 1+— (2.77P —14.0}+MS

One deduces [2] pBi M=O. 157 M~ and also [6] (I use a
normalization where a Ms

—=aMs/4n } r,' Ms
= —18.67.

Hence, knowing Pz Ms/Pi = 14.45, one finds [6]
Pz /Pi =33.12. Using the experimental value R =0.163,
one deduces from Eq. (6.27} (with P»/P; = —19)
aMs =0.019;hence, for f =4, AMs=0. 13 GeV [from Eqs.
(6.23} and (6.25), one would find instead p=0.017 and
&Ms=0. 12 Ge&]. Note also the standard method of
effective charges, based on Eq. (2.3) (with Q =M&), gives
instead A~q=0. 106 GeV, a smaller value.

B. Renormalization-group improvement of the BLM scheme

I next turn to an alternative approach based on the RG
improvement of the L =0 series mentioned at the end of
Sec. III. This alternative is made possible owing to the
existence of the universal coupling a introduced in Eq.
(6.22}, which suggests one to define an alternative B(R,c)
function through the analogue of Eq. (6.7), with p re-
placed by a: namely (a factor of Pi is now included in

8),
R =P(R,c)—:(az —a )8(R,c ),

d lnQ
(6.28)

where az =—a(R)~i o [a and R must be related by the
BLM choice of renormalization point L =0, in order that
B(R,c) has no explicit L dependence]. Taking the ratio
of Eqs. (6.22) and (6.28},one gets

dR B(R,c)
da q =o co(a)

(6.29)

Equation (6.29) allows one to compute 8, and check that
its coefficients coincide with those given in Eq. (3.25).
This result can be derived without further calculation by
specializing Eq. {3.25) to the case a =a. I note that the
results of Sec. III apply to this case, since Eq. (6.22)
shows that the coeflicients of P are (linear) polynomial in

f, and furthermore P yields the correct critical exponent
BP/Ba~~ =co(a) (where I used the fact that the fixed

point a =—a). It is clear that in the special case where
the P s are linear in f (such as the P, 's), the coefficients in
Eq. (3.25) are just —P;., /P;. But for the P of Eq. (6.22),
we have

where I have reinstalled the overbar. The co{a) function
has canceled out in the ratio, since it is universal, and
taken for the same value of its argument a (correspond-
ing to the L =0 prescription). Integration of Eq. (6.31}
gives an improved relation between R and a at L =0
[compare with Eq. (6.3)]:

f& dx f~ dx

8(x,c) 8(x c)
(6.32)

where the b; (b; ) coefficients exhibit c (c ) dependence for
i ~ 4 (i.e., one order earlier than in the case of the 8 and
8 functions). Note that of the two-loop level, Eq. (6.32)
coincides with Eq. (6.27).

P(R', a}=0 . (7.1)

Equation (7.1} is an implicit equation for the function
R'(a) (it has been determined as a power series in a in
the Appendix). Taking the total derivative of Eq. (7.1)
with respect to a gives

aP dR' aP
QR» da Ba

hence, since BP/BR "=co(a),

VII. IMPROVED PERTURBATION THEORY
FOR THE P FUNCTION

The improvement methods of Sec. VI may be criticized
on the grounds they make use of RG functions (8 and 8 )

which depend explicitly on the parameter c at sufficiently
high order. In this section, I describe a different (and in
fact simpler) approach, which is free of this problem. The
idea is the following: the relations (4.7) and (5.9) show
that P3/P; and P4/P; behave, respectively, as c and
—c for large c, and suggest that an improvement of the
P(R, c) series themselves should be possible, which would
resum the leading c contributions to the P; /Pi
coeScients. In fact, these relations suggest that it should
be possible to determine the entire P(R ) function at
f=f ' in terms of the f derivatives P,"k, given the invari-
ants [I;), i.e., given the critical exponent function co(a).
A simple argument shows that this is indeed the case and
yields as a by-product an improved perturbation expan-
sion of the IR fixed point at f~f ' (Sec. III). One starts
from the definition of the fixed point:

Pi ~o
(6.30) co(a) = — (R*,a) .dR' BP

d cx Bcx
(7.2)

i.e., in this case the coefficients in Eq. (3.25) are those of
the critical exponent function, which completes the
proof. The 8{R,c}function may be used to improve the
L =0 series. Taking the ratio of Eq. (6.29} and its ana-
logue for the RS coupling a, one gets

Equation (7.2) is a differential equation for R '(a). Let us
now split the a=0 part of P(R, a), i.e., P*(R), from the
part which contains the f derivatives,

dR 8(R,c)
da I. =o B(a,c)

{6.31)
P(R,a)=P (R) ay(R, a), —

which defines the y(R, a) function:

(7.3)
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P(R, a) —P*(R ) 2 Pi i Pzi+Pzz +P23
y(R, a)= — ' = —p;R' 1— R +. -- (7.4)

Equation (7.2) becomes

i}/i}a[ay(R *,a)]
co(a )

(7 5)

Next, I note that the knowledge of R '(a) and of y(R, a)
determines p*(R ). Indeed, let a'(R) be the inverse func-
tion «R '(a): for a given R, a' is the value of a where
p(R, a)=0. From Eq. (7.3) one deduces

P*(R)=a'(R)y[R, a'(R)]

and

(7.6)

P(R, a) =a'(R)y[R, a'(R)] —ay(R, a) . (7.7)

Equations (7.5} and (7.6) show that p'(R) is determined
[given co(a)] by the function y(R, a}. Furthermore,
y(R, a) does not depend on c, so that these equations can
be used to determine R'(a) [or a'(R)] and P'(R) even
for large c, using ordinary perturbation theory for y; i.e.,
one obtains an improued perturbation theory for the fixed
point R *(a), as well as for p'(R). It is more convenient
to consider the equation for a'(R), obtained by taking
the inverse of both sides of Eq. (7.5):

co(a' ) (7.8)
8/Ba'[a'y(R, a')]

The solution a'(R) of Eq. (7.8) needs a boundary condi-
tion to be uniquely determined. This is provided by per-
turbation theory, according to which (see the Appendix)

6f CX

dR

a'(R) =R(1+5,R+ . )

with

p'+ p'
61= '

p4
(7.9)

(7.10)

which can be integrated in the standard way, with the
boundary condition Eq. (7.9):

Ja* iix J& dx (7.11)

One then deduces

P(R, a) = [a'(R) —a]y(R) (7.12)

Indeed, it is easy to check that Eqs. (7.8) and (7.9) unique-
ly determine the coefficient [5, ] in the series
a'(R)=R(1+5iR+5zR + ), for given co and y. In
general, Eq. (7.8) has to be solved by iteration, except if
y(R, a) does not depend on a, i.e., if p(R, a) is linear in
a. In this case Eq. (7.8) becomes

which gives an improved form of p, useful for large
Ip2/pi l

I.also note that if one defines a running cou-

pling a by the relation

a(R) ~i o=a'(R } (7.13)

Eqs. (7.10) and (7.12) imply

Gf CX

, =p(a)=(a —a)a)(a);
d 1ng

(7.14)

i.e., a in fact coincides in the case where p(R, a) is linear
in f with the universal coupling a of Eq. (6.22). It may
be more convenient to predict R (Q) using Eq. (7.11) to-
gether with Eq. (7.14) than from Eq. (7.12). These re-
marks apply in particular to the two-loop approximation,
where co(x)=y(x)= —Pix +Piix . Then Eq. (7.11)
gives

pz+pii " dx51=
p4 it x 2 (pill /p4 )x 3

(7.15)

Equation (7.14) (in the 2-loop approximation) and (7.15)
are equivalent to Eqs. (6.23) and (6.24) [with the
identification p( R ) =a'(R ) =a( R ) ~ L =0]. In fact, in the
case where the p function is linear in f, the 8, 8, and y
functions all coincide, and consequently the improve-
ments methods of Secs. VI and VII are identical in this
case.

VIII. CONCLUSION

The three different methods which have been presented
to ameliorate the perturbation expansion in case of large
BLM coefficient r', all rely on the following assumptions:
(i) the p; coefficients are "large, " and (ii) they have weak

f dependence. This means in particular these methods
may be useful if one finds that

~ p2(f)
~
)& 1, with

pi(f =0)=p2(f =f"). I emphasize the assumption of
weak f dependence of pz is stronger than just assuming
weak f dependence of r2, as shown by Eqs. (4.11)—(4.14).
It may also be worth pointing out the present methods
exploit, and preserve, the polynomial f dependence of the
r s in contrast with more standard procedures. The latter
yield estimates such as r2=r, +(p, /po)r, (if p2, p2 are
neglected), or r2=(p2 —p2)/po [if the so-called "fastest
apparent convergence" (FAC) choice [7) of }M, r, (p)=0,
is adopted] which are singular in the limit p0~0. Final-
ly, I note all these methods are specific of QCD, and can-
not be applied to QED since the relation (1.4) between r i

and the p functions does not hold in QED. In the latter
case, however, all p function coefficients vanish in the
f ~0 limit (the QED-analogue of the f~f limit), in
such a way the ratios p, /po and p;/po stay finite. It fol-
lows that the standard method of effective charges [7] is
applicable to improve the QED perturbative series for
large BLM coefficient r*, (and works even in the f~0
limit).
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APPENDIX: PERTURBATIVE EXPANSION
OF THE IR FIXED POINT AT f~f

In QCD (and more generally non-Abelian gauge
theories coupled to fermions} the P function has the prop-
erty that the one-loop coefficient Po vanishes, while the
higher-order coefficients P s stay finite, as f approach the
value f' where Po changes sign. It follows that forff ', P(a) possesses a nontrivial IR fixed point [15]
a', such that P(a')=0, perturbatively calculable in
powers of (f f ').—In perturbation theory, the condition
P(a ')=0 becomes

(A 1)

that the P s are polynomials in u, see Eqs. (3.2}, (3.3),
and (3.10)]. One gets

133 Pz

p4 pO

1 11 ~21 ~2 1 11

(A3)

The critical exponent r0(a)=t}P/Ba~, can also be

computed as a power series in a. From the definition of
co(a), one has

In leading order, keeping only the first two terms in Eq.
(A 1) (two-loop p function), one gets a ' = —po/pi =a. In
higher orders, a systematic expansion of a ' in powers of
a may be derived from Eq. (Al). Setting

co(a) = —(2Pca '+ 3Pia ' +4Pza "3

+SP3a ' +6P4a ' + )

= +dopa +co&u +co2a +co3a + (A4)
a'=a(1+aia+a2a +a3a + ) (A2)

the a, 's can be computed by inserting Eq. (A2) into Eq.
(A 1}and requiring the resulting series vanish order by or-
der, when reexpanded in powers of a [taking into account

Inserting Eq. (A2} into Eq. (A4) yields the result for the
ni s Eq. (3.24). Since ro and a are universal, RS-invariant
quantities, so are the co s as checked in Sec. III, where
they are related to the universal invariants [I, j.
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